DISTRIBUCIÓN MUNDIAL DE ESPECIES ÍCTICAS BIOLARVARIAS DEL GÉNERO GAMBUSIA COMO BIOINDICADOR DE LA CONTAMINACIÓN AMBIENTAL POR METALES PESADOS

Autores

  • George Argota-Pérez Centro de Investigaciones Avanzadas y Formación Superior en Educación, Salud y Medio Ambiente ¨AMTAWI¨. Puno, Perú. https://orcid.org/0000-0003-2560-6749
  • José Iannacone Laboratorio de Ecología y Biodiversidad Animal. Facultad de Ciencias Naturales y Matemática. Grupo de Investigación en Sostenibilidad Ambiental (GISA), Escuela Universitaria de posgrado (EUPG). Universidad Nacional Federico Villarreal (UNFV). Lima, Perú. Laboratorio de Zoología. Grupo de Investigación “One Health”. Facultad de Ciencias Biológicas. Escuela de Posgrado (EPG). Universidad Ricardo Palma (URP). Lima, Perú. https://orcid.org/0000-0003-3699-4732
  • Rigoberto Fimia-Duarte Facultad de Tecnología de la Salud ̈Julio Trigo López ̈. Universidad de Ciencias Médicas de Villa Clara, Cuba. https://orcid.org/0000-0001-5237-0810
  • Ricardo Osés-Rodríguez Centro Meteorológico Provincial de Villa Clara, Cuba. https://orcid.org/0000-0002-6885-1413

DOI:

https://doi.org/10.24039/rnh20221621484

Palavras-chave:

biomarcadores, bioindicador, ecosistemas acuáticos, exposición, Gambusia

Resumo

El objetivo del estudio fue describir la distribución mundial de las especies ícticas biolarvarias del del género Gambusia Poey, 1854 como biomonitor de la contaminación ambiental. El estudio se describió en agosto de 2022. Se seleccionó, la base de datos de Google Académico donde la ecuación de búsqueda fue: "Gambusia", "bioindicator", "biomonitoring" of environmental pollution, "heavy metals". La búsqueda se analizó, por relevancia durante los últimos 20 años y correspondió al período 2001-2021. La selección de los artículos se clasificó en investigación. Se estableció una agrupación de estudios en tres intervalos de años: 2001-2007, 2008-2013 y 2014-2021. El resultado de la búsqueda citó a 295 estudios. Sin embargo, al revisarse cada una de las publicaciones científicas, solo 11 hicieron referencias a cuatro especies: G. affinis (Baird & Girard, 1853), G. holbrooki (Girard, 1859), G. punctata (Poey, 1854), y G. sexradiata (Hubbs, 1936). El mayor porcentaje de utilización para bioindicar la exposición a metales pesados correspondió al período de 2014-2021 con cinco estudios (45,45%) donde la G. affinis fue la especie más usada: siete veces (63,64%). Se concluye, que los peces del género gambusia como indicador de la contaminación por metales pesados tienen una distribución geográfica a nivel mundial, menos en la Antártida y es G. affinis la que muestra mayores reportes. En los últimos años (2014-2021), existe un mayor número de estudios y puede valorarse de manera conjunta a su propósito como especie biorregulador la condición de bioindicador ambiental.

Downloads

Não há dados estatísticos.

Referências

Amoatey, P. & Baawain, MS. 2019. Effects of pollution on freshwater aquatic organisms. Water Environment Research, vol. 91, pp. 1272-1287.

Argota, PG, Iannacone, O. & Fimia, DR. 2013. Características de Gambusia punctata para su selección como biomonitor en ecotoxicología acuática en Cuba. The Biologist (Lima), vol. 11, pp. 229-236.

Argota, PG, Fimia, DR, Iannacone, J. & Alarcón-Elbal, PM. 2020. Crecimiento ante la respuesta visual y regímenes prolongados de alimentación en el biorregulador larval de mosquitos Gambusia punctata Poey, 1854. Neotropical Helminthology, vol. 14, pp. 1-6.

