INDICADOR DE SOSTENIBILIDAD PARA LA PROTECCIÓN AMBIENTAL Y ECOLÓGICA DE LOS SISTEMAS ACUÁTICOS

Autores/as

  • George Argota-Pérez Centro de Investigaciones Avanzadas y Formación Superior en Educación, Salud y Medio Ambiente ¨AMTAWI¨. Puno, Perú https://orcid.org/0000-0003-2560-6749
  • José Iannacone Laboratorio de Ecología y Biodiversidad Animal. Facultad de Ciencias Naturales y Matemática. Grupo de Investigación en Sostenibilidad Ambiental (GISA), Universidad Nacional Federico Villarreal (UNFV). Lima, Perú. 7 Laboratorio de Zoología. Facultad de Ciencias Biológicas. Grupo de Investigación “One Health”. Universidad Ricardo Palma (URP). Lima, Perú. https://orcid.org/0000-0003-3699-4732

DOI:

https://doi.org/10.24039/rtb20222021472

Palabras clave:

biomarcador, biomonitor, economía ambiental, economía ecológica, ecosistema acuático

Resumen

El objetivo del estudio fue proponer un indicador de sostenibilidad para la protección ambiental y ecológica de los sistemas acuáticos. Se realizó, un muestreo probabilístico aleatorio en la zona de exposición entre la laguna de Espinar y la bahía interior del Lago Titicaca, Puno, Perú, donde se determinó, diversos parámetros físico-químicos (PFQ): oxígeno disuelto, pH, sólidos totales disueltos, conductividad eléctrica, Cu+, Zn+, Pb+, Fe+, Cd+, Al+, Cl-, NO3- y NO2-. En condiciones experimentales (dilución del agua: 10, 20, 30, 40 y 50 ml/1L) se evaluó, el efecto ecotoxicológico mediante el biomarcador (Bm): tiempo de reacción y capacidad de refugio (TRCR) en la Gambusia punctata (Poey, 1854). Con los PFQ y el Bm se propuso, el indicador de sostenibilidad (ISPAEsa) el cual consideró, cinco descriptores desde una hermenéutica de la economía ambiental y ecológica. Para cada descriptor, hubo tres ponderaciones (1,0; 0,75 y 0,50) según los criterios de magnitud: alto, medio y bajo. El ISPAEsa refirió, tres intervalos según la calidad del agua: I) protección ambiental conservada: 1,10-1,15; II) protección ambiental no inmediata: 1.16-1.30; y III) protección ambiental inmediata: 1,31-1,50. El 76,92% de los PFQ, no cumplieron con el valor normativo. Fue menos demorado el TRCR en el tratamiento más diluido. El ISPAEsa fue 1,4 donde se requiere tratamiento ambiental inmediato. Se concluye, que el indicador de sostenibilidad protege desde lo ambiental y ecológico, pues se sustenta en descriptores y biomarcadores que permiten el análisis de las condiciones naturales.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Argota, P.G. & Iannacone, J. 2017. Predicción cuantitativa de riesgo histórico entre ecosistema impactado de referencia ambiental mediante el uso permanente de biomarcadores como nuevo criterio para biomonitores en ecotoxicología acuática. The Biologist (Lima), 15: 141-153.

Argota, P.G.; Iannacone, J.; Córdova, S.C. & Rodríguez, C.J.C. 2019. Estimación ambiental de la economía ambiental y la economía ecológica: una cara, dos monedas. Biotempo, 16: 165-172.

Argota, P.G.; Iannacone, O.J. & Fimia, D.R. 2013. Características de Gambusia punctata (Poeciliidae) para su selección como biomonitor en ecotoxicología acuática en Cuba. The Biologist (Lima), 11: 229-236.

Arias, A.M.; Klümper, U.; Rojas, J.K. & Grossart, H.P. 2018. Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution, 237: 253-261.

Brown, R.E. & Bolivar, S. 2018. The importance of behavioural bioassays in neuroscience. Journal of Neuroscience Methods, 300: 68-76.

