Bases moleculares del Sueño

Autores/as

  • Jesús Rojas-Jaimes Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Perú. https://orcid.org/0000-0002-6910-9341
  • María Rojas-Puell Escuela de Medicina Humana, Universidad Científica del Sur, Lima, Perú. https://orcid.org/0000-0003-1757-6690
  • José Iannacone Laboratorio de Ecología y Biodiversidad Animal, Facultad de Ciencias Naturales y Matemática. Escuela Universitaria de posgrado (EUPG). Grupo de Investigación de Sostenibilidad Ambiental (GISA). Universidad Nacional Federico Villarreal, Av. Rio de Chepén El Agustino, Lima, Perú. Laboratorio de Zoología, Facultad de Ciencias Biológicas, Grupo de Investigación “One Health”, Escuela de posgrado (EPG). Universidad Ricardo Palma, Av. Alfredo Benavides 5440, Santiago de Surco, Lima, Perú. https://orcid.org/0000-0003-3699-4732

DOI:

https://doi.org/10.24039/rtb20232111521

Palabras clave:

Genes, Dopaminérgico , Molécula , Trastorno , Sueño

Resumen

El sueño es vital para todos los mamíferos incluyendo al ser humano, su distorsión implica diferentes riesgos para la salud y patologías como depresión, enfermedades cardiovasculares y en el extremo puede llevar a la muerte. En ese sentido es de importancia encontrar las bases moleculares del sueño entre ellos los genes y sus proteínas que ejecutan un rol clave en la homeostasis del ser vivo. Se recopiló información utilizando las bases de datos PubMed/Scopus en ingles con 10 años de anterioridad utilizando el protocolo PICO para determinar las palabras P=Genes, I=Base molecular, C=No aplica, O= Sueño. Se determinaron artículos originales en dos grandes grupos entre estos estan los “Genes Reloj” y otros “Genes y Proteínas” relacionados al sueño. Entre los genes reloj de importancia identificados están los vinculados a la dopamina (DRD 2) y el (DAT 1)   y otros genes como el pdm3 que participa en la génesis de la inervación del sistema dopaminérgico y los genes ANXA3 y 17GAM, en la que se ha demostrado que una sobreexpresión de estos se relaciona a la privación del sueño. Entender las bases moleculares del sueño y sus vacíos aun por estudiar son clave para futuros estudios como identificar dianas y drogas para tratar los trastornos del sueño.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Achermann, P. (2004). The two-process model of sleep regulation revisited. Aviation, Space, and Environmental Medicine, 75(3 Suppl), A37-43.

Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., & de Lecea, L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 450, 420–424.

Akashi, M., & Takumi, T. (2005). The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nature Structural & Molecular Biology, 12(5), 441–448.

Anaclet, C., Pedersen, N. P., Ferrari, L. L., Venner, A., Bass, C. E., Arrigoni, E., & Fuller, P. M. (2015). Basal forebrain control of wakefulness and cortical rhythms. Nature Communications, 6(1), 8744.

Arnardottir, E. S., Nikonova, E. V., Shockley, K. R., Podtelezhnikov, A. A., Anafi, R. C., Tanis, K. Q., & Pack, A. I. (2014). Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation. Sleep, 37(10), 1589–1600.

Baglioni, C., Nanovska, S., Regen, W., Spiegelhalder, K., Feige, B., Nissen, C., & Riemann, D. (2016). Sleep and mental disorders: A meta-analysis of polysomnographic research. Psychological Bulletin, 142(9), 969–990.

Bellesi, M., de Vivo, L., Tononi, G., & Cirelli, C. (2015). Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biology, 13(1), 66.

Bellesi, M., Pfister-Genskow, M., Maret, S., Keles, S., Tononi, G., & Cirelli, C. (2013). Effects of sleep and wake on oligodendrocytes and their precursors. The Journal of neuroscience, 33(36), 14288–14300.

