Identificación de Vibrio cholerae no 01 no 139 ambiental por MALDITOF MS
DOI:
https://doi.org/10.24039/rtb20232111529Palabras clave:
bacteria, cólera, proteínas, revisión, serotipoResumen
La mayoría de los métodos de identificación de especies de Vibrio tardan muchos días en ofrecer resultados, frente a ello, la técnica MALDI-TOF MS ha demostrado ser una herramienta rápida y sencilla para identificar y diferenciar patógenos. El objetivo de la investigación fue reconocer la información bibliográfica disponible sobre la identificación de especies de Vibrio cholerae no 01 no 139 de procedencia ambiental por MALDI TOF MS. El género Vibrio incluye más de treinta especies comúnmente encontradas en ambientes acuáticos donde algunas causan enfermedades en especies marinas y el hombre. V. cholerae, una de las especies más importantes debido a la producción de la toxina colérica que interrumpe el transporte de iones en las células del epitelio intestinal. Se han incrementado el número de reporte de casos que incluyen a V. cholerae no 01 no 139, en infecciones extra intestinales y bacteriemias potencialmente fatales en pacientes saludables y, a pesar de que existen técnicas de identificación molecular como el PCR, secuenciamiento y electroforesis en gel por campo pulsado, la técnica de MALDI TOF MS ha ido ganando terreno en laboratorios de bacteriología en hospitales debido a su rapidez y facilidad de uso. Existen estudios que abarcan el tema de detección de V. cholerae en MALDI-TOF MS, enfocándose en alimentos y medioambiente, sin embargo, al realizar la búsqueda, no se encontraron estudios específicos sobre la detección de V. cholerae no 01 no 139 de procedencia ambiental por MALDI TOF MS a excepción de un reporte de caso, presencia en aislamientos sanguíneos, revisiones de reportes que indican la importancia de estos microorganismos en la causa de bacteriemias y la importancia de esta técnica para el futuro de la identificación bacteriana. Por tanto, se reconoce la necesidad de seguir produciendo nueva información para contribuir en la implementación de una vigilancia genómica capaz de predecir futuros brotes epidémicos.
Descargas
Citas
Abbott, S., Cheung, W., Portoni, B., & Janda, J. (1992). Isolation of vibriostatic agent O/129-resistant Vibrio cholerae non-O1 from a patient with gastroenteritis. Journal of Clinical Microbiology, 30 (6), 1598-1599.
Afanasev, M. V., Mironova, L. V., Basov, E. A., Ostyak, A. S., Kulikalova, E. S., Urbanovich, L. Y., & Balahonov, S. V. (2014). MALDI-TOF mass spectrometry in the accelerated identification of microorganisms of the Vibrio genus. Molecular Genetics, Microbiology and Virology, 29(3), 115-122.
Al-Hilu, S., Al-Mohana, A., & Jaber, Z. (2019). Conventional and molecular detection of Vibrio cholerae isolated from environmental water with the prevalence of antibiotic resistance mechanisms. International Journal of Research in Pharmaceutical Sciences, 10(3), 1953-1960.
Ashfaq, M., Al-Ghouti, M., Qiblawey, H., Rodrigues, D., Hu, Y., & Zouari, N. (2019). Isolation, identification and biodiversity of antiscalant degrading seawater bacteria using MALDI-TOF-MS and multivariate analysis. Science of The Total Environment, 656, 910-920.
Baker-Austin, C., Trinanes, J., Gonzalez-Escalona, N., & Martinez-Urtaza, J. (2017). Non-Cholera Vibrios: The microbial barometer of climate change. Trends In Microbiology, 25(1), 76-84.
Bhattacharyya F. K. (1977). The agglutination reactions of cholera vibrios. Japanese journal of medical science & biology, 30(5), 259–268.
Bier, N., Schwartz, K., Guerra, B., & Strauch, E. (2015). Survey on antimicrobial resistance patterns in Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters. Frontiers in microbiology, 6, 1179.
Böhme, K., Fernández-No, I. C., Pazos, M., Gallardo, J. M., Barros-Velázquez, J., Cañas, B., & Calo-Mata, P. (2013). Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis, 34(6), 877–887.
Borroto, R. (1997). Ecology of Vibrio cholerae serogroup 01 in aquatic environments. Revista Panamericana De Salud Pública, 1(1), 328-333.
