Gnoseology between brain size and bioaccumulation of heavy metals in Gambusia punctata (Poey, 1854)

Authors

  • George Argota-Pérez Centro de Investigaciones Avanzadas y Formación Superior en Educación, Salud y Medio Ambiente ¨AMTAWI¨. Puno, Perú Grupo de Investigación “One-Health-Una Salud”. Universidad Ricardo Palma. Lima, Perú. https://orcid.org/0000-0003-2560-6749
  • Rigoberto Fimia-Duarte Facultad de Tecnología de la Salud ̈Julio Trigo López ̈. Universidad de Ciencias Médicas de Villa Clara, Cuba. https://orcid.org/0000-0001-5237-0810
  • José Iannacone Laboratorio de Ecología y Biodiversidad Animal. Facultad de Ciencias Naturales y Matemática. Grupo de Investigación en Sostenibilidad Ambiental (GISA), Universidad Nacional Federico Villarreal (UNFV). Lima, Perú.Laboratorio de Zoología. Grupo de Investigación “One Health”. Facultad de Ciencias Biológicas. Universidad Ricardo Palma (URP). Lima, Perú. https://orcid.org/0000-0003-3699-4732
  • Rafael Armiñana-García Centro de estudios de Educación “Gaspar Jorge García Galló”. Universidad Central “Marta Abreu” de Las Villas. Villa Clara. Cuba. https://orcid.org/0000-0003-2655-7002
  • Ricardo Osés-Rodríguez Centro Meteorológico Provincial de Villa Clara, Cuba. https://orcid.org/0000-0002-6885-1413

DOI:

https://doi.org/10.24039/rnh20231711571

Keywords:

bioavailability , cadmium , contamination , fish , lead

Abstract

The purpose of the study was to describe the gnoseology between brain size and metal bioaccumulation in Gambusia punctata (Poey, 1854). In September 2022, sampling was conducted in the lower Almendares River, Havana, Cuba: latitude / 23°06'4.92"; longitude / 82°24'30.41", where 37 individuals (26 females and 11 males) were captured for determination of brain size and bioaccumulation of lead (Pb) and cadmium (Cd). The statistical t-Student test indicated that there was no significant difference (p = 0.44) between males and females according to brain size (1.57±0.09 and 1.59±0.08 mm). Bioaccumulation of Pb was: male = 0.084±0.014; female 0.097±0.022 and for Cd corresponded to: male = 0.085±0.014; female 0.108±0.027). Multiple linear regression analysis between brain size and bioaccumulation of heavy metals indicated, p-value = 0.90 (males) and p-value = 0.35 (females). It was concluded that there was bioaccumulation of Pb and Cd in the brain of individuals of the species G. punctata. Bioaccumulation to Pb was similar in both sexes, although there was greater bioaccumulation to Cd in females. However, Pb and Cd bioaccumulation were not detrimentally related to brain size.

Downloads

Download data is not yet available.

References

Abdel-Khalek, A.A., Badran, S.R., & Marie, M.A.S. (2020). The efficient role of rice husk in reducing the toxicity of iron and aluminum oxides nanoparticles in Oreochromis niloticus: hematological, bioaccumulation, and histological endpoints. Water, Air, & Soil Pollution, 231, 1-15.

Ahmed, M.K., Baki, M.A., Islam, M.S., Kundu, G.K., Habibullah-Al-Mamun, M., Sarkar, S.K., & Hossain, M.M. (2015). Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environmental Science and Pollution Research, 22, 15880-15890.

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal Chemistry, 2019, 1-14.

Argota, P.G., Argota, C.H., Larramendi., G.D., Mora, T.Y., Fimia, D.R., & Iannacone, O.J. (2012). Histología y química umbral de metales pesados en hígado, branquias y cerebro de Gambusia punctata (Poeciliidae) del río Filé de Santiago de Cuba. Revista Electrónica Veterinaria, 13, pp. 1-11.

Argota, P.G., Argota, C.H., & Iannacone, O.J. (2016). Exposición bioacumulativa en las especies Gambusia punctata y Gambusia puncticulata del ecosistema Almendares, La Habana-Cuba. The Biologist (Lima), 14, 339-350.