Boden-Albala, B., Litwak, E., Elkind, M. S., Rundek, T., & Sacco, R. L. (2005). Social isolation and outcomes post stroke. Neurology, 64(11), 1888–1892.

Borbély, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1(3), 195–204.

Borbély, A. A. (1987). The S-deficiency hypothesis of depression and the two-process model of sleep regulation. Pharmacopsychiatry, 20(1), 23–29.

Borbély, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. Journal of Biological Rhythms, 14(6), 557–568.

Breslau, N., Roth, T., Rosenthal, L., & Andreski, P. (1996). Sleep disturbance and psychiatric disorders: a longitudinal epidemiological study of young adults. Biological Psychiatry, 39(6), 411–418.

Brown, M. K., Strus, E., & Naidoo, N. (2017). Reduced sleep during social isolation leads to cellular stress and induction of the unfolded protein response. Sleep, 40(7), zsx095.

Buhr, E. D., & Takahashi, J. S. (2013). Molecular components of the Mammalian circadian clock. Handbook of Experimental Pharmacology, 217, 3–27.

Bushey, D., Tononi, G., & Cirelli, C. (2011). Sleep and synaptic homeostasis: structural evidence in Drosophila. Science, 332(6037), 1576–1581.

Cacioppo, J. T., Ernst, J. M., Burleson, M. H., McClintock, M. K., Malarkey, W. B., Hawkley, L. C., Kowalewski, R. B., Paulsen, A., Hobson, J. A., Hugdahl, K., Spiegel, D., & Berntson, G. G. (2000). Lonely traits and concomitant physiological processes: The MacArthur social neuroscience studies. International journal of psychophysiology: Official journal of the International Organization of Psychophysiology, 35(2-3), 143–154.

Chakravarti Dilley, L., Szuperak, M., Gong, N. N., Williams, C. E., Saldana, R. L., Garbe, D. S., & Kayser, M. S. (2020). Identification of a molecular basis for the juvenile sleep state. ELife, 9, e52676.

Charfi, C., Levros, L. C., Jr, Edouard, E., & Rassart, E. (2013). Characterization and identification of PARM-1 as a new potential oncogene. Molecular cancer, 12, 84.

Chung, S., Weber, F., Zhong, P., Tan, C. L., Nguyen, T. N., Beier, K. T., Dan, Y. (2017). Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature, 545(7655), 477–481.

Cirelli, C., Gutierrez, C. M., & Tononi, G. (2004). Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron, 41(1), 35–43.

Cohen, S., Doyle, W. J., Skoner, D. P., Rabin, B. S., & Gwaltney, J. M., Jr (1997). Social ties and susceptibility to the common cold. Journal of the American Medical Association, 277(24), 1940–1944.

Crumbley, C., & Burris, T. P. (2011). Direct regulation of CLOCK expression by REV-ERB. PloS One, 6(3), e17290.

Crumbley, C., Wang, Y., Kojetin, D. J., & Burris, T. P. (2010). Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene. The Journal of Biological Chemistry, 285(46), 35386–35392.

Delezie, J., Dumont, S., Dardente, H., Oudart, H., Gréchez-Cassiau, A., Klosen, P., Teboul, M., Delaunay, F., Pévet, P., & Challet, E. (2012). The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 26(8), 3321–3335.

Dijk, D.J., & Lockley, S. W. (2002). Integration of human sleep-wake regulation and circadian rhythmicity. Journal of Applied Physiology, 92(2), 852–862.

Dudley, C. A., Erbel-Sieler, C., Estill, S. J., Reick, M., Franken, P., Pitts, S., & McKnight, S. L. (2003). Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science, 301(5631), 379–383.

Duez, H., van der Veen, J. N., Duhem, C., Pourcet, B., Touvier, T., Fontaine, C., & Staels, B. (2008). Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology, 135(2), 689–698.

Fone, K. C., & Porkess, M. V. (2008). Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neuroscience and biobehavioral reviews, 32(6), 1087–1102.

Franken, P., & Dijk, D.-J. (2009). Circadian clock genes and sleep homeostasis. The European Journal of Neuroscience, 29(9), 1820–1829.