Bravo Fariñas, L., Fernández, A., Ramírez, M. M., Llop, A., Martínez, G., Hernández, R. I., Cabrera, L.E., Morier, L., Fraga, J., Núñez, F. A., & Aguila, A. (2007). Caracterización microbiológica de cepas de Vibrio cholerae no-O1 aisladas en Cuba. Revista Cubana de Medicina Tropical, 59(3), 227-233.
Bronzato, G., Oliva, M., Alvin, M., Pribul, B., Rodrigues, D., & Coelho, S., Coelho, I.S., & Souza, M.M.S. (2018). MALDI-TOF MS as a tool for the identification of Vibrio alginolyticus from Perna perna mussels (Linnaeus, 1758). Pesquisa Veterinária Brasileira, 38(8), 1511-1517.
Buller, N.B. (2004). Bacteria from fish and other aquatic animals: a practical identification manual. CABI Publishingm Walligford.
Calder, T., de Souza Santos, M., Attah, V., Klimko, J., Fernandez, J., Salomon, D., Krachler, A. M., & Orth, K. (2014). Structural and regulatory mutations in Vibrio parahaemolyticus type III secretion systems display variable effects on virulence. FEMS microbiology letters, 361(2), 107–114.
Caro-Castro, J., Mestanza, O., Quino, W., & Gavilán, R. (2020). Diversidad molecular de variantes patogénicas de Vibrio parahaemolyticus en el Perú. Revista Peruana De Medicina Experimental Y Salud Pública, 37(2), 270-275.
Carrascal-Huyhua, M. (2018). Caracterización y análisis de la variación genética en cepas de Vibrio cholerae Pacini, 1854 (Vibrionales: Vibrionaceae) aislados en Perú, 1991-2016. (Undergraduate). Universidad Nacional Federico Villarreal.
Chart, H. (2012). Vibrio, Mobiluncus, Gardnerella and Spirillum: Cholera; vaginosis; rat bite fever. In Medical Microbiology: Eighteenth (Ed.). (pp. 314-323). Elsevier Inc.
Chen, X., Hou, X., Xiao, M., Zhang, L., Cheng, J., Zhou, M., Huang, J.J., Zhang, J.J., Xu, Y.Ch., & Hsueh, P.R. (2021). Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis for the identification of pathogenic microorganisms: a review. Microorganisms, 9(7), 1536.
Cheng, W. C., Jan, I. S., Chen, J. M., Teng, S. H., Teng, L. J., Sheng, W. H., Ko, W. C., & Hsueh, P. R. (2015). Evaluation of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of blood isolates of Vibrio species. Journal of clinical microbiology, 53(5), 1741–1744.
Cho, Y., Kim, E., Han, S. K., Yang, S. M., Kim, M. J., Kim, H. J., Kim, C. G., Choo, D. W., Kim, Y. R., & Kim, H. Y. (2017). Rapid Identification of Vibrio Species Isolated from the Southern Coastal Regions of Korea by MALDI-TOF Mass Spectrometry and Comparison of MALDI Sample Preparation Methods. Journal of microbiology and biotechnology, 27(9), 1593–1601.
Croxatto, A., Prod'hom, G., & Greub, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews, 36(2), 380–407.
Dalsgaard, A. (1998). The occurrence of human pathogenic Vibrio spp. and Salmonella in aquaculture*. International Journal of Food Science And Technology, 33(2), 127-138.
Deshayes, S., Daurel, C., Cattoir, V., Parienti, J., Quilici, M., & de La Blanchardière, A. (2015). Non-O1, non-O139 Vibrio cholerae bacteraemia: case report and literature review. Springerplus, 4(1), 575.
Dieckmann, R., Strauch, E., & Alter, T. (2010). Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry. Journal of applied microbiology, 109(1), 199–211.
Drevinek, M., Dresler, J., Klimentova, J., Pisa, L., & Hubalek, M. (2012). Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria. Letters in applied microbiology, 55(1), 40–46.
Dutta, D., Chowdhury, G., Pazhani, G. P., Guin, S., Dutta, S., Ghosh, S., Rajendran, K., Nandy, R. K., Mukhopadhyay, A. K., Bhattacharya, M. K., Mitra, U., Takeda, Y., Nair, G. B., & Ramamurthy, T. (2013). Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerging infectious diseases, 19(3), 464–467.
Ebob, T. (2020). A Review on Diagnostic Methods for the Identification of Vibrio cholerae. Journal Of Advances In Medicine And Medical Research, 136-164.
Elmahdi, S., DaSilva, L. V., & Parveen, S. (2016). Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food microbiology, 57, 128-134.
