28
of this research. It is expressed thankfulness to
students of the lecture Nanotechnology MTR609,
Mechatronic Master Program, PUCP: G. Alvarado,
N. Azambuja, M. Chávez, I. Loayza, and M.J.
Romero, because of their opinions and suggestions
to analyse the consequence of this research.
BIBLIOGRAPHIC REFERENCES
Bouchnita, A. & Jebrane, A. 2020. A hybrid multi-
scale model of COVID 19 transmission
dynamics to assess the potential of non-
pharmaceutical interventions. Chaos,
Solitons & Fractals, 138: 109941.
Chen, Y.; Lu, P.; Chang, C. & Liu, T. 2020. A Time-
dependent SIR model for COVID-19 with
undetectable infected persons. IEEE
Transactions on Network Science and
E n g i n e e r i n g , 1 : d o i :
10.1109/TNSE.2020.3024723
Chowell, G.; Sattenspiel, L; Bansal, S. & Viboud,
C. 2016. Mathematical models to
characterize early epidemic growth: A
Review. Physics of Life Reviews, 18: 66-
97.
Coronavirus en el Perú. (2020,03,06). Diario El
C o m e r c i o . R e t r i e v e d f r o m
https://elcomercio.pe/peru/coronavirus-en-
peru-martin-vizcarra-confirma-primer-
caso-del-covid-19-en-el-pais-nndc-
noticia/?ref=ecr
De Falco, I.; Della-Cioppa, A.; Scafuri, U. &
Tarantino, E. 2020. Coronavirus COVID-19
spreading in Italy: optimizing an
epidemiological model with dynamic social
distancing through Differential Evolution.
R e t r i e v e d f r o m
http://arxiv.org/abs/2004.00553v3.
El Peruano. 2020. D. S. No 044-2020-PCM. Que
declara Estado de Emergencia Nacional por
las graves circunstancias que afectan la vida
de la Nación a consecuencia del brote del
COVID-19 Diario oficial del bicentenario
El Peruano (2020). Retrieved from
https://busquedas.elperuano.pe/normaslega
les/decreto-supremo-que-declara-estado-
de-emergencia-nacional-po-decreto-
supremo-n-044-2020-pcm-1864948-2/
Fang, Z.; Huang, Z.; Li, X.; Zhang, J.; Lv, W.;
Zhuang, L.; Xu, X & Huang, N. 2020. How
many infections of COVID-19 there will be
in the “Diamond Princess”-Predicted by a
virus transmission model based on the
simulation of crowd flow. Retrieved from
http://arxiv.org/abs/2002.10616
Kruse, R. & Alkhushayni, S. 2020. Identifying
regional COVID-19 presence early with
time series analysis. IOP SciNotes, 1:
024003.
Kucharski, A.; Russell, T.; Diamond, C.; Liu, Y.;
Edmunds, J.; Funk, S. & Eggo, R. 2020.
Early dynamics of transmission and control
of COVID-19: a mathematical modelling
study. The Lancet: Infectious diseases, 20:
553-558.
Marmarelis, V. 2020. Predictive modeling of
Covid-19 data in the US: Adaptive phase-
space approach. IEEE Open Journal of
Engineering in Medicine and Biology, 1:
doi: 10.1109/OJEMB.2020.3008313.
Pearson, A. 1979. Nonlinear system identification
with limited time data. Automatica, 15: 73-
84.
Ping, H. 2020. Study on epidemic prevention and
control strategy of COVID -19 based on
pe r so nn e l flo w pre d ic ti o n. 20 20
International Conference on Urban
Engineering and Management Science
(ICUEMS), 1: 688-691.
Rustam, F.; Reshi, A.; Mehmood, A.; Ullah, S.; On,
B.; Aslam, W. & Choi, G. 2020. COVID-19
Future Forecasting Using Supervised
Machine Learning Models. IEEE Access, 8:
101489-101499.
Trigger, S. & Czerniawski, E. 2020. Equation for
epidemic spread with the quarantine
measures: application to COVID-19.
Physica Scripta, 95:105001.
Wang, Z.; Shi, Y. & Xie, J. 2020. Application of
Logistic Model in COVID-19. Journal of
Physics: Conference Series, 1634: 012049.
Yuankang, Z.; Yi, H. & Xiaosong, Z. 2020.
COVID-19 Outbreak Prediction Based on
th
SEIQR Model. 2020 39 Chinese Control
Conference (CCC), 1: 1133-1137.
Received July 22, 2020.
Accepted December 31, 2020.
The Biologist (Lima). Vol. 19, Nº1, jan - jun 2021
Calderón-Chavarri et al.