Franken, P., Dudley, C. A., Estill, S. J., Barakat, M., Thomason, R., O’Hara, B. F., & McKnight, S. L. (2006). NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proceedings of the National Academy of Sciences of the United States of America, 103(18), 7118–7123.

Franken, P., Lopez-Molina, L., Marcacci, L., Schibler, U., & Tafti, M. (2000). The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(2), 617–625.

Freyburger, M., Pierre, A., Paquette, G., Bélanger-Nelson, E., Bedont, J., Gaudreault, P.-O., Mongrain, V. (2016). EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. Sleep, 39(3), 613–624.

Friedman E. M. (2011). Sleep quality, social well-being, gender, and inflammation: an integrative analysis in a national sample. Annals of the New York Academy of Sciences, 1231, 23–34

Friedman, E. M., Hayney, M. S., Love, G. D., Urry, H. L., Rosenkranz, M. A., Davidson, R. J., Singer, B. H., & Ryff, C. D. (2005). Social relationships, sleep quality, and interleukin-6 in aging women. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18757–18762.

Fuller, P.M., & Lu, J. (2009). Dopamine. In: The Neuroscience of Sleep. R. Stickgold, & Walker, M. (eds.). Elsevier (pp. 125–130).

Funato, H., Miyoshi, C., Fujiyama, T. Kanda, T., Sato, M., Wang, Z., Ma, J., Nakane, S., Tomita, J., Ikkyu, A., Kakizaki, M., Hotta-Hirashima, N., Kanno, S., Komiya, H., Asano, F., Honda, T., Kim, S.K., Harano, K., Muramoto, H., Yonezawa, T., Mizuno, S., Miyazaki, S., Connor, L., Kumar, V., Miura, I., Suzuki, T., Watanabe, A., Abe, M., Sugiyama, F., Takahashi, S., Sakimura, K., Hayashi, Y., Liu, Q., Kume, K., Wakana, S., Takahashi, J.S., & Yanagisawa, M. (2016). Forward-genetics analysis of sleep in randomly mutagenized mice. Nature, 539, 378–383.

Gibson, J. R., Huber, K. M., & Südhof, T. C. (2009). Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(44), 13883–13897.

Gutman, D. A., & Nemeroff, C. B. (2003). Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiology & behavior, 79(3), 471–478.

Hall F. S. (1998). Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Critical reviews in neurobiology, 12(1-2), 129–162

He, Y., Jones, C. R., Fujiki, N., Xu, Y., Guo, B., Holder, J. L., Jr, & Fu, Y.H. (2009). The transcriptional repressor DEC2 regulates sleep length in mammals. Science, 325(5942), 866–870.

Hines, R. M., Wu, L., Hines, D. J., Steenland, H., Mansour, S., Dahlhaus, R., Singaraja, R. R., Cao, X., Sammler, E., Hormuzdi, S. G., Zhuo, M., & El-Husseini, A. (2008). Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. The Journal of neuroscience: the Official journal of the Society for Neuroscience, 28(24), 6055–6067.

Honma, S., Kawamoto, T., Takagi, Y., Fujimoto, K., Sato, F., Noshiro, M., Honma, K.-I. (2002). Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature, 419(6909), 841–844.

House J. S. (2001). Social isolation kills, but how and why?. Psychosomatic medicine, 63(2), 273–274.

Huang, Z.L., Urade, Y., & Hayaishi, O. (2011). The role of adenosine in the regulation of sleep. Current Topics in Medicinal Chemistry, 11(8), 1047–1057.

Huang, H., Zhu, Y., Eliot, M. N., Knopik, V. S., McGeary, J. E., Carskadon, M. A., & Hart, A. C. (2017). Combining human epigenetics and sleep studies in Caenorhabditis elegans: a cross-species approach for finding conserved genes regulating sleep. Sleep, 40(6), zsx063.