Argota, P.G., Escobar, M.F., & Moreno, T.E.G. (2020a). Calidad estacionaria del agua ante el costo ambiental sostenible relativo con agregación de biomarcadores: Bahía de Puno, lago Titicaca, Perú. Revista de Investigaciones Altoandinas, 22, 146-154.

Argota, P.G., Fimia, D.R., Iannacone, J., & Alarcón-Elbal, PM. (2020b). Crecimiento ante la respuesta visual y regímenes prolongados de alimentación en el biorregulador larval de mosquitos Gambusia punctata Poey, 1854. Neotropical Helminthology, 14, 111-116.

Argota, P.G., Iannacone, J., Fimia, D.R. & Óses, R.R. (2022). Velocidad de desplazamiento-captura de alimento y bioacumulación a cadmio en la espina vertebral de Gambusia punctata (Poey, 1854). Revista Neotropical Helminthology, 16, 29-36.

Argota, P.G., Iannacone, J., & Fimia, D.R. (2019). Exposición ecotoxicológica al plomo en sedimentos e influencia del factor de bioconcentración ante la variación de la temperatura sobre la actividad acetilcolinesterasa cerebral en la especie Gambusia punctata. The Biologist (Lima), 17, 315-325.

Argota, P.G., Pérez, A.I.Y., Iannacone, J., Alvariño, L., & Fimia, D.R. (2018). Comportamiento de refugio y actividad de la acetilcolinesterasa cerebral en Gambusia punctata (Poey, 1854) (Poeciliidae) por plomo biodisponible. The Biologist (Lima), 16, 171-179.

Argota, P.G., & Iannacone, J. (2022). Extracción cerebral en el biorregulador larvario Gambusia punctata (Poey, 1854): aspectos técnicos de investigación. Neotropical Helminthology, 16, 1-6.

Cheghib, Y., Chouahda, S., & Soltani, N. (2020). Side-effects of a neonicotinoid insecticide (actara®) on a non-target larvivorous fish Gambusia affinis: Growth and biomarker responses. The Egyptian Journal of Aquatic Research, 46, 167-172.

Dambach, P. (2020). The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biological Control, 150, 1-33.

Díaz, R.O., Olivares, R.S., Gelen, R.A., D´Alessandro, R.K., Lima, C.L., García, C.D., Casanova, D.A.O., García, T.C., & Manduca, A.M. (2019). Estudios de contaminación ambiental en La Habana mediante técnicas nucleares y conexas. Nucleus, 66, 58-65.

Elleuch, B., Bouhamed, F., Elloussaief, M., Jaghbir, M. (2018). Environmental sustainability and pollution prevention. Environmental Science and Pollution Research, 25, 18223-18225.

Espinosa, R.G., Costilla, S.R., Pérez, V.F.J, González, D.J., Flores, R.R., Cuevas-Díaz, S.M.C., Medellin, G.C.E., & Ilizaliturri, H.A. (2019). DNA damage in earthworms by exposure of persistent organic pollutants in low basin of Coatzacoalcos River, Mexico. Science of the Total Environment, 651, 1236-1242.

Fimia, D.R., Iannacone, J., Alarcón, E.P.M., Hernández, C.N., Armiñana, G.R., Cepero, R.O., Cabrera, G.A.M., & Zaita, F.Y. (2016). Potencialidades del control biológico de peces y copépodos sobre mosquitos (Díptera: Culicidae) de importancia higiénica-sanitaria en la provincia Villa Clara, Cuba. The Biologist (Lima), 14, 371-386.

Gachelin, G., Garner, P., Ferroni, E., Verhave, J.P., & Opinel, A. (2018). Evidence and strategies for malaria prevention and control: a historical analysis. Malaria Journal, 17, 1-18.

Handy, R.D., Clark, N.J., Boyle, D., Vassallo, J., Green, C., Nasser, F., Botha, T.L., Wepener, V., van den Brink, N.W., & Svendsen, C. (2022). The bioaccumulation testing strategy for nanomaterials: correlations with particle properties and a meta-analysis of in vitro fish alternatives to in vivo fish tests. Environmental Science: Nano, 9, 684-701.

Larrea, M.J.A., Romeu, A.B., Lugo, M.D., & Rojas, B.M.M. (2022). Aspectos fundamentales del monitoreo de calidad de las aguas: el río almendares como caso de estudio. Revista CENIC Ciencias Biológicas, 53, 148-159.