Engel, M. F., Muijsken, M. A., Mooi-Kokenberg, E., Kuijper, E. J., & van Westerloo, D. J. (2016). Vibrio cholerae non-O1 bacteraemia: description of three cases in the Netherlands and a literature review. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 21(15), 14.
Erler, R., Wichels, A., Heinemeyer, E. A., Hauk, G., Hippelein, M., Reyes, N. T., & Gerdts, G. (2015). VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Systematic and applied microbiology, 38(1), 16–25. doi:
FAO. (2001). Joint FAO/WHO Expert Consultation on Risk Assessment of Microbiological Hazards in Foods: hazard identification, exposure assessment and hazard characterization of Campylobacter spp. in broiler chickens and Vibrio spp. in seafood, WHO headquarters, Geneva, Switzerland, 23-27 July 2001 (No.
WHO/SDE/PHE/FOS/01.4). World Health Organization.
Farmer, J.J., 1980. Revival of the name Vibrio vulnificus. International Journal of Systematic Bacteriology, 30, 656.
Faruque, S. M., Albert, M. J., & Mekalanos, J. J. (1998). Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiology and molecular biology reviews, 62(4), 1301–1314.
Finkelstein, R.A. (1996). Cholera, Vibrio cholerae O1 and O139, and Other Pathogenic Vibrios. In: Baron, S. (ed.). Medical Microbiology. 4th Ed. University of Texas.
Gerdts, G., Erler, R., & Wichels, A. (2013). Application of MALDI-TOF MS for environmental Vibrio surveillance programs. Aquatic Microbial Ecology SAME13, Stresa, Italy, 8 September 2013 - 13 September 2013. Conference (Poster).
Goering R. V. (2010). Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 10(7), 866–875.
Ha, M., Son, E., & Choi, E. (2016). Application of MALDI-TOF mass spectrometry-based identification of foodborne pathogen tests to the Korea Food Standard Codex. Korean Journal Of Food Science And Technology, 48(5), 437-444.
Hazen, T. H., Martinez, R. J., Chen, Y., Lafon, P. C., Garrett, N. M., Parsons, M. B., Bopp, C. A., Sullards, M. C., & Sobecky, P. A. (2009). Rapid identification of Vibrio parahaemolyticus by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and environmental microbiology, 75(21), 6745–6756.
Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Umayam, L., Gill, S. R., Nelson, K. E., Read, T. D., Tettelin, H., Richardson, D., Ermolaeva, M. D., Vamathevan, J., Bass, S., Qin, H., Dragoi, I., Sellers, P., McDonald, L., Utterback, T., Fleishmann, R.D., Nierman, W.C., White, O., Salzberg, S.L., Smith, H.O., Colwell, R.R., Mekalanos, J.J., Craig-Venter, J., & Fraser, C. M. (2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 406(6795), 477–483.
Hollis, D.G., Weaver, R.E., Baker, C.N., & Thornsberry, C. (1976). Halophilic Vibrio species isolated from blood cultures. Journal of Clinical Microbiology, 3, 425 – 431.
Huget, J. T., Arias, I., & Montoya, Y. (2000). Tipificación Molecular del Vibrio cholerae O1 en el Perú. Revista Peruana de Medicina Experimental y Salud Pública, 17(1-4), 9-13.
Huq, A., Haley, B., Taviani, E., Chen, A., Hasan, N., & Colwell, R. (2012). Detection, Isolation, and Identification of Vibrio cholerae from the Environment. Current Protocols In Microbiology, 26(1), 22875567.
Islam, M., Zaman, M., Islam, M., Ahmed, N., & Clemens, J. (2020). Environmental reservoirs of Vibrio cholerae. Vaccine, 38, A52-A62.
Kaspar, C. W., & Tamplin, M. L. (1993). Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Applied and environmental microbiology, 59(8), 2425–2429.
Lee, R., Rangdale, R., Croci, L., Hervio-Heath, D., & Lozach, S. (2008). Bacterial pathogens in seafood. Improving Seafood Products for the Consumer, In Improving Seafood Products for the Consumer. T. Borresen (ed.). (pp. 247-291).
Li, P., Xin, W., Xia, S., Luo, Y., Chen, Z., & Jin, D. et al. (2018). MALDI-TOF mass spectrometry-based serotyping of V. parahaemolyticus isolated from the Zhejiang province of China. BMC Microbiology, 18(1), 185.
Lipp, E., Huq, A., & Colwell, R. (2002). Effects of Global Climate on Infectious Disease: the Cholera Model. Clinical Microbiology Reviews, 15(4), 757-770.