Irwin, M. R., Carrillo, C., & Olmstead, R. (2010). Sleep loss activates cellular markers of inflammation: sex differences. Brain, behavior, and immunity, 24, 54–57.

Irwin, M. R., Wang, M., Ribeiro, D., Cho, H. J., Olmstead, R., Breen, E. C., Martinez-Maza, O., & Cole, S. (2008). Sleep loss activates cellular inflammatory signaling. Biological psychiatry, 64(6), 538–540.

Jagannath, A., Varga, N., Dallmann, R., Rando, G., Gosselin, P., Ebrahimjee, F., & Vasudevan, S. R. (2021). Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nature Communications, 12(1), 2113.

Jedlicka, P., Hoon, M., Papadopoulos, T., Vlachos, A., Winkels, R., Poulopoulos, A., & Schwarzacher, S. W. (2011). Increased dentate gyrus excitability in neuroligin-2-deficient mice in vivo. Cerebral Cortex, 21(2), 357–367.

Johnson, O., Becnel, J., & Nichols, C. D. (2009). Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience, 158(4), 1292–1300.

Jones, G. H., Marsden, C. A., & Robbins, T. W. (1991). Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: neurochemical correlates. Behavioural brain research, 43(1), 35–50.

Jones, S., Pfister-Genskow, M., Cirelli, C., & Benca, R. M. (2008). Changes in brain gene expression during migration in the white-crowned sparrow. Brain research bulletin, 76(5), 536–544.

Juraska, J. M., Henderson, C., & Müller, J. (1984). Differential rearing experience, gender, and radial maze performance. Developmental psychobiology, 17(3), 209–215.

Kalinchuk, A. V., Porkka-Heiskanen, T., McCarley, R. W., & Basheer, R. (2015). Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlying sleep homeostasis. The European journal of neuroscience, 41(2), 182–195.

Karelina, K., Norman, G. J., Zhang, N., Morris, J. S., Peng, H., & DeVries, A. C. (2009). Social isolation alters neuroinflammatory response to stroke. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5895–5900.

Kaufman R. J. (2002). Orchestrating the unfolded protein response in health and disease. The Journal of clinical investigation, 110(10), 1389–1398.

Kim, S. M., Power, A., Brown, T. M., Constance, C. M., Coon, S. L., Nishimura, T., Hirai, H., Cai, T., Eisner, C., Weaver, D.R., Piggins, H.D., Klein, D.C., Schnermann, J., & Notkins, A. L. (2009). Deletion of the secretory vesicle proteins IA-2 and IA-2beta disrupts circadian rhythms of cardiovascular and physical activity. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23(9), 3226–3232.

Laing, E. E., Möller-Levet, C. S., Dijk, D. J., & Archer, S. N. (2019). Identifying and validating blood mRNA biomarkers for acute and chronic insufficient sleep in humans: a machine learning approach. Sleep, 42(1), zsy186.

Landolt, H.P. (2011). Genetic determination of sleep EEG profiles in healthy humans. Progress in Brain Research, 193, 51–61.

Le Martelot, G., Claudel, T., Gatfield, D., Schaad, O., Kornmann, B., Lo Sasso, G., & Schibler, U. (2009). REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biology, 7(9), e1000181.

Liang, J., Xu, W., Hsu, Y.T., Yee, A. X., Chen, L., & Südhof, T. C. (2015). Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Molecular Psychiatry, 20(7), 850–859.

Liu, S., Liu, Q., Tabuchi, M., & Wu, M. N. (2016). Sleep drive is encoded by neural plastic changes in a dedicated circuit. Cell, 165(6), 1347–1360.

Lizcano, J. M., Göransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Alessi, D. R. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. The EMBO Journal, 23(4), 833-843.

Lu, J., Greco, M. A., Shiromani, P., & Saper, C. B. (2000). Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(10), 3830–3842.

Mackiewicz, M., Shockley, K. R., Romer, M. A., Galante, R. J., Zimmerman, J. E., Naidoo, N., Baldwin, D. A., Jensen, S. T., Churchill, G. A., & Pack, A. I. (2007). Macromolecule biosynthesis: a key function of sleep. Physiological genomics, 31(3), 441–457.