Argota, PG. & Iannacone, J. 2017. Predicción cuantitativa de riesgo histórico entre ecosistemas impactados y de referencia ambiental mediante uso permanente de biomarcadores como nuevo criterio para biomonitores en ecotoxicología acuática. The Biologist (Lima), vol. 15, pp. 141-153.

Argota, PG. & Iannacone, J. 2017. Predicción cuantitativa mediante biomarcadores de uso permanente como nuevo criterio para biomonitores en ecotoxicología acuática. The Biologist (Lima), vol. 17, pp. 141-153.

Argota, PG. & Iannacone, OJA. 2021. Axiología basada en la experiencia mediante el biorregulador larvario Gambusia punctata (Poey, 1854) durante el período 2011-2021. Neotropical Helminthology, vol. 15, pp. 193-198.

Bielmyer, F, Gretchen, K, Waters, MN, Duckworth, CG, Patel, PP, Webster, BC, Blocker, A, Crummey, CH, Duncan, AN, Nwokike, SN, Picariello, CR, Ragan, JT, Schumacher, EL, Tucker, RL, Tuttle, EA. & Wiggins, CR. 2017. Assessment of metal contamination in the biota of four rivers experiencing varying degrees of human impact. Environmental Monitoring and Assessment, vol. 189, pp. 1-17.

Casini, S, Ferraro, M, Marsili, L, Caliani, I. & Fossi, MaC. 2010. Innovative environmental solution: in vivo monitoring of the oil and gas activities in onshore and offshore areas. Society of Petroleum Engineers SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production - Rio de Janeiro, Brazil. pp. 1-10.

Chan, K.M. 1995. Metallothionein: potential biomarker for monitoring heavy metal pollution in fish around Hong Kong. Marine Pollution Bulletin, vol. 31, pp. 411-415.

Chandra G, Bhattacharjee I, Chatterjee SN & Ghosh A. 2008. Mosquito control by larvivorous fish. Indian Journal of Medical Research, vol. 127, pp. 13-21.

Dambach, P. 2020. The use of aquatic Predators for larval control of mosquito disease vectors: Opportunities and limitations. Biological Control, vol. 150, pp. 1-33.

Dewi, NK. & Purwanto, HRS. 2014. Metallothionein in the fish liver as biomarker of cadmium (Cd) pollution in Kaligarang river Semarang. Journal People Environmental, vol. 21, pp. 304-309.

Doyi, I, Essumang, D, Gbeddy, G, Dampare, S, Kumassah, E. & Saka, D. 2018. Spatial distribution, accumulation and human health risk assessment of heavy metals in soil and groundwater of the Tano Basin, Ghana. Ecotoxicology and Environmental Safety, vol. 165, pp. 540-546.

Elleuch, B, Bouhamed, F, Elloussaief, M, Jaghbir, M. 2018. Environmental sustainability and pollution prevention. Environmental Science and Pollution Research, vol. 25, pp. 18223-18225.

Ellis, LJA, Kissane, S, Hoffman, E, Brown, JB, Valsami, JE, Colbourne, J. & Lynch, I. 2020. Multigenerational exposures of Daphnia magna to pristine and aged silver nanoparticles: epigenetic changes and phenotypical ageing related effects. Small, vol. 16, pp. 1-15.

Ezeonyejiaku, CD, Okoye, CO & Ezenwelu, CO. 2019. Toxicity and bioaccumulation studies of heavy metals on a freshwater fish. International Journal of Oceanography, vol. 8, pp. 1-8.

Fimia, DR, Iannacone, J, Alarcón, EPM, Hernández, CN, Armiñana, GR, Cepero, RO, Cabrera, GAM. & Zaita, FY 2016. Potencialidades del control biológico de peces y copépodos sobre mosquitos (Díptera: Culicidae) de importancia higiénica-sanitaria en la provincia Villa Clara, Cuba. The Biologist (Lima), vol. 14, pp. 371-386.

Frenzilli, G, Nigro, M. & Lyons, BP. 2009. The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutation Research/Reviews in Mutation Research, vol. 681, pp. 80-92.

