Social need for environmental protocols with fish how biomonitors of heavy metals in aquatic ecotoxicology
DOI:
https://doi.org/10.24039/rnh20231711572Keywords:
aquatic biota, environmental protocol, environmental regulation, fish, heavy metalsAbstract
The purpose of the study was to describe the social need for environmental protocols with fish as biomonitors of heavy metals in aquatic ecotoxicology. It is considered that the regulatory standards for environmental pollution do not allow the analysis of the effects of heavy metals on aquatic biota. In view of this limitation, it is recognized that some organisms such as fish are used as biomonitors, as they contribute to evaluate the anthropogenic damages generated in the aquatic ecosystem. Despite the advantages of biomonitors, the regulatory standards still do not consider comparative patterns of the bioaccumulation potential of heavy metals in fish as a biomonitoring organism. Any biomonitoring with fish, being a scientifically based system, will allow environmental monitoring to preserve the sustainability of aquatic ecosystems.
Downloads
References
Abdel, K.A.A., Badran, S.R., & Marie, M.A.S. (2020). The efficient role of rice husk in reducing the toxicity of iron and aluminum oxides nanoparticles in Oreochromis niloticus: hematological, bioaccumulation, and histological endpoints. Water, Air, & Soil Pollution, 231, 1-15.
Adel, M., Conti, G.O., Dadar, M., Mahjoub, M., Copat, C., & Ferrante, M. (2016). Heavy metal concentrations in edible muscle of whitecheek shark, Carcharhinus dussumieri (elasmobranchii, chondrichthyes) from the Persian Gulf: a food safety issue. Food and Chemical Toxicology, 97, 135-140.
Akter, S., Jahan, N., Rohani, M.F., Akter, Y., & Shahjahan, M. (2021). Chromium supplementation in diet enhances growth and feed utilization of striped satfish (Pangasianodon hypophthalmus). Biological Trace Element Research, 199, 4811-4819.
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal Chemistry, 2019, 1-14.
Ando, H., Ogawa, S., Shahjahan, M., Ikegami, T., Doi, H., Hattori, A., & Parhar, I. (2014). Diurnal and circadian oscillations in expression of kisspeptin, kisspeptin receptor and gonadotrophin-releasing hormone 2 genes in the grass puffer, a semilunarsynchronised spawner. Journal Neuroendocrinol, 26, 459-467.
Ando, M., Shahjahan, M., & Kitahashi, T. (2018). Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: implications in seasonal, daily and lunar rhythms of reproduction. General and Comparative Endocrinology, 265, 149-153.
Argota, P.G., & Gonzáles, P.Y. (2018). Contradicción no incorporada en protocolos ambientales sobre monitoreo histórico con biomonitores acuáticos como problema social. Campus, 23, 29-38.
Argota, P.G., & Iannacone, J. (2014). Problemas sociales de la ciencia y su interpretación ambiental cognoscitiva hacia biomonitores en ecotoxicología acuática. The Biologist (Lima), 12, 349-361.
Argota, P.G., & Iannacone, J. (2017). Predicción cuantitativa mediante biomarcadores de uso permanente como nuevo criterio para biomonitores en ecotoxicología acuática. The Biologist (Lima), 17, 141-153.
Argota, P.G., Iannacone, J., & Fimia, D.R. (2013). Características de Gambusia punctata (Poeciliidae) para su selección como biomonitor en ecotoxicología acuática en Cuba. The Biologist (Lima), 11, 229-236.
Argota, P.G., Argota, C.H., & Iannacone, J. (2015). Costo ambiental sostenible relativo a la variabilidad físico-química de las aguas sobre la disponibilidad de metales en el ecosistema San Juan, Santiago de Cuba, Cuba. The Biologist (Lima), 14, 219-232.
Argota, P.G., Argota, C.H., & Iannacone, J. (2016). Exposición bioacumulativa en las especies Gambusia punctata y Gambusia puncticulata del ecosistema Almendares, La Habana-Cuba. The Biologist (Lima), 14, 339-350.
Argota, P.G., Iannacone, J., & Fimia, D.R. (2019). Exposición ecotoxicológica al plomo en sedimentos e influencia del factor de bioconcentración ante la variación de la temperatura sobre la actividad acetilcolinesterasa cerebral en la especie Gambusia punctata. The Biologist (Lima), 17, 315-325.
Argota, P.G., González, P.Y., Argota, C.H., Fimia, D.R., & Iannacone, J. (2012). Desarrollo y bioacumulación de metales pesados en Gambusia punctata (Poeciliidae) ante los efectos de la contaminación acuática. Revista Electrónica Veterinaria, 13, 1-12.
