PREDATION OF AEDES AEGYPTI (LINNEAUS, 1762) LARVAE BY THE BIOREGULATOR GAMBUSIA PUNCTATA (POEY, 1854) UNDER NOCTURNAL CONDITIONS

Authors

  • George Argota-Pérez Centro de Investigaciones Avanzadas y Formación Superior en Educación, Salud y Medio Ambiente ¨AMTAWI¨. Puno, Perú. https://orcid.org/0000-0003-2560-6749
  • José Iannacone Laboratorio de Ecología y Biodiversidad Animal (LEBA). Facultad de Ciencias Naturales y Matemática. Grupo de Investigación en Sostenibilidad Ambiental (GISA), Universidad Nacional Federico Villarreal (UNFV). Lima, Perú. Laboratorio de Parasitología. Grupo de Investigación “One Health”. Facultad de Ciencias Biológicas. Universidad Ricardo Palma (URP). Lima, Perú. https://orcid.org/0000-0003-3699-4732

DOI:

https://doi.org/10.24039/rnh20221611383

Keywords:

Aedes aegypti, Gambusia punctata, nocturnal predation

Abstract

The objective of the study was to describe the predation of the larvae of Aedes aegypti (Linnaeus , 1762 ) by the bioregulator Gambusia punctata (Poey, 1854) under nocturnal conditions. The study was carried out in a domestic drinking water tank with a capacity of 20 000 L. Ten adult females of G. punctata were placed without feeding for 48 h. An infrared night vision HD video camera (version: DV-FR480) was attached and then, after 72 h, 10 A. aegypti mosquito larvae (L3 and L4) were deposited at night time, 5 min in three replicates. The larvae were tied with a generic black polyester thread and introduced at the same time until contact with the water surface. Recognition time (s) and predation of G. punctata were measured. The average recognition and predation by G. punctata on A. aegypti larvae showed statistically significant differences. The predatory capacity of mosquito larvae by G. punctata was instantaneous under night time conditions. It is concluded that the predatory capacity of G. punctata is natural and its recognition by A. aegypti larvae takes place in seconds, which is essential to maintain the biocontrol of this vector agent.

Downloads

Download data is not yet available.

References

Alshaimaa, MRH, Mona, SE & Magda, ASA. 2022. Eco-friendly mosquito-control strategies: advantages and disadvantages. Egyptian Academic Journal of Biological Sciences, vol. 14, pp. 17-31.

Argota, PG, Fimia, DR, Iannacone, J & Alarcón-Elbal, PM. 2020. Crecimiento ante la respuesta visual y regímenes prolongados de alimentación en el biorregulador larval de mosquitos Gambusia punctata Poey, 1854. Neotropical Helminthology, vol. 14, pp. 1-6.

Barrera, R, Amador, M, Diaz, A, Smith, J, Muñoz, JJL & Rosario, Y. 2008. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Medical and Veterinary Entomology, vol. 22, pp. 62-69.

Basso, C, García da Rosa, E, Romero, S, González, C, Lairihoy, R, Roche, I, Caffera, RM, da Rosa, R, Calfani, M & Alfonso, SE. 2015. Improved dengue fever prevention through innovative intervention methods in the city of Salto, Uruguay. Trans. Royal Society of Tropical Medicine and Hygiene. vol. 109, pp. 134-142.

Bhatt, S, Gething, PW, Brady, OJ, Messina, JP, Farlow, AW, Moyes, CL, Drake, JM, Brownstein, JS, Hoen, AG & Sankoh, O. 2013. The global distribution and burden of dengue. Nature, vol. 496, pp. 504-507.

Chandra, G, Bhattacharjee, I, Chatterjee, SN & Ghosh, A. 2008. Mosquito control by larvivorous fish. Indian Journal Medical Research, vol. 127, pp. 13-27.