Liyanage, R., & Lay, J. O. (2006). An introduction to MALDI-ToF MS. Identification of microorganisms by mass spectrometry, In: Identification of Microorganisms by
Mass Spectrometry, Volume 169. C. L. Wilkins, & Lay J.O. Jr. (pp. 39-60).
Malainine, S. M., Moussaoui, W., Prévost, G., Scheftel, J. M., & Mimouni, R. (2013). Rapid identification of Vibrio parahaemolyticus isolated from shellfish, sea water and sediments of the Khnifiss lagoon, Morocco, by MALDI-TOF mass spectrometry. Letters in applied microbiology, 56(5), 379–386.
Maldonado, N., Robledo, C., & Robledo, J. (2017). La espectrometría de masas MALDI-TOF en el laboratorio de microbiología clínica. Infectio, 22, 35-45.
Maraki, S., Christidou, A., Anastasaki, M., & Scoulica, E. (2016). Non-O1, non-O139 Vibrio cholerae bacteremic skin and soft tissue infections. Infectious Diseases, 48(3), 171-176.
Marin, M. A., Thompson, C. C., Freitas, F. S., Fonseca, E. L., Aboderin, A. O., Zailani, S. B., Quartey, N.K.E., Okeke, I.N., & Vicente, A. C. P. (2013). Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS neglected tropical diseases, 7(2), e2049.
Marinello, S., Marini, G., Parisi, G., Gottardello, L., Rossi, L., Besutti, V., & Cattelan, A. M. (2017). Vibrio cholerae non-O1, non-O139 bacteraemia associated with pneumonia, Italy 2016. Infection, 45(2), 237–240.
Martinez-Urtaza, J., van Aerle, R., Abanto, M., Haendiges, J., Myers, R., Trinanes, J., Baker-Austin, J.C., & Gonzalez-Escalona, N. (2017). Genomic variation and evolution of Vibrio parahaemolyticus ST36 over the course of a transcontinental epidemic expansion. Mbio, 8(6), e01425-17.
Marval, H., & Graü de Marín, C., & Martínez, C., & Muñoz, D. (2012). Identificación de bacterias del género Vibrio asociadas a zonas productoras de moluscos bivalvos, estado Sucre, Venezuela. Revista Científica, 22(5),459-467.
Mougin, J., Flahaut, C., Roquigny, R., Bonnin-Jusserand, M., Grard, T., & Le Bris, C. (2020). Rapid Identification of Vibrio Species of the Harveyi Clade Using MALDI-TOF MS Profiling With Main Spectral Profile Database Implemented With an In-House Database: Luvibase. Frontiers in microbiology, 11, 586536.
Neoh, H., Tan, X., Sapri, H., & Tan, T. (2019). Pulsed-field gel electrophoresis (PFGE): A review of the “gold standard” for bacteria typing and current alternatives. Infection, Genetics And Evolution, 74, 103935.
Okuda, J., Ishibashi, M., Abbott, S. L., Janda, J. M., & Nishibuchi, M. (1997). Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States. Journal of clinical microbiology, 35(8), 1965–1971.
Olivares, F., Domínguez, I., Dabanch, J., Porte, L., Ulloa, M., & Osorio, G. (2019). Bacteriemia por Vibrio cholerae no-O1/no-O139 que porta una región homóloga a la isla de patogenicidad VpaI-7. Revista chilena de infectología, 36(3), 392-395.
Pacini F. (1854). Osservazioni microscopiche e deduzioni patologiche sul cholera asiatico. Memoria del dott. Filippo Pacini ...: letta alla Societa medico-fisica di Firenze nella seduta del 10 Dicembre 1854. Firenze: Tip. Federigo Bencini, 1854. (Estr. da: Gazzetta medica italiana, Toscana, p 397 e 405). Pag. 1/30.
Perilla, M. J., Ajello, G., Bopp, C., Elliot, J., Facklam, R., Knapp, J. S., ... & Dowell, S. (2004). Manual de Laboratorio para la Identificación y Prueba de Susceptibilidad a los Antimicrobianos de Patógenos Bacterianos de Importancia para la Salud Pública en el Mundo en Desarrollo. Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, Neisseria gonorrhoeae, Salmonella serotipo Typhi y Vibrio cholerae. OMS, (pp. 49-67).
Plaza, N., Castillo, D., Pérez-Reytor, D., Higuera, G., García, K., & Bastías, R. (2018). Bacteriophages in the control of pathogenic vibrios. Electronic Journal Of Biotechnology, 31, 24-33.