Buchs, A.; Petit, O. & Roman, P. 2020. Can social ecological economics of water reinforce the “big tent”? Ecological Economics, 169: 1-14.

Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R. & Harwood, V.J. 2012. Enterococci in the environment. Microbiology and Molecular Biology Reviews, 76: 685-706.

Caixeta, M.B.; Araújo, P.S.; Rodrigues, C.C.; Gonçalves, B.B.; Araújo, O.A.; Bevilaqua, G.B.; Malafaia, G.; Damacena, S.L. & Rocha, T.L. 2020. Risk assessment of iron oxide nanoparticles in an aquatic ecosystem: a case study on Biomphalaria glabrata. Journal of Hazardous Materials, 401: 1-42.

Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F. & Wu, J. 2019. Multi-scenario simulation of landscape ecological risk probability to facilitate different decision-aking preferences. Journal of Cleaner Production, 227: 325-335.

Capela, R.; Garric, J.; Castro, L.F.C. & Santos, M.M. 2019. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. Science of The Total Environment, 705: 1-75.

Cardoso, C.M.; Maluf, A.; Moreno, B.B.; Nobre, C.R.; Maranho, L.A.; Handan, B.A.; Moledo de Souza, A.D.; Dias, S.P.C. & Ribeiro, D.A. 2019. Common snook juveniles, Centropomus undecimalis, as biomonitor organisms to evaluate cytogenotoxicity effects of surface estuarine water from Southern Brazil. Marine Pollution Bulletin, 149: 1-7.

Chen, F.; Li, H. & Zhang, A. 2019. Ecological risk assessment based on terrestrial ecosystem services in China. Acta Geographica Sinica, 74: 432-445.

Colby, B. 2020. Acquiring environmental flows: ecological economics of policy development in western U.S. Ecological Economics, 173: 1-13.

Comisión Económica para América Latina y el Caribe: CEPAL. 2015. Guía metodológica Medición del gasto en protección ambiental del gobierno general. II. Conceptos y definiciones generales para la medición del gasto en protección ambiental, pp. 17-18.

Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S. & Turner, R.K. 2014. Changes in the global value of ecosystem services. Global Environmental Change, 26: 152-158.

Cucchiella, F.; Gastaldi, M. & Trosini, M. 2017. Investments and cleaner energy production: A portfolio analysis in the Italian electricity market. Journal of Cleaner Production, 142: 121-132.

Deacon, S.; Norman, S.; Nicolette, J.; Reub, G.; Greene, G.; Osborn, R. & Andrews, P. 2015. Integrating ecosystem services into risk management decisions: Case study with Spanish citrus and the insecticide chlorpyrifos. Science of the Total Environment, 505: 732-739.

Decreto Supremo No. 004-2017-MINAM. 2017. (Categoría 1: Población y Recreacional; Subcategoría A: aguas superficiales destinadas a la producción de agua potable; A2: aguas que pueden ser potabilizadas con tratamiento convencional y la categoría 4: Conservación del ambiente acuático; Subcategoría E1: lagos y lagunas). https://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf

Estoque, R.C. & Murayama, Y. 2014. Measuring sustainability based upon various perspectives: A case study of a hill station in southeast Asia. Ambio, 43: 943-956.

Franco, M.P.V. 2018. Searching for a scientific paradigm in ecological economics: The history of ecological economic thought, 1880s–1930s. Ecological Economics, 153: 195-203.

Gendron, C. 2014. Beyond environmental and ecological economics: Proposal for an economic sociology of the environment. Ecological Economics, 105: 240-253.

Haak, D.M.; Fath, B.D.; Forbes, V.E.; Martin, D.R. & Pope, K.L. 2017. Coupling ecological and social network models to assess “transmission” and “contagion” of an aquatic invasive species. Journal of Environmental Management, 190: 243-251.

Häder, D.P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A. & Helbling, E.W. 2020. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of The Total Environment, 713: 1-10.

Halkos, G. & Kitsos, C. 2018. Uncertainty in environmental economics: The problem of entropy and model choice. Economic Analysis and Policy, 60: 127-140.