Argota, P.G., & Iannacone, J. (2021). Axiología basada en la experiencia mediante el biorregulador larvario Gambusia punctata (Poey, 1854) durante el periodo 2011-2021. Neotropical Helminthology, 15, 193-198.
Bai, W., Takao, Y., & Kubo, T. (2021). First evaluation of genotoxicity of strong bases and zwitterions in treated household effluents. Journal of Hazardous Materials, 416, 1-8.
Bawa, U., Abdullahi, M.I. & Ibraim, H. (2018). Assessment of water quality using biological monitoring working party (BMWP) and average score per taxon (ASPT) score at Kanye and Magaga dams, Kano. Bayero Journal of Pure and Applied Sciences, 11, 210-218.
Bebianno, M.J., Pereira, C.G., Rey, F., Cravo, A., Duarte, D., D’Errico, G., & Regoli, F. (2015). Integrated approach to assess ecosystem health in harbor areas. Science of the Total Environment, 514, 92-107.
Carere, M., Antoccia, A., Buschini, A., Frenzilli, G., Marcon, F., Andreoli, C., Gorbi, G., Suppa, A., Montalbano, S., Prota, V., De Battistis, F., Guidi, P., Bernardeschi, M., Palumbo, M., Scarcelli, V., Colasanti, M., D'Ezio, V., Persichini, T., Scalici, M., Sgura, A., Spani, F., Udroiu, I., Valenzuela, M., Lacchetti, I., di Domenico, K., Cristiano, W., Marra, V., Ingelido, A.M., Iacovella, N., De Felip, E., Massei, R., & Mancini, L. (2021). An integrated approach for chemical water quality assessment of an urban river stretch through effect-based methods and emerging pollutants analysis with a focus on genotoxicity. Journal of Environmental Management, 300, 113549.
Conlan, K.E. (1994). Amphipod crustaceans and environmental disturbance: a review. Journal of Natural History, 28, 519-554.
Dalzochio, T., Simões, R., Airton, L., Santos de Souza, M., Prado, R.G.Z., Petry, I.E., Andriguetti, N.B., Silva, H., Gláucia, J., Günther, G., & Basso da Silva, L. (2017). Water quality parameters, biomarkers and metal bioaccumulation in native fish captured in the ilha river, southern brazil. Chemosphere, 189, 609-618.
Depledge, M.H. (1984). Disruption of circulatory and respiratory activity in shore crabs (Carcinus maenas L.) exposed to heavy metal pollution. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 78, 445-459.
Ezemonye, L.I., Adebayo, P.O., Enuneku, A.A., Tongo, I. & Ogbomida, E. (2019). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicological Reports, 6, 1-9.
Fakhri, Y., Mohseni, B.A., Conti, G.O., Ferrante, M., Cristaldi, A., Jeihooni, A.K., Dehkordi, M.K, Alinejad, A., Rasoulzadeh, H., & Mohseni, S.M. (2018). Systematic review and health risk assessment of arsenic and lead in the fished shrimps from the Persian Gulf. Food and Chemical Toxicology, 113, 278-286.
FAO. (2014). The State of the World Fisheries and Aquaculture. 223. http://www. fao.org/news/story/en/item/231522/icode/
FAO. (2020). The State of World Fisheries and Aquaculture 2020. The State of World Fisheries and Aquaculture 2020. https://doi.org/10.4060/ca9229
Fernandes, C., Fontaínhas, F.A., Cabral, D., & Salgado, M.A. (2008). Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz-Paramos lagoon, Portugal. Environmental Monitoring Assessment, 136, 267-275.
Ghazi, S., Diab, A.M., Khalafalla, M.M. & Mohamed, R.A. (2021). Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hematobiochemical profile, immune and oxidative stress responses, and intestinal morphometry of nile tilapia (Oreochromis niloticus). Biological Trace Element Research, 200, 364-374.
Handy, R.D., Clark, N.J., Boyle, D., Vassallo, J., Green, C., Nasser, F., Botha, T.L., Wepener, V., van den Brink, N.W. & Svendsen, C. (2022). The bioaccumulation testing strategy for nanomaterials: correlations with particle properties and a meta-analysis of in vitro fish alternatives to in vivo fish tests. Environmental Science: Nano, 9, 684-701.