Cuthbert, RN, Dalu, T, Wasserman, RJ, Coughlan, NE, Callaghan, A, Weyl, OLF & Dick, JTA. 2018. Muddy waters: Efficacious predation of container-breeding mosquitoes by a newly-described calanoid copepod across differential water clarities. Biological Control, vol. 127, pp. 25-30.

Dambach, P. 2020. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biological Control, vol. 150, pp. 1-33.

Das, MK, Rao, MRK & Kulsreshtha, A. 2018. Native larvivorous fish diversity as a biocontrol agent against mosquito larvae in an endemic malarious region of Ranchi district in Jharkhand, India. Journal of Vector Borne Diseases, vol. 55, Pp. 34.

Durant, AC & Donini, A. 2019. Development of Aedes aegypti (Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic tanks causes alterations in ammonia excretion, ammonia transporter expression, and osmoregulation. Scientific Reports, vol. 9, 19028.

Fimia, DR, Iannacone, J, Alarcón, EPM, Hernández, CN, Armiñana, GR, Cepero, RO, Cabrera, GAM & Zaita, FY 2016. Potencialidades del control biológico de peces y copépodos sobre mosquitos (Díptera: Culicidae) de importancia higiénica-sanitaria en la provincia Villa Clara, Cuba. The Biologist (Lima), vol. 14, pp. 371-386.

Gachelin, G, Garner, P, Ferroni, E, Verhave, JP & Opinel, A. 2018, Evidence and strategies for malaria prevention and control: a historical analysis. Malaria Journal, vol. 17, pp. 1-18.

García, ÁI & González, BR. 1986. Principales especies de peces larvívoros de la familia poecilidae y su efectividad en las condiciones naturales de Cuba. Revista Cubana Medicina Tropical, vol. 38, pp. 192-207.

Guarner, J & Hale, GL. 2019. Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: west Nile, Zika, dengue and yellow fever. Seminars in Diagnostic Pathology, vol. 36, pp. 170-176.

Hernández, CN, Fimia, DR, Rojas, UJE & García, ÁGI. 2005. Metodología para valorar el potencial y la capacidad depredadora de los peces larvívoros mediante observaciones directas en el laboratorio. Revista Cubana de Medicina Tropical, vol. 57, pp. 156-158.

Kandel, Y, Vulcan, J, Rodriguez, SD, Moore, E, Chung, HN, Mitra, S, Cordova, JJ, Martinez, KJL, Moon, AS, Kulkarni, A, Ettestad, P, Melman, S, Xu, J, Buenemann, M, Hanley, KA & Hansen, IA. 2019. Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A. PLoS ONE, vol. 14, pp. 1-16.

Kapesa, A, Kweka, EJ, Atieli, H, Afrane, YA, Kamugisha, E, Lee, MC & Yan, G. 2018. The current malaria morbidity and mortality in different transmission settings in Western Kenya. PLoS One, vol. 13, e0202031.

Kebede, DL, Hibstu, DT, Birhanu, BE & Bekele, FB. 2017. Knowledge, Attitude and Practice towards malaria and associated factors in Areka town, Southern Ethiopia: community-based cross sectional study. Journal of Tropical Diseases, vol. 5, pp. 1-10.

Kudom, AA, Mensah, BA, Froeschl, G, Rinder, H & Boakye, D. 2015. DDT and pyrethroid resistance status and laboratory evaluation of bio-efficacy of long lasting insecticide treated nets against Culex quinquefasciatus and Culex decens in Ghana. Acta Tropical, vol. 150, pp. 122-130.

Lima, NAS, Sousa, GS, Nascimento, OJ & Castro, MC. 2019. Chikungunya-attributable deaths: a neglected outcome of a neglected disease. PLOS Neglected Tropical Diseases, vol. 13, e0007575.

Louis, MRLM, Pushpa, V, Balakrishna, K & Ganesan, P. 2020. Mosquito larvicidal activity of Avocado (Persea americana Mill.) unripe fruit peel methanolic extract against Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. South African Journal of Botany, vol. 133, pp. 1-4.

