Phylogenetic trends in neotropical aquatic plants assemblies

Autores

DOI:

https://doi.org/10.24039/rtb20232111514

Palavras-chave:

Hydrophytes, Biogeography, Dispersal

Resumo

The phylogenetic assembly rule has received particular attention in its application in biological assemblies, and the present study aims to apply the use of this concept in studies of Neotropical plants associated with aquatic environments. Thus, species information was compiled from the scientific database Scopus, including information for 2813 aquatic and border spermatophytes and their types of dispersal syndromes from 76 assemblages distributed across the Neotropical. We constructed phylogenetic trees for the Neotropical region and for each province separately to define the structure of the ancestral relationships of the species in those assemblies by calculating the phylogenetic metrics of the singularities of each component of diversity and conducting multiple regressions of each phylogenetic diversity metric against environmental variables that represent the hypothesis of determinant contemporary processes. The phylogenetic structure was maintained within the context of species observed in the biogeographical provinces. The multiple regressions indicated no relationship between environmental variables and the predictor’s richness and phylogenetic diversity. It was found that most of these species disperse by anemochory and endozoochory, which can be important historical indicators for explaining the phylogenetic pattern displayed. More phylogenetic structure occurred in arid regions as opposed to the most phylogenetically aggregated species occurring in humid tropical zones. It was concluded that the Neotropical floras were dominated by non-random assembly rules, with a tendency to be composed of the same clades, independent of geographic distances; however, they demonstrated a tendency to form assemblies themselves into more congeneric or co-familiar forms rather than random associations. This phenomenon may be related to the types of dispersal syndromes of ancestral lineages. The Neotropical aquatic and border Spermatophyte were dominated by non-random assembly rules, with a tendency to be composed of the same clades, independent of geographic distances. This phenomenon may be related to the types of dispersal of ancestral lineages.

Downloads

Não há dados estatísticos.

Referências

APG IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.

Antonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics? Taxon, 60, 403–414.

Arroyo-Rodríguez, V., Cavender-Bares, J., Escobar, F., Melo, F. P. L., Tabarelli, M., & Santos, B. A. (2012). Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology, 100, 702–711.

Bell, C. D., Soltis, D. E., & Soltis, P. S. (2010). The age and diversification of the angiosperms re-revisited. American Journal of Botany, 97, 1296–1303.

Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P. & Pinto, M. P. (2006). Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distributions, 12, 475–482.

Bosiacka, B., & Pieńkowski, P. (2012). Do biogeographic parameters matter? Plant species richness and distribution of macrophytes in relation to area and isolation of ponds in NW Polish agricultural landscape. Hydrobiologia, 689, 79–90.

Burnham, R. J., & Graham, G. (1999). The history of Neotropical vegetation: New developments and status. Annals of the Missouri Botanical Garden, 86, 546–589.

Cabrera, A. L., & Willink, A. (1980). Biogeografía de América Latina. Monografias de la OEA, série Biología, n. 13.

Cahill, J. F., Kembel, S. W., Lamb, E. G., & Keddy, P. A. (2007). Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspectives in Plant Ecology, Evolution and Systematics, 10, 41–50.

Cavender-Bares, J., Keen, A., & Miles, B. (2006). Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, 109–122.

Chambers, P. A., Lacoul, P., Murphy, K. J., & Thomaz, S. M. (2008). Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595, 9–26.

Charalambidou, I., & Santamaría, L. (2002). Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecologia, 23, 165–176.

Chazdon, R. L., Careaga, S., Webb, C., & Vargas, O. (2003). Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological Monographs, 73, 331–348.

Darwin, C. R. (1859). On the origin of species by means of natural selection. J Murray Ed.

Donoghue, M. J. (2008). A phylogenetic perspective on the distribuition of plant diversity. Proceedings of the National Academy of Sciences, 105, 11549–11555.

Fine, P. V. A., & Kembel, S. W. (2011). Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients inwestern Amazonian tree communities. Ecography, 34, 552–565.

Gandullo, R., & Faggi, A. M. 2005. Interpretación sintaxonómica de los humedales del noroeste de la província de Neuquén, Argentina. Darwiniana, 43, 10–29.

Goswami, G., Pal, S., & Palit, D. (2010). Studies on the physico-chemical characteristics, macrophyte diversity and their economic prospect in Rajmata Dighi: a wetland in Cooch Behar District, West Bengal, India. NeBIO, 1, 21–27.

Green, A. J., Figuerola, J., & Sánchez, M. I. (2002). Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecologica, 23, 177–189.

Hughes, C. E., Pennington, R. T., & Antonelli, A. (2013). Neotropical Plant Evolution: Assembling the Big Picture. Botanical Journal of the Linnean Society, 171, 1–18.

Jarzyna, M. A., Quintero, I., & Jetz, W. (2021). Global functional and phylogenetic structure of avian assemblages across elevation and latitude. Ecology Letters, 24, 196-207.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263.