Islam, S.M.M., Rohani, M.F., Zabed, S.A., Islam, M.T., Jannat, R., Akter, Y., & Shahjahan, M. (2020). Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish Pangasianodon hypophthalmus. Toxicology Reports, 7, 664-670.
Jahan, N., Islam, S.M.M., Rohani, M.F., Hossain, M.T., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of rohu (Labeo rohita) through upgrading hematology, and intestinal microbiota and morphology. Aquaculture, 545, 1-8.
Kannel, P.R., Lee, S., Kanel, S.R. & Khan, S.P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system. Analytica Chimica Acta, 582, 390-399.
Khalesi, K., Abeli, Z., Behrouzi, S., & Eskandari, S.K. (2017). Haematological, blood biochemical and histopathological effects of subletal cadmiun and lead concentrations in common carp. Bulgarian Jounal Veterinary Medicine, 20, 141-150.
Kumar, P., Avtar, R., Dasgupta, R., Johnson, B.A., Mukherjee, A., Ahsan, M.dN., Nguyen, D.C.H., Nguyen, H.Q., Shaw, R., & Mishra, B.K. (2020). Socio-hydrology: A key approach for adaptation to water scarcity and achieving human well-being in large riverine islands. Progress in Disaster Science, 8, 1-8.
Kumari, P., & Maiti, S.K. (2019). Health risk assessment of lead, mercury, and other metal (loid) s: A potential threat to the population consuming fish inhabiting, a lentic ecosystem in Steel City (Jamshedpur), India. Human and Ecological Risk Assessment, 25, 2174-2192.
Mahmuda, M., Rahman, M.H., Bashar, A., Rohani, M.F., & Hossain, M.S. (2020). Heavy metal contamination in tilapia, Oreochromis niloticus collected from different fish markets of Mymensingh District. Journal of Agriculture, Food and Environment, 1, 1-5.
Market, B., Breure, A., & Zechmester, H.G. (2003). Bioindicators and biomonitors: principles, concepts and applications. Editorial Elsevier S.
Moiseenko, T.I., & Gashkina, N.A. (2020). Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: Influence of the aquatic environment and climate. Environmental Research Letters, 15, 1-20.
Monteiro, D.A., Thomaz, J.M., Rantin, F.T., & Kalinin, A.L. (2013). Cardiorespiratory responses to graded hypoxia in the neotropical fish matrinxã (Brycon amazonicus) and traíra (Hoplias malabaricus) after waterborne or trophic exposure to inorganic mercury. Aquatic Toxicology, 140, 346-355.
Ng, D.Q., Chu, Y., Tan, S.W., Wang, S.L., Lin, Y.P., Chu, C.H., Soo, Y.L., Song, Y.F., & Chem, P.J. (2019). In vivo evidence of intestinal lead dissolution from lead dioxide (PbO2) nanoparticles and resulting bioaccumulation and toxicity in medaka fish. Environmental Science: Nano, 6, 580-591.
Phoonaploy, U., Tengjaroenkul, B., & Neeratanaphan, L. (2019). Effects of electronic waste on cytogenetic and physiological changes in snakehead fish (Channa striata). Environmental Monitoring and Assessment, 191, 1-11.
Rainbow, P.S., & Phillips, D.J.H. (1993). Cosmopolitan biomonitors of trace metals. Marine Pollution Bulletin, 26, 593-601.
Rainbow, P.S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183-192.
Ramírez, A.N.A., de Pablo J., & Roca, E. (2020). Exploring alternative practices in urban water management through the lens of circular economy–A case study in the Barcelona metropolitan area. Journal of Cleaner Production, 329, 1-1.
Rasmussen, K., Rauscher, H., Kearns, P., González, M., & Riego, S.J. (2019). Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regulatory Toxicology and Pharmacology, 104, 74-83.
Rohani, M.F., Islam, S.M., Hossain, M.K., Ferdous, Z., Siddik, M.A., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish and Shellfish Immunology, 120, 569-589.
Saffari, S., Keyvanshokooh, S., Zakeri, M., Johari, S.A., Pasha, Z.H. & Mozanzadeh, M.T. (2018). Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiology and Biochemistry, 44, 1087-1097.
Sarkar, M., Islam, J.B., & Akter, S. (2016). Pollution and ecological risk assessment for the environmentally impacted Turag River, Bangladesh. Journal Materials Environmental Science, 7, 2295-2304.
Sarkar, M.M., Rohani, M.F., Hossain, M.A.R., & Shahjahan, M. (2021). Evaluation of heavy metal contamination in some selected commercial fish feeds used in Bangladesh. Biological Trace Element Research, 200, 844-854.