Mint, AML, Aly, MOL, Hasni, ME, Mint, KL, Salem, MOA, Ould, KB, Ouldabdallahi, MM, Ould, BIN, Brengues, C, Trape, JF, Basco, L, Bogreau, H, Simard, F, Faye, O & Ould, MSBA. 2017. Mosquitoes (Diptera: Culicidae) in Mauritania: a review of their biodiversity, distribution, and medical importance. Parasites & Vectors, vol. 35, pp. 1-13.

Noreen, M, Arijo, AG, Ahmad, L, Sethar, A, Leghari, MF, Bhutto, MB, Leghari, IH, Memon, KH, Shahani, S, Vistro, WA, Sethar, GH & Khan, N. 2017. Biocontrol of mosquito larvae using edible fish. International Journal of Innovative and Applied Research, vol. 5, pp. 1-6.

Owino, EA. 2018. Aedes spp mosquitoes and emerging neglected diseases of Kenya. International Journal of Mosquito Research, vol. 5, pp. 1-11.

Pavela, R. 2015. Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, vol. 76, pp. 174-187.

Ramasamy, R & Surendran, SN. 2016. Mosquito vectors developing in atypical anthropogenic habitats: Global overview of recent observations, mechanisms and impact on disease transmission. Journal of Vector Borne Diseases, vol. 53, pp. 91-98.

Robert, MA, Tinunin, DT, Benitez, EM, Ludueña, AF, Romero, M, Stewart, IA & Estallo, EL. 2020. Climate change and viral emergence: evidence from Aedes-borne arboviruses. Current Opinion in Virology, vol. 40, pp. 41-47.

Sarwar, M. 2015. Reducing dengue fever through biocontrol of disease carrier Aedes mosquitoes (Diptera: Culicidae). International Journal of Preventive Medicine Research, vol. 1, pp. 161-166.

Surendran, S, Sivabalakrishnan, K, Jayadas, TTP, Santhirasegaram, S, Laheetharan, A, Senthilnanthanan, M & Ramasamy, R. 2018. Adaptation of Aedes aegypti to salinity: characterized by larger anal papillae in larvae. Journal of Vector Borne Diseases, vol. 55, pp. 235-238.

Suzuki, Y, Baidaliuk, A, Miesen, P, Frangeul, L, Crist, AB, Merkling, SH, Fontaine, MA, Lequime, S, Moltini, CI, Hervé, BP, van Rij, LL. & Saleh, MC. 2020. Non-retroviral endogenous viral element limits cognate virus replication in Aedes aegypti ovaries. Current Biology, vol. 30, pp. 1-19.

Valero, N, Meleán, E, Maldonado, M, Montiel, M, Larreal, Y & Espina, LM. 2006. Capacidad larvívora del gold fish (Carassius auratus auratus) y del guppy salvaje (Poecilia reticulata) sobre larvas de Aedes aegypti en condiciones de laboratorio. Revista Científica, vol. 16, pp. 414-419.

Van-Dam, AR & Walton, WE. 2007. Comparison of mosquito control provided by the arroyo chub (Gila orcutti) and the mosquitofish (Gambusia affinis). Journal of the American Mosquito Control, vol. 23, pp. 430-441.

WHO (World Health Organization). 2016. Dengue: Prevention and control. http://apps.who.int/gb/ebwha/pdf_files/EB136/B136_24-en.pdf

WHO (World Health Organization). 2014. A Global Brief On Vector-Borne Diseases. World Health Organization, Geneva 27, Switzerland, pp. 1-56.

Published

2022-05-14

How to Cite

Argota-Pérez, G., & Iannacone, J. . (2022). PREDATION OF AEDES AEGYPTI (LINNEAUS, 1762) LARVAE BY THE BIOREGULATOR GAMBUSIA PUNCTATA (POEY, 1854) UNDER NOCTURNAL CONDITIONS. Neotropical Helminthology, 16(1), 21–27. https://doi.org/10.24039/rnh20221611383

Issue

Section

Artículos Originales