Gerberich, JB. & Laird, M. 1985. Larvivorous fish in the biocontrol of mosquitoes, with a selected bibliography of recent literature. Integrated mosquito control methodologies, vol. 2, pp. 47-76.

Gerberich, JB. 1985.Update of annotated bibliography of papers relating to control of mosquitoes by the use of fish for the years 1965. Geneva, World Health Organization, 1985 (unpublished document VBC/ 85.917.

Gerhardt, A, Janssens de Bisthoven, L. & Soares, AMVM. 2004. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay. Environmental Pollution, vol. 130, pp. 263-274.

Hernandez, F, Bakker, J, Bijlsma, L, de Boer, J, Botero, CAM, Bruinen de Bruin, Y, Fischer, S, Hollender, J, Kasprzyk, HB, Lamoree, M, Lopez, FJ, te Laak, TL., van Leerdam, JA, Sancho, JV, Schymanski, EL, de Voogt, P. & Hogendoorn, EA. 2019. The role of analytical chemistry in exposure science: focus on the aquatic environment. Chemosphere, vol. 222, pp. 564-583.

Iannacone, J. & Alvariño, L. 1997. Peces larvívoros con potencial para el control biológico de estados inmaduros de zancudos en el Perú. Revista peruana de Entomología, vol. 40, pp. 9-19.

Jagoe, CH, Faivre, A. & Newman, MC. 1996. Morphological and morphometric changes in the gills of mosquitofish (Gambusia holbrooki) after exposure to mercury (II). Aquatic Toxicology, vol. 34, pp. 163-183.

Kandel, Y, Vulcan, J, Rodriguez, SD, Moore, E, Chung, HN, Mitra, S, Cordova, JJ, Martinez, KJL, Moon, AS, Kulkarni, A, Ettestad, P, Melman, S, Xu, J, Buenemann, M, Hanley, KA. & Hansen, IA. 2019. Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A. PLoS ONE, vol. 14, pp. 1-16.

Kapesa, A, Kweka, EJ, Atieli, H, Afrane, YA, Kamugisha, E, Lee, MC. & Yan, G. 2018. The current malaria morbidity and mortality in different transmission settings in Western Kenya. PLoS One, vol. 13, pp. 1-19.

Kebede, DL, Hibstu, DT, Birhanu, BE. & Bekele, FB. 2017. Knowledge, Attitude and Practice Towards Malaria and Associated Factors in Areka Town, Southern Ethiopia: Community-Based CrossSectional Study. Journal of Tropical Diseases, vol. 5, pp. 1-10.

Lima, NAS, Sousa, GS, Nascimento, OJ. & Castro, MC. 2019. Chikungunya-attributable deaths: a neglected outcome of a neglected disease. PLOS Neglected Tropical Diseases, vol. 13, pp. 1-5.

López, PM, Varela, Z, Franco, D, Fernández, JA. & Aboal, JR. 2020. Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. Environmental Pollution, vol. 267, pp. 1-12.

Louis, MRL, Pushpa, V, Balakrishna, K. & Ganesan, P. 2020. Mosquito larvicidal activity of Avocado (Persea americana Mill.) unripe fruit peel methanolic extract against Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. South African Journal of Botany, vol. 133, pp. 1-4.

Mashaan, RA. & Qasim, TW. 2014. Mosquito fish, Gambusia affinis (Baird & Girard, 1853) as bioindicator for water pollution with lead. Journal of International Environmental Application & Science, vol. 9, pp. 284-292.

Muhammad, F. 2002. Penentuan toksisitas air limbah dengan indikator Ikan Tombro (Cyprinus carpio). Majalah Ilmiah Biologi BIOMA, vol. 4, pp. 54-58.

Nabinger, DD, Altenhofen, S, Bitencourt, PER, Nery, LR, Leite, CE, Vianna, MRMR. & Bonan, CD. 2018. Nickel exposure alters behavioral parameters in larval and adult zebrafish. Science of the Total Environment, vol. 624, pp. 1623-1633.

Naddy, RB, Cohen, AS & Stubblefield, WA. 2015. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, vol. 34, pp. 809-815.

