El premio nobel alrededor del ADN

Autores/as

  • Dulce María Delgadillo-Álvarez Instituto Politécnico Nacional (IPN)

DOI:

https://doi.org/10.24039/cv20164161

Resumen

El Premio Nobel es un galardón internacional otorgado cada año a personas o instituciones que hayan realizado investigaciones, descubrimientos o contribuciones a la humanidad en el año inmediato anterior o en el transcurso de su vida. Los premios se instituyeron en 1895 como última voluntad del químico sueco Alfred Nobel y comenzaron a entregarse en 1901. Dos de las especialidades en las que el Premio es otorgado son en Química y en Fisiología o Medicina. El objetivo de esta breve revisión es hacer un recuento de aquellos investigadores que han sido merecedores de este galardón en las disciplinas citadas desde hace 114 años y cuyos trabajos han orbitado alrededor del ácido desoxirribonucleico o ADN. Se mencionan estudios sobre su descubrimiento, estructura y caracterización molecular tanto de esta como de las moléculas que, en coordinación con él lo hacen ser la molécula encargada de almacenar y transmitir la información genética de todos los organismos que habitan nuestro planeta.

Palabras clave: Premio Nobel, ácido desoxirribonucleico, descubrimiento, estructura, biología molecular

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Dulce María Delgadillo-Álvarez, Instituto Politécnico Nacional (IPN)

Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Apartado Postal 14-740, 07360 México, DF, México.

Citas

Asturias, F. J., & Kornberg, R. D. (1999). Protein crystallization on lipid layers and structure determination of the RNA polymerase II transcription initiation complex. Journal of Biological Chemistry, 274(11), 6813-6816.

Avery, O., MacLeod, M., & MaCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of Pneumococcal types. Induction of transformation by a desoxirribonucleic acid fraction isolated from Pneumococcus type III. Journal of Experimental Medicine, 79(2), 137-158.

Baltimore, D. (1970). RNA-dependent DNA polymerase in virionsof RNA tumor viruses. Nature, 226(5252), 1209-1211.

Berget, S. M., Moore, C., & Sharp, P. A. (1977). Spliced segments at the 5’terminus of adenovirus 2 late mRNA (adenovirus 2 mRNA processing/5’ tails on mRNA/electron microscopy of mRNAS-DNA hybrids). Proccedings of the National Academy of Sciences USA, 74(8), 3171-3175.

Blackburn, E. H. (1991). Structure and functions of telomeres. Nature, 350(6391), 569-573.

Chow, L. T., Gelinas, R. E., Broker, T. R., & Roberts, T. J. (1977). An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell, 12(1), 1-8.

Dahm, R. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics, 122(6), 565-81.

Danna, K. J., Sack, G. H., & Nathans, D. (1973). Studies of Simian virus 40 DNA:VII. To clavage map of the SV40 genome. Journal of Molecular Biology, 78(2), 363-376.

Franklin, R. E., & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, 171(4356), 740-741.

Grabowski, P. J., Zaug, A. J., & Cech, T. R. (1981). The intervening sequence of the ribosomal RNA precursor is converted to circulating RNA in isolated nuclei of Tetrahymena. Cell, 23(2), 467-476.

Greider, C. W., & Blackburn, E. H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43(2 Pt 1), 405-413.

Griffith, F. (1928). The significance of Pneumococcal types. Journal of Hygiene (Lond)., 27(2), 113-59.

Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35(3 Pt 2), 847-857.

Hershey, A. D., & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36(1), 39-56.

Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marqisee, M.,Merril, S. H., . . . Zamir, A. (1965). Structure of Ribonucleic Acid. Science, 147, 1462-1465.

Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318-356.

James, J. (1970). Mieschers’s discoveries of 1869. A centenary of nuclear chemistry. Journal of Histochemistry and Cytochemistry., 18(3), 217-219.

Khorana, H. G. (1968). Synthesis in the study of Nucleic Acids. Biochemical Journal, 109(5), 709-725.

Klungland, A., & Lindahl, T. (1997). Second pathway for completion of human DNA base excisión-repair: reconstitution with purified proteins and requirement for DNasa IV (FEN1). The EMBO Journal, 16(11), 3341-3348.