López, P.M., Varela, Z., Franco, D., Fernández, J.A., & Aboal, J.R. (2020). Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. Environmental Pollution, 267, 1-12.

McPeek, M. (1992). Mechanisms of sexual selection operating on body size in the mosquitofish (Gambusia holbrooki). Behavioral Ecology, 3, 1-12.

Meffe, K.G., & Snelson, Jr., F.F. 1(989). An ecological overview of poecilid fishes. In: Meffe, K.G., Snelson Jr., F.F. (Eds.), Ecology and Evolution of Livebearing Fishes (Poeciliidae). Prentice-Hall, Englewood Cliffs, (pp.13-31).

Moiseenko, T.I., & Gashkina, N.A. (2020). Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: Influence of the aquatic environment and climate. Environmental Research Letters, 15, 1-20.

Monteiro, D.A., Thomaz, J.M., Rantin, F.T., & Kalinin, A.L. (2013). Cardiorespiratory responses to graded hypoxia in the neotropical fish matrinxã (Brycon amazonicus) and traíra (Hoplias malabaricus) after waterborne or trophic exposure to inorganic mercury. Aquatic Toxicology, 140, 346-355.

Nagelkerken, I., & Connell, S.D. (2015). Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proceedings of the National Academy of Sciences, 112, 13272-13277.

Ng, D.Q., Chu, Y., Tan, S.W., Wang, S.L., Lin, Y.P, Chu, C.H., Soo, Y.L., Song, Y.F., & Chem, P.J. (2019). In vivo evidence of intestinal lead dissolution from lead dioxide (PbO2) nanoparticles and resulting bioaccumulation and toxicity in medaka fish. Environmental Science: Nano, 6, 580-591.

Ponce de León, G.J.L., & Rodríguez, S.R. (2010). Peces cubanos de la familia Poeciliidae. Guía de campo. Editorial Academia.

Ramesh, M., Thilagavathi, T., Rathika, R., & Poopal, R.K. (2018). Antioxidant status, biochemical and hematological responses in a cultivable fish Cirrhinus mrigala exposed to an aquaculture antibiotic sulfamethazine. Acuicultura, 491, 10-19.

Rasmussen, K., Rauscher, H., Kearns, P., González, M., & Riego, S.J. (2019). Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regulatory Toxicology and Pharmacology, 104, 74-83.

Reznick, D. (1990). Plasticity in age and size at maturity in male guppies (Poecilia reticulata): an experimental evaluation of alternative models of development. Journal of Evolutionary Biology, 3, 185-203.

Rodrigues, S., Antunes, S.C., Correia, A.T., Golovko, O., Žlábek, V., & Nunes, B. (2018). Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere, 216, 234-247.

Stearns, S.C. (1983). The evolution of life history traits in mosquitofish since their introduction to Hawaii in 1905: Rates of evolution heritabilities development plasticity. American Zoology, 23, 65-75.

Suárez, G.O., Valcarce, O.R.Ma., Vega, C.M., & Rodríguez, M.W. (2021). Riesgo de contaminación de las aguas subterráneas en la cuenca Almendares-Vento, Cuba. Ingeniería Hidráulica y Ambiental, 42, 154-176.

Sun, T.Y., Bornhӧft, N.A., Hungerbühler, K., & Nowack, B. (2016). Dynamic probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Science & Technology, 50, 4701-4711.

Utembe, W., Wepener, V., Yu, I.J., & Gulumian, M. (2018). An assessment of applicability of existing approaches to predicting the bioaccumulation of conventional substances in nanomaterials. Environmental Toxicology and Chemistry, 37, 2972-2988.

Vinagre, C., Costa, M.J., Wood, S.A., Williams, R.J., & Dunne, J.A. (2019). Potential impacts of climate change and humans on the trophic network organization of estuarine food webs. Marine Ecology Progress Series, 616, 13-24.

Published

2023-05-11

How to Cite

Argota-Pérez, G. ., Fimia-Duarte, R. ., Iannacone, J., Armiñana-García, R. ., & Osés-Rodríguez, R. . (2023). Gnoseology between brain size and bioaccumulation of heavy metals in Gambusia punctata (Poey, 1854). Neotropical Helminthology, 17(1), 45–51. https://doi.org/10.24039/rnh20231711571

Issue

Section

Artículos Originales