Proceso de tratamiento por electrocoagulación y radiación solar visible de una solución acuosa modelo del colorante textil disperso “taicron-red”

Treatment process by electrocoagulation and visible solar radiation of an aqueous solution model of the dispersed textile dye "taicron-red"

Autores/as

DOI:

https://doi.org/10.62430/rtb20242221849

Palabras clave:

electrocoagulación, radiación solar visible, solución acuosa, Tratamiento

Resumen

La industria textil, una de las de mayor crecimiento, enfrenta grandes desafíos relacionados con la persistencia del color de los productos y el tratamiento de aguas residuales generadas durante su proceso. La decoloración de los colorantes utilizados, como el "Taicron Red", es un problema importante, ya que estos colorantes son químicamente estables y difíciles de eliminar. Por ello, es fundamental desarrollar métodos eficaces y sostenibles para su tratamiento. El objetivo de este estudio fue evaluar la eficiencia de un sistema de tratamiento para la remoción de colorante textil "Taicron Red" en soluciones modelo, utilizando procesos sostenibles alimentados por energía solar. Para ello, se diseñó y construyó una celda electrolítica alimentada por panel solar y un fotorreactor cuya bomba también es impulsada por energía solar. El tratamiento consistió en un proceso de electrocoagulación con ánodos de aluminio, aplicando una diferencia de potencial de 12 voltios durante 40 min, lo que redujo la Demanda Química de Oxígeno (DQO) de la solución de 5216,7 ppm a un valor inicial que permitió una segunda electrocoagulación. Posteriormente, la solución fue tratada en el fotorreactor durante 180 minutos utilizando 100 mg de Fe (II), 12 ml/L de H₂O₂, pH = 3 y TiO₂ a 100 ppm, logrando una remoción del 60% de la DQO (removiendo 3129,2 ppm) y del 90,68% del color. En un segundo tratamiento, incrementando la concentración de TiO₂ a 1000 ppm, se alcanzó una remoción del 84% de la DQO (removiendo 4381,4 ppm) y una remoción del color del 99,38%. Los resultados demostraron que el sistema propuesto es altamente eficiente para la remoción de colorante textil y DQO, alcanzando altos porcentajes de remoción en ambos casos, y que el uso de energía solar en conjunto con los procesos de electrocoagulación y fotocatálisis resulta ser una alternativa viable y sostenible para tratar aguas residuales en la industria textil.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alizadeh, M., Ghahramani, E., Zarrabi, M., & Hashemi, S. (2015). Efficient de-colorization of methylene blue by electro-coagulation method: Comparison of iron and aluminum electrode. Iranian Journal of Chemistry and Chemical Engineering, 34(1), 39–47.

Ambaye, T. G., & Hagos, K. (2020). Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnology for Environmental Engineering, 5(3). https://doi.org/10.1007/s41204-020-00094-w.

Ahangarnokolaei, M. A., Attarian, P., Ayati, B., Ganjidoust, H., & Rizzo, L. (2021). Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106251

Asfaha, Y. G., Zewge, F., Yohannes, T., & Kebede, S. (2022). Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Chemosphere, 302.

https://doi.org/10.1016/j.chemosphere.2022.134706

Abdul Rahman, N., Jose Jol, C., Albania Linus, A., Wan Borhan, W. W. S., Abdul Jalal, N. S., Baharudin, N., … Abang Abdul Hamid, D. F. A. (2023). Continuous electrocoagulation treatment system for partial desalination of tropical brackish peat water in Sarawak coastal peatlands. Science of the Total Environment, 880.

https://doi.org/10.1016/j.scitotenv.2023.163517

Bermeo, M. & Tinoco, O. (2016). Remoción de colorantes de efluente sintético de industria textil aplicando tecnología avanzada. Industrial Data, 19(2), 91. https://doi.org/10.15381/idata.v19i2.12844.

Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S., & Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47–54. https://doi.org/10.1016/j.psep.2019.06.010

Bulca, Ö., Palas, B., Atalay, S., & Ersöz, G. (2021). Performance investigation of the hybrid methods of adsorption or catalytic wet air oxidation subsequent to electrocoagulation in treatment of real textile wastewater and kinetic modelling. Journal of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2020.101821

Bilińska, L., Blus, K., Gmurek, M., & Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 358, 992–1001. https://doi.org/10.1016/j.cej.2018.10.093

Carrera E, Gallissà, I. (2017) “Los retos sostenibilistas del sector textil”

Ganesh, R., Boardman, G. D., & Michelsen, D. (1994). Fate of azo dyes in sludges. Water Research, 28(6), 1367–1376. https://doi.org/10.1016/0043-1354(94)90303-4

GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2020). Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment. Journal of Electroanalytical Chemistry, 878. https://doi.org/10.1016/j.jelechem.2020.114578

Gümüş, D., & Akbal, F. (2011). Photocatalytic degradation of textile dye and wastewater. Water, Air, and Soil Pollution, 216(1–4), 117–124. https://doi.org/10.1007/s11270-010-0520-z

Kalia, S., Dalvi, V., Nair, V. K., Samuchiwal, S., & Malik, A. (2023). Hybrid electrocoagulation and laccase mediated treatment for efficient decolorization of effluent generated from textile industries. Environmental Research, 228. https://doi.org/10.1016/j.envres.2023.115868

Ledakowicz, S., Solecka, M., & Zylla, R. (2001). Biodegradation, decolourisation, and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89(2–3), 175–184. https://doi.org/10.1016/S0168-1656(01)00296-6

Minero, C. (1995). A rigorous kinetic approach to model primary oxidative steps of photocatalytic degradations. Solar Energy Materials and Solar Cells, 38(1–4), 421–430. https://doi.org/10.1016/0927-0248(94)00234-7

Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

Ribeiro, M. C. M., Starling, M. C. V. M., Leão, M. M. D., & de Amorim, C. C. (2017). Textile wastewater reuse after additional treatment by Fenton’s reagent. Environmental Science and Pollution Research, 24(7), 6165–6175. https://doi.org/10.1007/s11356-016-6921-9

Rodríguez, M., Sarria, V., Esplugas, S., & Pulgarin, C. (2002). Photo-fenton treatment of a biorecalcitrant wastewater generated in textile activities: Biodegradability of the photo-treated solution. Journal of Photochemistry and Photobiology A: Chemistry, 151(1–3), 129–135. https://doi.org/10.1016/S1010-6030(02)00148-X

Shams, M., Balouchi, H., Alidadi, H., Asadi, F., Goharshadi, E. K., Rezania, S., Rtimi, S., Anastopoulos, I., Bonyadi, Z., Mehranzamir, K., & Giannakoudakis, D. A. (2021). Coupling electrocoagulation and solar photocatalysis for electro- and photo-catalytic removal of carmoisine by Ag/graphitic carbon nitride: Optimization by process modeling and kinetic studies. Journal of Molecular Liquids, 340, 116917. https://doi.org/10.1016/j.molliq.2021.116917

Suárez-Escobar, A., Pataquiva-Mateus, A., & López-Vasquez, A. (2016). Electrocoagulation - Photocatalytic process for the treatment of lithographic wastewater. Optimization using response surface methodology (RSM) and kinetic study. Catalysis Today, 266, 120–125. https://doi.org/10.1016/j.cattod.2015.09.016

Tezcan Un, U., & Aytac, E. (2013). Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater. Journal of Environmental Management, 123, 113–119. https://doi.org/10.1016/j.jenvman.2013.03.016

Torres, N. H., Souza, B. S., Ferreira, L. F. R., Lima, Á. S., dos Santos, G. N., & Cavalcanti, E. B. (2019). Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.07.040

Wang, Y. (2000). Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension. Chinese Journal of Catalysis, 21(4), 327–331.

Weber, E. J., & Adams, R. L. (1995). Chemical- and Sediment-Mediated Reduction of the Azo Dye Dispeise Blue 79. Environmental Science and Technology, 29(5), 1163–1170. https://doi.org/10.1021/es00005a005

Zazou, H., Afanga, H., Akhouairi, S., Ouchtak, H., Addi, A. A., Akbour, R. A., … Hamdani, M. (2019). Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. Journal of Water Process Engineering, 28, 214–221. https://doi.org/10.1016/j.jwpe.2019.02.006

Zhang, F., Zhao, J., Shen, T., Hidaka, H., Pelizzetti, E., & Serpone, N. (1998). TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Applied Catalysis B: Environmental, 15(1–2), 147–156. https://doi.org/10.1016/S0926-3373(97)00043-X

Descargas

Publicado

2024-12-16

Cómo citar

Concepción Gamarra, L. E., Castañeda Pérez, L. ., & Carrasco Venegas, L. . (2024). Proceso de tratamiento por electrocoagulación y radiación solar visible de una solución acuosa modelo del colorante textil disperso “taicron-red”: Treatment process by electrocoagulation and visible solar radiation of an aqueous solution model of the dispersed textile dye "taicron-red". The Biologist, 22(2), 217–229. https://doi.org/10.62430/rtb20242221849