Popović, N. T., Kazazić, S. P., Strunjak-Perović, I., & Čož-Rakovac, R. (2017). Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environmental research, 152, 7–16.
Pruzzo, C., Huq, A., Colwell, R., & Donelli, G. (2015). Pathogenic Vibrio species in the marine and estuarine environment. In: Belkin, S., & Colwell, R.R. (eds). Oceans and Health: Pathogens in the marine environment, Springer. (pp. 217-252).
Rahaman, M. H., Islam, T., Colwell, R. R., & Alam, M. (2015). Molecular tools in understanding the evolution of Vibrio cholerae. Frontiers in microbiology, 6, 1040.
Ramamurthy, T., Das, B., Chakraborty, S., Mukhopadhyay, A. K., & Sack, D. A. (2020). Diagnostic techniques for rapid detection of Vibrio cholerae O1/O139. Vaccine, 38 Suppl 1, A73–A82.
Rivera, I. N., Lipp, E. K., Gil, A., Choopun, N., Huq, A., & Colwell, R. R. (2003). Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environmental microbiology, 5(7), 599–606.
Rivera-Chávez, F., & Mekalanos, J. (2019). Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature, 572(7768), 244-248.
Robles, L. A., García, R. M., & Torres, L. J. (1999). Toxinas de Vibrio cholerae. Una revisión. Revista Mexicana de Patología Clínica y Medicina de Laboratorio, 46(4), 255-259.
Rychert, J., Creely, D., Mayo-Smith, L. M., Calderwood, S. B., Ivers, L. C., Ryan, E. T., Boncy, J., Qadri, F., Ahmed, D., Ferraro, M. J., & Harris, J. B. (2015). Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Vibrio cholerae. Journal of clinical microbiology, 53(1), 329–331.
Sandalakis, V., Goniotakis, I., Vranakis, I., Chochlakis, D., & Psaroulaki, A. (2017). Use of MALDI-TOF mass spectrometry in the battle against bacterial infectious diseases: recent achievements and future perspectives. Expert review of proteomics, 14(3), 253–267.
Sauget, M., Valot, B., Bertrand, X., & Hocquet, D. (2017). Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria?. Trends In Microbiology, 25(6), 447-455.
Schwartz, K., Hammerl, J. A., Göllner, C., & Strauch, E. (2019). Environmental and Clinical Strains of Vibrio cholerae Non-O1, Non-O139 From Germany Possess Similar
Virulence Gene Profiles. Frontiers in microbiology, 10, 733.
Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P. E., Rolain, J. M., & Raoult, D. (2009). Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 49(4), 543–551.
Seng, P., Rolain, J. M., Fournier, P. E., La Scola, B., Drancourt, M., & Raoult, D. (2010). MALDI-TOF-mass spectrometry applications in clinical microbiology. Future microbiology, 5(11), 1733–1754.
Shin, O. S., Tam, V. C., Suzuki, M., Ritchie, J. M., Bronson, R. T., Waldor, M. K., & Mekalanos, J. J. (2011). Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio, 2(3), e00106–e111.
Sogawa, K., Watanabe, M., Sato, K., Segawa, S., Ishii, C., Miyabe, A., Murata, S., Saito, T., & Nomura, F. (2011). Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. Analytical and bioanalytical chemistry, 400(7), 1905–1911.
Summer J., De Paola A., Osaka K., Karunasager I., Walderhaug M., Bowers J. (2001). Hazard identification, exposure assessment and hazard characterization of Vibrio spp. in Seafood. FAO/WHO Activities on Risk Assessment of Microbiological Hazards in Foods. WHO. (pp. 1–105).
Taneja, N., Sethuraman, N., Mishra, A., & Mohan, B. (2016). The 2002 Chandigarh cholera outbreak revisited: utility of MALDI-TOF as a molecular epidemiology tool. Letters in applied microbiology, 62(6), 452–458.
Thompson, F. L., Gevers, D., Thompson, C. C., Dawyndt, P., Naser, S., Hoste, B., Munn, C. B., & Swings, J. (2005). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Applied and environmental microbiology, 71(9), 5107–5115.
Tsuchida, S., & Nakayama, T. (2022). MALDI-Based Mass Spectrometry in Clinical Testing: Focus on Bacterial Identification. Applied Sciences, 12(6), 2814.
Ünüvar, S. (2018). Microbial Foodborne Diseases. A. M. Holban & Grumezescu, A.M. (eds.), Foodborne Diseases. Elsevier. (pp. 1-31).