Machado-Filho, H. O., Cabral, L. L., de Melo, J. I. M., Zickel, C. S., & do Nascimento Moura, A. (2014). Macrófitas aquáticas da região Neotropical: uma abordagem cientométrica. Revista Biociências, 20, 90-1016.

Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97, 199–205.

Marchese, C. (2015). Biodiversity hotspots: A shortcut for a more complicated concept. Global Ecology and Conservation, 3, 297–309.

Nagaligum, N. S., Knerr, N., Laffan, S. W., González-Orozco, C. E., Thornhill, A. H., Miller, J. T., & Mishler, B. D. (2015). Continental scale patterns and predictors of fern richness and phylogenetic diversity. Frontiers in Genetics, 132, 1–16.

Nathan, R., & Katul, G. G. (2005). Foliage shedding in deciduous forests lifts up Longdistance seed dispersal by wind. Proceedings of the National Academy of Science of USA, 102, 8251–8256.

Neves, D. M., Dexter, K. G., Pennington, R. T., Bueno, M. L., & Oliveira-Filho, A. T. (2015). Environmental and historical controls of floristic composition across the South American Dry Diagonal. Journal of Biogeography, 42, 1566–1576.

Padial, A. A., Bini, L. M, & Thomaz, S. M. (2008). The study of macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Brazilian Journal of Biological, 68, 1051–1059.

Penning, W. E, Mjelde, M., Dudley, B., Hellsten, S., Hanganu, J., Kolada, A., van den Berg, M., Poikane, S., Phillips, G., Willby, N., & Ecke, F. (2008). Classifying aquatic macrophyte as indicators of eutropication in European lakes. Aquatic Ecology, 42, 237–251.

Posadas, P., Crisci, J. V., & Katinas, L. (2006). Historical biogeography: A review of its basic concepts and critical issues. Journal of Arid Environments, 66, 389–403.

Prevedello, J. A., Almeida‐Gomes, M., & Lindenmayer, D. B. (2018). The importance of scattered trees for biodiversity conservation: A global meta‐analysis. Journal of Applied Ecology, 55, 205-214.

Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patherns. Ecology Letters, 8, 224–239.

Renner, S. (2009). Gymnosperms. In: Hedges, S.B. & Kumar, S. (Eds). The Time of Life (pp. 157–160). Oxford Universty Press.

Santamaría, L. (2002). Why are most aquatic plants widely distributed? Dispersal clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologia, 23, 137–154.

Santamaría, L., & Klaassen, M. (2002). Waterbird-mediated dispersal of aquatic organisms: An introduction. Acta Oecologica, 23, 115–119.

Sarr, A., Thiam, A., & Bâ, A. T. (2001). Macrophytes et groupements végétaux aquatique et amphibies de la basse vallée du Ferlo (Sénégal). African Journal of Science and Technology, 2, 89–97.

Santos, B. A., Arroyo-Rodríguez, V., Moreno, C., & Tabarelli, M. (2010). Edgerelated loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PLoSONE, 5, 1-7.

Sculthorpe, C. D. (1967). The biology of aquatic vascular plants. Ed. Arnold.

Silva, P. G., Mota Souza, J. G., & Neves, F. D. S. (2022). Dung beetle β‐diversity across Brazilian tropical dry forests does not support the Pleistocene Arc hypothesis. Austral Ecology, 47, 54-67.

Skarpaas, O., Auhl, R., & Shea, K. (2006). Environmental variability and the initiation of dispersal: turbulence strongly increase seed release. Proceedings of the Royal Society of London: Biological Sciences, 273, 751–756.

The Plant List. (2013). A working list of all plants species, Royal Botanic Gardens; Kew and Missouri Botanical Garden. 2013. http://www.theplantlist.org/

Valiente-Banuet, A., & Verdu, M. (2007). Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letteres, 10, 1029–1036.

Vamosi, S. M., Heard, S.B., & Webb, C. O. (2009). Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology, 18, 572–592.

Webb, C. O., & Donoghue, M. J. (2005). Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology, 5, 181–183.

Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008). Phylocom: software for the analysis of community phylogenetic structure and trait evolution, version 4.1. http://www.phylodiversity.net/phylocom/

Webb, C. O., Ackerly, D. D., Peek, M. A., & Donoghue, M.J., (2002). Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 475–505.

Werenkrauft, V., & Rugiero, A. (2011). Quality of basic data and method to identy shape effect the perception of richness-altitude relationships in meta-analysis. Ecology, 92, 253–260.

Wiens, J. J. (2011). The causes of species richness patterns across space, time, and clades and the role of “Ecological Limits”. The Quarterly Review of Biology, 86, 75–96.

Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annual Reviews of Ecology, Evolution and Systematics, 34, 273–309.

Publicado

2023-02-22

Como Citar

Machado-Filho, H., Lot-Helgueras, A., & Zickel, C. S. (2023). Phylogenetic trends in neotropical aquatic plants assemblies. The Biologist, 21(1), 111–123. https://doi.org/10.24039/rtb20232111514

Edição

Seção

Artigo de revisão