Nasirian, H, Mahvi, AH, Hosseini, M, Vazirianzadeh, B, Taghi SSM. & Nazmara, S. 2013. Study on the heavy metal bioconcentrations of the Shadegan international wetland mosquitofish, Gambusia affinis, by inductively coupled plasma technique. Journal of Environ Health Science Engineering, vol. 11, pp. 1-10.

Pavela, R. 2015. Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, vol. 76, pp. 174-187.

Pérez, LA, Núñez, NG, Álvarez, GCA, De la Rosa, GS, Uribe, LM, Quintana, P. & Peña, MES. 2020. Effect of salinity on zinc toxicity (ZnCl2 and ZnO nanomaterials) in the mosquitofish (Gambusia sexradiata). Environmental Science and Pollution Research, vol. 27, pp. 22441-22450.

Quesada, GA, Valdehita, A, Torrent, F, Villarroel, M, Hernando, MD. & Navas, JM. 2013. Use of fish farms to assess river contamination: combining biomarker responses, active biomonitoring, and chemical analysis. Aquatic Toxicology, vol. 140-141, pp. 439-448.

Ratningsih, N. 2008. Uji toksisitas molase pada respirasi ikan mas (Cyprinus carpio L.). Journal Biotika, vol. 6, pp. 22-33.

Rautenberg, GE, Amé, MaV, Monferrán, MV, Bonansea, RI & Hued, AC. 2015. A multi-level approach using Gambusia affinis as a bioindicator of environmental pollution in the middle-lower basin of Suquía River. Ecological Indicators, vol. 48, pp. 706-720.

Razak, MR, Aris, AZ, Zakaria, NAC, Wee, SY. & Ismail, NAH. 2021. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. Ecotoxicology and Environmental Safety, vol. 211, pp. 1-12.

Risjani, Y, Loppion, G, Couteau, J, Yunianta, Y, Widowati, A, Hermawati, A & Minier, C. 2020. Genotoxicity in the rivers from the Brantas catchment (East Java, Indonesia): occurrence in sediments and effects in Oreochromis niloticus (Linnæus 1758). Environmental Science and Pollution Research, vol. 27, pp. 21905-21913.

Sattari, M, Bibak, M, Vajargah, MF & Faggio, C. 2020. Trace and major elements in muscle and liver tissues of Alosa braschnikowy from the South Caspian Sea and potential human health risk assessment. Journal of Materials and Environmental Science, vol. 10, pp. 1129-1140.

Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J & Rahman PKSM. 2019. Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Frontiers in Environmental Science, vol.7, 66.

van der Oost, R, Beyer, J. & Vermeulen, NPE. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, vol. 13, pp. 57-149.

Van-Dam, AR. & Walton, WE. 2007. Comparison of mosquito control provided by the arroyo chub (Gila orcutti) and the mosquitofish (Gambusia affinis). Journal of the American Mosquito Control, vol. 23, pp. 430-441.

Vargas, VM. & Vargas, C. 2003. Male and mosquito larvae survey at the Arenal Tempisque irrigation project, Guanacaste, Costa Rica. Revista de Biología Tropical, vol. 51, pp. 759-762.

Yousafzai, AM, Ullah, F, Bari, F, Raziq, S, Riaz, M, Khan, K, Nishan, U, Sthanadar, IA, Shaheen, B, Shaheen, M, & Ahmad, H. 2017. Bioaccumulation of some heavy metals: Analysis and comparison of Cyprinus carpio and Labeo rohita from Sardaryab, Khyber Pakhtunkhwa. BioMed Research International, vol. 2017, 5801432.

Publicado

2022-10-27

Como Citar

Argota-Pérez, G. ., Iannacone, J., Fimia-Duarte, R. ., & Osés-Rodríguez, R. . (2022). DISTRIBUCIÓN MUNDIAL DE ESPECIES ÍCTICAS BIOLARVARIAS DEL GÉNERO GAMBUSIA COMO BIOINDICADOR DE LA CONTAMINACIÓN AMBIENTAL POR METALES PESADOS . Neotropical Helminthology, 16(2), 205–215. https://doi.org/10.24039/rnh20221621484

Edição

Seção

Artículo de Revisión