Vezzulli, L., Baker-Austin, C., Kirschner, A., Pruzzo, C., & Martinez-Urtaza, J. (2020). Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field?. Environmental microbiology, 22(10), 4342–4355.
Vezzulli, L., Colwell, R. R., & Pruzzo, C. (2013). Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microbial ecology, 65(4), 817–825.
Vezzulli, L., Grande, C., Reid, P. C., Hélaouët, P., Edwards, M., Höfle, M. G., Brettar, I., Colwell, R. R., & Pruzzo, C. (2016). Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 113(34), E5062–E5071.
Weller, S. A., Stokes, M. G., & Lukaszewski, R. A. (2015). Observations on the Inactivation Efficacy of a MALDI-TOF MS Chemical Extraction Method on Bacillus anthracis Vegetative Cells and Spores. PloS one, 10(12), e0143870.
Wu, J., Zhou, Y., Liu, X., Cao, Y., Hu, C., & Chen, Y. (2020). Extension and application of a database for the rapid identification of Vibrio using MALDI-TOF MS. Acta Oceanologica Sinica, 39(10), 140-146.
Yarbrough, M., Lainhart, W., & Burnham, C. (2017). Identification of Nocardia, Streptomyces, and Tsukamurella using MALDI-TOF MS with the Bruker Biotyper. Diagnostic Microbiology and Infectious Disease, 89(2), 92-97.
Zamudio, M. L., Meza, A., Bailón, H., Martinez-Urtaza, J., & Campos, J. (2011). Experiencias en la vigilancia epidemiológica de agentes patógenos transmitidos por alimentos a través de electroforesis en campo pulsado (PFGE) en el Perú. Revista peruana de medicina experimental y salud pública, 28, 128-135.
Zhang, X., Lu, Y., Qian, H., Liu, G., Mei, Y., Jin, F., Xia, W., & Ni, F. (2020). Non-O1, Non-O139 Vibrio cholerae (NOVC) Bacteremia: Case Report and Literature Review, 2015-2019. Infection and drug resistance, 13, 1009–1016.
Zúñiga CIR, Caro LJ. (2014). Vibrio vulnificus una bacteria al acecho en las playas. Revista de Enfermedades Infecciosas en Pediatría, 27-28(110), 532-534.
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Objeto: El AUTOR-CEDENTE transfiere de manera TOTAL Y SIN LIMITACIÓN alguna al CESIONARIO (Revista The Biologist (Lima)) los derechos patrimoniales que le corresponden sobre sus obras por el tiempo que establezca la ley internacional. En virtud de lo anterior, se entiende que el CESIONARIO adquiere el derecho de reproducción en todas sus modalidades, incluso para inclusión audiovisual; el derecho de transformación o adaptación, comunicación pública, traducción, distribución y, en general, cualquier tipo de explotación que de las obras se pueda realizar por cualquier medio conocido o por conocer en el territorio nacional o internacional.
Remuneración: La cesión de los derechos patrimoniales de autor que mediante este contrato se hace será a título gratuito.
Condiciones y legitimidad de los derechos: El AUTOR-CEDENTE garantiza que es propietario integral de los derechos de explotación de la(s) obra(s) y en consecuencia garantiza que puede contratar y transferir los derechos aquí cedidos sin ningún tipo de limitación por no tener ningún tipo de gravamen, limitación o disposición. En todo caso, responderá por cualquier reclamo que en materia de derecho de autor se pueda presentar, exonerando de cualquier responsabilidad al CESIONARIO.
Licencia de acceso abierto: El AUTOR-CEDENTE autoriza que manuscrito publicado en la Revista Científica The Biologist (Lima) (versión Impresa ISSN 1816-0719, versión en línea ISSN 1994-9073) permanece disponible para su consulta pública en el sitio web http://revistas.unfv.edu.pe/index.php/rtb/index y en los diferentes sistemas de indexación y bases de datos en las que la revista tiene visibilidad, bajo la licencia Creative Commons, en la modalidad Reconocimiento-No comercial- Sin Trabajos derivados –aprobada en Perú, y por lo tanto son de acceso abierto. De ahí que los autores dan, sin derecho a retribución económica, a la Escuela Profesional de Biología, Facultad de Ciencias Naturales y Matemática de la Universidad Nacional Federico Villarreal (EPB - FCCNM - UNFV), los derechos de autor para la edición y reproducción a través de diferentes medios de difusión.