Lehman, I. R., Bessman, M. J., Simms, E. S., & Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid: I.Preparation of substrates and partial purification of an enzyme from Escherichia coli. Journal of Biological Chemistry, 233, 163-170.

Lewin, B. (2008). Genes IX. Sadbury MA: Jones and Barlett Publishers.

Matthaei, H. J., Jones, O. W., Martin, R. G., & Nirenberg, M. W. (1962). Characteristics and composition of RNA coding units. Proccedings of the National Academy of Sciences USA, 48, 666-677.

Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proccedings of the National Academy of Sciences USA, 74(2), 560-564.

Meselson, M., & Sthal, F. W. (1958). The replication of DNA in Escherichia coli. Proccedings of the National Academy of Sciences, 44, 671-682.

Mii, S., & Ochoa, S. (1957). Polyribonucleotide synthesis with highly purified polynucleotide phophorylase. Biochimica et Biophysica Acta, 26(2), 445-446.

Morgan, T. (1915). Localization of the Hereditary Material in the Germ Cells. Proccedings of the National Academy of Sciences USA, 1(7), 420-429.

Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., & Sancar, A. (1997). Recognition and repair of compound DNA lesions (damage and mismatch base) by human mismatch repair and escision repair systems. Molecular and Cellular Biology, 17(2), 760-769.

Muller, H. (1946). Physiological effects on spontaneous mutation rate in Drosophila. Genetics.(31), 225.

Mullis, K. B. (1990). Target amplification for DNA analysis by the polymerase chain reaction. Annales de Biologie Clinique, 48(8), 579-582.

Nathans, D., & Smith, H. O. (1975). Restriction endonucleases in the analysis and restructuring of DNA molecules. Annual Review of Biochemistry, 44, 273-293.

Nobel Prize. (s.f.). Nobel Prize. Recuperado de www.nobelprize.org

Ortíz, H. (2003). “Encontramos el secreto de la vida”. 50 años del descubrimiento de la estructura del ADN. Anales Médicos Hospital ABC, 48(3), 177-188.

Pielak, G. J., Mauk, A. G., & Smith, M. (1985). Site-directed mutagenesis of cytochrome c shows that an invariant Phe is not essential for function. Nature, 313(5998), 152-154.

Portin, P. (2014). The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. Journal of Genetics., 93(1), 293-302.

Sancar, A. (1996). DNA excision repair. Annual Review of Biochemistry(65), 43-81.

Sanger, F., & Tuppy, H. (1951a). The amino-acid sequence in the phenylalanyl chain of insulin 2. The investigation of peptides from enzymic hydrolysates. Biochemistry Journal, 49(4), 463-481.

Sanger, F., & Tuppy, H. (1951b). The amino-acid sequence in the phenylalanyl chain of insulin I. The identification of lower peptides from partial hydrolysates. Biochemistry Journal, 49(4), 481-490.

Sanger, F., Necklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proccedings of the National Academy of Sciences USA, 74(12), 5463-5467.

Szostak, J. W., & Blackburn, E. H. (1982). Cloning yeast telomeres on linear plasmid vectors. Cell, 29(1), 245-255.

Thomas, M., White, R. L., & Davis, R. W. (1976). Hybridization of RNA to double-stranded DNA: Formation of R-loops. Proccedings of the National Academy of Sciences USA, 73(7), 2294-2298.

Timmons, L., & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395(6705), 854.

Todd, A. (1954). Chemical structure of the nucleic acids. Proccedings of the National Academy of Sciences USA., 40, 748-755.

Watson, J. D., & Crick, F. H. (1953a). Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature, 171(4356), 737-738.

Watson, J. D., & Crick, F. H. (1953b). Genetical implications of the structure of the deoxyribonucleic acid. Nature, 171(4356), 964-966.

Zamenhof, S., & Chargaff, E. (1950). Dissymetry in nucleotide sequence of desoxypentose nucleic acids. Journal of Biological Chemistry, 187, 1-14.

Publicado

2016-06-18

Cómo citar

Delgadillo-Álvarez, D. M. (2016). El premio nobel alrededor del ADN. Cátedra Villarreal, 4(1), 12–25. https://doi.org/10.24039/cv20164161

Número

Sección

Artículos Originales