He, W.; Kong, X.; Qin, N.; He, Q.; Liu, W.; Bai, Z.; Wang, Y. & Xu, F. 2019. Combining species sensitivity distribution (SSD) model and thermodynamic index (exergy) for system-level ecological risk assessment of contaminates in aquatic ecosystems. Environment International, 133: 1-16.

Hensher, M. 2020. Incorporating environmental impacts into the economic evaluation of health care systems: Perspectives from ecological economics. Resources, Conservation and Recycling, 154: 1-12.

Jin, X.; Jin, Y. & Mao, X. 2019. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes-case study of Delingha City. Ecological Indicators, 101: 185-191.

Kang, P.; Chen, W.; Hou, Y. & Li, Y. 2018. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing -Tianjin -Hebei urban agglomeration. Science of The Total Environment, 636: 1442-1454.

Kube, R.; Löschel, A.; Mertens, H. & Requate, T. 2018. Research trends in environmental and resource economics: Insights from four decades of JEEM. Journal of Environmental Economics and Management, 92: 433-464.

Le, H.P. 2020. The energy-growth nexus revisited: the role of financial development, institutions, government expenditure and trade openness. Heliyon, 6: 1-11.

Lorek, S. & Spangenberg, J.H. 2014. Sustainable consumption within a sustainable economy–beyond green growth and green economies. Journal of Cleaner Production, 63: 33-44.

Luo, F.; Liu, Y.; Peng, J. & Wu, J. 2018. Assessing urban landscape ecological risk through an adaptive cycle framework. Landscape and Urban Planning, 180: 125-134.

Melgar, M.R.E & Hall, C.A.S. 2020. Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems. Ecological Economics, 169: 1-14.

Mo, W.; Wang, Y.; Zhang, Y. & Zhuang, D. 2017. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Science of The Total Environment, 574: 1000-1011.

Morrissey, K. 2020. Resource and environmental economics. International Encyclopedia of Human Geography, 9: 376-380.

Muradian, R. & Pascual, U. 2020. Ecological economics in the age of fear. Ecological Economics, 169: 1-8.

O’Callaghan, I.; Harrison, S.; Fitzpatrick, D. & Sullivan, T. 2019. The freshwater isopod Asellus aquaticus as a model biomonitor of environmental pollution: A review. Chemosphere, 235: 498-509.

OECD. 2019. Test Guideline No. 203 Fish, Acute Toxicity Testing. OECD Guideline for Testing of Chemicals. 23 p.

ONU/CEPAL. 2018. La Agenda 2030 y los Objetivos de Desarrollo Sostenible. Una oportunidad para América Latina y el Caribe. Publicación de las Naciones Unidas.

LC/G.2681-P/Rev.3. https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf

Pearce, D.W. & Turner, R.K. 1990. Economics of natural resources and the environment. American Journal of Agricultural Economics, 73: 211-218.

Pimentel, B.S.; Santibañez, E.S. & Barbosa, G.N. 2016. Decision-support models for sustainable mining networks: fundamentals and challenges. Journal of Cleaner Production, 112: 2145-2157.

Profitiliotis, G. & Loizidou, M. 2019. Planetary protection issues of private endeavors in research, exploration, and human access to space: An environmental economics approach to backward contamination. Space Policy, 50: 1-8.

Riddell, E.S.; Govender, D.; Botha, J.; Sithole, H.; Petersen, R.M. & Shikwambana, P. 2019. Pollution impacts on the aquatic ecosystems of the Kruger National Park, South Africa. Scientific African, 6: 1-21.

Robertson, S. 2015. A longitudinal quantitative-qualitative systems approach to the study of transitions toward a low carbon society. Journal of Cleaner Production, 128: 221-233.

Shah, D.H.; Zhou, X.; Kim, H.Y.; Call, D.R. & Guard, J. 2012. Transposon mutagenesis of Salmonella Enteritidis identifies genes that contribute to invasiveness in human and chicken cells and survival in egg albumen. Infection and Immunity, 80: 4203-4215.