Shahjahan, M., Islam, S.M., Bablee, A.L., Siddik, M.A.B., & Fotedar, R. (2021). Sumithion usage in aquaculture: benefit or forfeit? Review Aquaculture, 13, 2092-2111.
Shahjahan, M., Mahman, M.S, Islam, S.M.M., Uddin, M.H. & Al-Emran, M. (2019). Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio. Environmental Science and Pollution Research, 26, 36903-36912.
Shahsavani, A., Fakhri, Y., Ferrante, M., Keramati, H., Zandsalimi, Y., Bay, A., Hosseini, P.S.R, Moradi, B., Bahmani, Z., & Mousavi, K.A. (2017). Risk assessment of heavy metals bioaccumulation: fished shrimps from the persian gulf. Toxin Reviews, 36, 322-330.
Siddiqui, S., & Saher, U.N. (2022). Effects of intrinsic and extrinsic factors on the heavy metal influx in fiddler crab (Austruca iranica) inhabiting the marine environment of Pakistan. Continental Shelf Research, 246, 104809.
Suchana, S.A., Ahmed, M.S., Islam, S.M.M., Rahman, M.L., Rohani, M.F., Ferdusi, T., Ahmmad, A.K.S., Fatema, M.K., Badruzzaman, M., & Shahjahan, M. (2021). Chromium exposure causes structural aberrations of erythrocytes, gills, liver, kidney, and genetic damage in striped catfish Pangasianodon hypophthalmus. Biological Trace Element Research, 199, 3869-3885.
Tlili, S., & Mouneyrac, C. (2019). The wedge clam Donax trunculus as sentinel organism for Mediterranean coastal monitoring in a global change context. Regional Environmental Change, 19, 995-1007.
Truchet, D.M., Buzzi, N.S., Negrin, V.L., Botté, S.E., & Marcovecchio, J.E. (2022). First long-term assessment of metals and associated ecological risk in subtidal sediments of a human-impacted SW Atlantic estuary. Marine Pollution Bulletin, 174, 113235.
Van der Oost, R., Opperhuizen, A., Satumalay, K., Heida, H., & Vermeulen, N.P.E. (1996). Biomonitoring aquatic pollution with feral eel (Anguilla anguilla) I. bioaccumulation: biota-sediment ratios of PCBs, OCPs, PCDDs and PCDFs. Aquatic Toxicology, 35, 21-46.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
OBJETO: El AUTOR-CEDENTE transfiere de manera TOTAL Y SIN LIMITACIÓN alguna al CESIONARIO los derechos patrimoniales que le corresponden sobre la (s) obra(s) tituladas: xxxxxxxxxxxxxxxx, por el tiempo que establezca la ley internacional. En virtud de lo anterior, se entiende que el CESIONARIO adquiere el derecho de reproducción en todas sus modalidades, incluso para inclusión audiovisual; el derecho de transformación o adaptación, comunicación pública, traducción, distribución y, en general, cualquier tipo de explotación que de las obras se pueda realizar por cualquier medio conocido o por conocer en el territorio nacional o internacional.
REMUNERACIÓN: La cesión de los derechos patrimoniales de autor que mediante este contrato se hace será a título gratuito.
CONDICIONES Y LEGITIMIDAD DE LOS DERECHOS: El AUTOR-CEDENTE garantiza que es propietario integral de los derechos de explotación de la(s) obra(s) y en consecuencia garantiza que puede contratar y transferir los derechos aquí cedidos sin ningún tipo de limitación por no tener ningún tipo de gravamen, limitación o disposición. En todo caso, responderá por cualquier reclamo que en materia de derecho de autor se pueda presentar, exonerando de cualquier responsabilidad al CESIONARIO.
LICENCIA DE ACCESO ABIERTO: El AUTOR-CEDENTE autoriza que manuscrito publicado en La Revista Neotropical Helminthology permanece disponible para su consulta pública en el sitio web https://www.neotropicalhelminthology.com/ y en los diferentes sistemas de indexación y bases de datos en las que la revista tiene visibilidad, bajo la licencia Creative Commons, en la modalidad Reconocimiento-No comercial- Sin Trabajos derivados –aprobada en Perú, y por lo tanto son de acceso abierto. De ahí que los autores dan, sin derecho a retribución económica, a la Asociación Peruana de Helmintología e Invertebrados Afines (APHIA), los derechos de autor para la edición y reproducción a través de diferentes medios de difusión.