Malick J. B. (1979). The pharmacology of isolation-induced aggressive behavior in mice. Current developments in psychopharmacology, 5, 1–27.

Massart, R., Freyburger, M., Suderman, M., Paquet, J., El Helou, J., Belanger-Nelson, E., Rachalski, A., Koumar, O. C., Carrier, J., Szyf, M., & Mongrain, V. (2014). The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Translational psychiatry, 4(1), e347.

McGinty, D. J., & Sterman, M. B. (1968). Sleep suppression after basal forebrain lesions in the cat. Science, 160(3833), 1253–1255.

Mignot, E. (2008). Why we sleep: the temporal organization of recovery. PLoS Biology, 6(4), e106.

Mongrain, V., La Spada, F., Curie, T., & Franken, P. (2011). Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PloS One, 6(10), e26622.

Mosesson, Y., Chetrit, D., Schley, L., Berghoff, J., Ziv, T., Carvalho, S., Milanezi, F., Admon, A., Schmitt, F., Ehrlich, M., & Yarden, Y. (2009). Monoubiquitinylation regulates endosomal localization of Lst2, a negative regulator of EGF receptor signaling. Developmental cell, 16(5), 687–698.

Naidoo, N. (2009a). Cellular stress/the unfolded protein response: relevance to sleep and sleep disorders. Sleep medicine reviews, 13(3), 195–204.

Naidoo, N. (2009b). The endoplasmic reticulum stress response and aging. Reviews in the neurosciences, 20(1), 23–37.

Nakanishi, N., Takahashi, T., Ogata, T., Adachi, A., Imoto-Tsubakimoto, H., Ueyama, T., & Matsubara, H. (2012). PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway. Biochemical and biophysical research communications, 428(4), 500–505.

Nauta, W. J. H. (1946). Hypothalamic regulation of sleep in rats; an experimental study. Journal of Neurophysiology, 9, 285–316.

Naylor, E., Bergmann, B. M., Krauski, K., Zee, P. C., Takahashi, J. S., Vitaterna, M. H., & Turek, F. W. (2000). The circadian clock mutation alters sleep homeostasis in the mouse. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(21), 8138–8143.

Nonogaki, K., Nozue, K., & Oka, Y. (2007). Social isolation affects the development of obesity and type 2 diabetes in mice. Endocrinology, 148(10), 4658–4666.

Pellegrino, R., Kavakli, I. H., Goel, N., Cardinale, C. J., Dinges, D. F., Kuna, S. T., … Pack, A. I. (2014). A NovelBHLHE41Variant is associated with short sleep and resistance to sleep deprivation in humans. Sleep, 37(8), 1327–1336.

Pressman, S. D., Cohen, S., Miller, G. E., Barkin, A., Rabin, B. S., & Treanor, J. J. (2005). Loneliness, social network size, and immune response to influenza vaccination in college freshmen. Health psychology: official journal of the Division of Health Psychology, American Psychological Association, 24(3), 297–306.

Rhodes, J. A., Lane, J. M., Vlasac, I. M., Rutter, M. K., Czeisler, C. A., & Saxena, R. (2019). Association of DAT1 genetic variants with habitual sleep duration in the UK Biobank. Sleep, 42(1), zsy193.

Robles, M. S., Boyault, C., Knutti, D., Padmanabhan, K., & Weitz, C. J. (2010). Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science, 327(5964), 463–466.

Rubenstein, J.l.R., & Merzenich, M. (2003) Model of Autism Increased Ratio of Excitation/Inhibition in Key Neural Systems. Genes, Brain and Behavior, 2, 255-267.

Sallanon, M., Denoyer, M., Kitahama, K., Aubert, C., Gay, N., & Jouvet, M. (1989). Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience, 32(3), 669–683.

Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263.