Solovjova, N.V. 2019. Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability levels. Ecological Modelling, 406: 60-72.

Song, W. & Deng, X. 2017. Land-use/land-cover change and ecosystem service provision in China. Science of the Total Environment, 576: 705-719.

Spash, C.L. 2017. Social Ecological Economics. In: Spash, C.L. (Ed.), Routledge Handbook of Ecological Economics. Nature and Society. Routledge, London, pp. 3-16.

Tang, P.; Zeng, H. & Fu, S. 2019. Local government responses to catalyse sustainable development: Learning from low-carbon pilot programme in China. Science of The Total Environment, 689: 1054-1065.

Vendrell, P.L.; Abril, M.; Proia, L.; Espinosa, A.C.; Ricart, M.; Oatley, R.D.L.; Willians, P.M.; Zanai, M. & Llenas, L. 2020. Assessing the effects of metal mining effluents on freshwater ecosystems using biofilm as an ecological indicator: Comparison between nanofiltration and nanofiltration with electrocoagulation treatment technologies. Ecological Indicators, 113: 1-8.

Vezi, M.; Downs, C.; Wepener, V. & O’Brien, G. 2020. Application of the relative risk model for evaluation of ecological risk in selected river dominated estuaries in KwaZulu-Natal, South Africa. Ocean y Coastal Management, 185: 1-14.

Weiss, M. & Cattaneo, C. 2017. Degrowth – taking stock and reviewing an emerging academic paradigm. Ecological Economic, 137: 220-230.

Wiederholt, R.; Stainback, G.A.; Paudel, R.; Khare, Y.; Naja, M.; Davis, S.E. & Van Lent, T. 2020. Economic valuation of the ecological response to hydrologic restoration in the Greater Everglades ecosystem. Ecological Indicators, 117: 1-11.

Wu, J.; Mao, R.; Li, M.; Xia, J.; Song, J.; Cheng, D. & Sun, H. 2020. Assessment of aquatic ecological health based on determination of biological community variability of fish and macroinvertebrates in the Weihe River Basin, China. Journal of Environmental Management, 267: 1-13.

Wu, L.; You, W.; Ji, Z.; Xiao, S. & He, D. 2018. Ecosystem health assessment of Dongshan Island based on its ability to provide ecological services that regulate heavy rainfall. Ecological Indicators, 84: 393-403.

Xie, G.; Zhang, C.; Zhen, L. & Zhang, L. 2017. Dynamic changes in the value of China’s ecosystem services. Ecosystem Services, 26: 146-154.

Xu, X.; Yang, G.; Tan, Y.; Zhuang, Q.; Li, H., Wan, R.; Su, W. & Zhang, J. 2016. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020. Science of the Total Environment, 554-555: 7-16.

Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P. & Güneralp, İ. 2017. Impacts of land change on ecosystem services in the San Antonio river basin, Texas, from 1984 to 2010. Ecological Economics, 135: 125-135.

Yong, J.Y.; Klemeš, J.J., Varbanov, P.S. & Huisingh, D. 2016. Cleaner energy for cleaner production: modelling, simulation, optimisation and waste management. Journal of Cleaner Production, 111: 1-16.

Young, P.; Buchanan, N. & Fallowfield, H.J. 2016. Inactivation of indicator organisms in wastewater treated by a high-rate algal pond system. Journal of Applied Microbiology, 121, 577-586.

Zvarivadza, T. & Nhleko, A.S. 2018. Resolving artisanal and small-scale mining challenges: Moving from conflict to cooperation for sustainability in mine planning. Resources Policy, 56: 78-86.

Publicado

2022-09-17

Cómo citar

Argota-Pérez, G. ., & Iannacone, J. (2022). INDICADOR DE SOSTENIBILIDAD PARA LA PROTECCIÓN AMBIENTAL Y ECOLÓGICA DE LOS SISTEMAS ACUÁTICOS . The Biologist, 20(2), 311–322. https://doi.org/10.24039/rtb20222021472

Número

Sección

Artículos Originales