EPROPOSAL FOR AN EVENT RECONSTRUCTION ALGORITHM TO STUDY THE EVOLUTION OF CANCEROUS CELLS

Authors

  • J. Alan Calderón Ch Applied Physics, Institute for Physics, Technical University of Ilmenau, Ilmenau 98693, Germany. Pontificia Universidad Católica del Perú, Mechatronic Master Program and Energy Laboratory, Lima 32, Peru Aplicaciones Avanzadas en Sistema Mecatrónicos JACH S.A.C. https://orcid.org/0000-0002-6486-5105
  • Julio Tafur-Sotelo Pontificia Universidad Católica del Perú, Mechatronic Master Program and Energy Laboratory, Lima 32, Peru. https://orcid.org/0000-0003-3415-1969
  • Benjamín Barriga-Gamarra Pontificia Universidad Católica del Perú, Mechatronic Master Program and Energy Laboratory, Lima 32, Peru. https://orcid.org/0000-0002-7781-6177
  • John Lozano Pontificia Universidad Católica del Perú, Mechatronic Master Program and Energy Laboratory, Lima 32, Peru. 3Northern (Artic) Federal University named after MV Lomonosov, Arkhangelsk, Russia. https://orcid.org/0000-0002-8430-9480
  • Gonzalo Solano Pontificia Universidad Católica del Perú, Mechatronic Master Program and Energy Laboratory, Lima 32, Peru. https://orcid.org/0000-0002-0656-1031

DOI:

https://doi.org/10.24039/rtb20222021355

Keywords:

cancerous cells evolution, event reconstruction algorithm, 3D image reconstruction

Abstract

In this work, a general algorithm is proposed to design the reconstruction of chemical/physical/biological process events as one of the most complicated today: the evolution of cancer cells. Studying the evolution of the boundary curves it is possible to make a three-dimensional (3D) integration, in addition the 3D figure obtained can be explained through a mathematical model to estimate its geometric evolution after physical/chemical reactions. In this work, there are analyzed images of each stage of the process based on the evolution of cancer cells. Each image was processed in order to obtain a mathematical equation as a reference to understand the geometry of the 3D structure based on its 2D image for each stage. On the other side, with this information and the processing of each stage image, a mathematical equation was achieved to describe the geometry of the structure between stages by "Optimal Prediction Analysis" which is so important to gain understanding of the geometry of the structure with the internal process.

Downloads

Download data is not yet available.

References

Al-Haddad, A.; Wang, Z.; Xu, R.; Qi, H.; Vellacheri, R.; Ute Kaiser, U. & Lei, Y. 2015. Dimensional dependence of the optical absorption band edge of TiO2 nanotube arrays beyond the quantum effect. The Journal of Physical Chemistry C, 119: 16331-16337.

Calderón, J.; Tafur, J.; Barriga, B. & Lozano, J. 2019. Event reconstruction algorithm proposal to study sensors elaboration based on nanostructures. Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics, 2: 78-83.

Calderón, J.; Tafur, J.; Barriga, B.; Guevara, J.; Lozano, J.; Lengua, J. & Solano, G. 2021. Event reconstruction algorithm for Coronavirus (COVID-19) 3D reconstruction, according to study its reaction through antiviral analysis treatment. The Biologist (Lima), 19: 87-96.

Inan, U. & Marshall, R. 2011 Numerical Electromagnetics, The FDTD method. Cambridge University Press.

Kraeft, S.; Sutherland, R.; Gravelin, L.; Hu, G.; Ferland, L.; Richardson, P.; Elias, A. & Chen, L. 2000. Detection and analysis of cancer cells in blood and bone marrow using a rare event imaging system. Clinical Cancer Research, 6: 434-442.

Lei, Y.; Cai, W. & Wilde, G. 2007. Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks. Progress in Materials Science, 52: 465-539.

Li, C.; Xu, C.; Gui, C. & Fox, M.D. 2010. Distance regularized level set evolution and its application to image segmentation. IEEE transactions on image processing, 19: 3243-3254.

Ljung, L. 1994. Modeling of dynamic systems. Prentice Hall.

Pearson, A. 1995. Aerodynamic parameter estimation via fourier modulating function techniques. NASA Contractor Report 4654. Brown University.

Poinern, G.; Ali, N. & Fawcett, D. 2011. Progress in nano-engineered anodic aluminum oxide membrane development. Materials (Basel), 4: 487-526.

Ribeiro, E. & Shah, M. 2006. Computer Vision for Nanoscale Imaging. Machine Vision and Applications, 17: 147-162.

Sidow, A. & Spies, N. 2015. Concepts in solid tumor evolution. Trends in Genetics, 31: 208-214.

Tume-Farfán, L. F. 2013. Aspectos de las células madre que originan el cáncer como nuevo objetivo de investigación. The Biologist (Lima), 11: 339-351.

Tume-Farfán, L.F. 2014. Las ratas topo y sus mecanismos de resistencia al cáncer y envejecimiento. The Biologist (Lima), 12: 117-132.

Wang, L. 2009. Model Predictive Control System design and implementation using MATLAB. Springer-Verlag London.

Villareño-Do-Domínguez, D.D.; Toledo-Pimentel, B.F.; Araujo-García, M.; Torres-Martínez, B.L.; Rodríguez-León, R.; de Corcho-Martínez, M.P. & Fimia-Duarte, R. 2020. Programa de superación profesional para el equipo básico de salud sobre el programa nacional de detección precoz del cáncer bucal. The Biologist (Lima), 18: 185-205.

Published

2022-04-17

How to Cite

Calderón Ch, J. A. ., Tafur-Sotelo, J. ., Barriga-Gamarra, B. ., Lozano, J. ., & Solano, G. . (2022). EPROPOSAL FOR AN EVENT RECONSTRUCTION ALGORITHM TO STUDY THE EVOLUTION OF CANCEROUS CELLS. The Biologist, 20(2), 165–173. https://doi.org/10.24039/rtb20222021355

Issue

Section

Original Articles