Seok, B. S., Cao, F., Bélanger-Nelson, E., Provost, C., Gibbs, S., Jia, Z., & Mongrain, V. (2018). The effect of Neuroligin-2 absence on sleep architecture and electroencephalographic activity in mice. Molecular Brain, 11(1), 52.

Shen, X., Zhang, K., & Kaufman, R. J. (2004). The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. Journal of chemical neuroanatomy, 28(1-2), 79–92.

Taylor, D. J., Mallory, L. J., Lichstein, K. L., Durrence, H. H., Riedel, B. W., & Bush, A. J. (2007). Comorbidity of chronic insomnia with medical problems. Sleep, 30(2), 213–218.

Thimgan, M. S., Gottschalk, L., Toedebusch, C., McLeland, J., Rechtschaffen, A., Gilliland-Roberts, M., Shaw, P. J. (2013). Cross-translational studies in human and Drosophila identify markers of sleep loss. PloS One, 8(4), e61016.

Tomaka, J., Thompson, S., & Palacios, R. (2006). The relation of social isolation, loneliness, and social support to disease outcomes among the elderly. Journal of aging and health, 18(3), 359–384.

Tononi, G., & Cirelli, C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain research bulletin, 62(2), 143–150.

Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49–62.

Vanini, G., Lydic, R., & Baghdoyan, H. A. (2012). GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep, 35(10), 1325–1334.

Von Economo, C. (1930). Some new methods of studing the brains of exceptional persons (encephalometry and brain casts). The Journal of Nervous and Mental Disease, 71(3), 300–302.

Wang, Z., Ma, J., Miyoshi, C., Li, Y., Sato, M., Ogawa, Y., & Liu, Q. (2018). Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature, 558(7710), 435–439.

Weljie, A. M., Meerlo, P., Goel, N., Sengupta, A., Kayser, M. S., Abel, T., Birnbaum, M. J., Dinges, D. F., & Sehgal, A. (2015). Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2569–2574.

Wisor, J. P., O’Hara, B. F., Terao, A., Selby, C. P., Kilduff, T. S., Sancar, A., & Franken, P. (2002). A role for cryptochromes in sleep regulation. BMC Neuroscience, 3, 20.

Wisor, J. P., Pasumarthi, R. K., Gerashchenko, D., Thompson, C. L., Pathak, S., Sancar, A., Kilduff, T. S. (2008). Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(28), 7193–7201.

Wong, C. C., Parsons, M. J., Lester, K. J., Burrage, J., Eley, T. C., Mill, J., Dempster, E. L., & Gregory, A. M. (2015). Epigenome-Wide DNA Methylation Analysis of Monozygotic Twins Discordant for Diurnal Preference. Twin research and human genetics: the official journal of the International Society for Twin Studies, 18(6), 662–669.

Wongwitdecha, N., & Marsden, C. A. (1996). Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behavioural brain research, 75(1-2), 27–32.

Yin, L., Wu, N., Curtin, J. C., Qatanani, M., Szwergold, N. R., Reid, R. A., & Lazar, M. A. (2007). Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science, 318(5857), 1786–1789.

Zeidner, L. C., Buescher, J. L., & Phiel, C. J. (2011). A novel interaction between Glycogen Synthase Kinase-3α (GSK-3α) and the scaffold protein Receptor for Activated C-Kinase 1 (RACK1) regulates the circadian clock. International Journal of Biochemistry and Molecular Biology, 2(4), 318–327.

Zhang, K., & Kaufman, R. J. (2006). The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology, 66(2 Suppl 1), S102–S109.

Zhu, Y., Stevens, R. G., Hoffman, A. E., Tjonneland, A., Vogel, U. B., Zheng, T., & Hansen, J. (2011). Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiology international, 28(10), 852–861.

Publicado

2023-01-19

Cómo citar

Rojas-Jaimes, J., Rojas-Puell, M. ., & Iannacone, J. (2023). Bases moleculares del Sueño. The Biologist, 21(1), 99–109. https://doi.org/10.24039/rtb20232111521

Número

Sección

Artículo de Revisión