Insects associated with potato in the Huatta community (Pisac, Calca, Cusco) were evaluated using color
traps. The traps were plastic trays with water and detergent placed in the field, the evaluated colors were:
white, yellow, green, red and blue. Two evaluations were made, one in November and the other one in
December 2019. Identifications were made to the family level. The analyzes performed were:
multifactorial ANOVA, ANOSIM, non-metric multidimensional scaling and SIMPER. Statistical
differences were found between the colors evaluated and dissimilarity between them. In total, 30 families
of insects have were found associated with the potato crop. The color traps used in the present research
show independence in the number of families captured: Yellow (1.47), Blue (1.36), Red (1.35), White
(1.32) and Green (1.21). The percentage of contribution of the families collected in the color traps used
has been determined. Collembola (10.94), Drossophilidae (9.75), Chrysomelidae (3.75), Phoridae (3.44)
and Anthomyiidae (3.13) showed the more important contribution in SIMPER analysis. A high positive
correlation was found between the colors white with yellow, and red with blue.
The Biologist
(Lima)
The Biologist (Lima), 20 , 1 ( ), j - : 20 8 2 ul dec 277-285.
DIVERSITY AND ABUNDANCE OF INSECTS IN POTATO CROP CAPTURED USING COLOR
TRAPS IN CUSCO, PERU
DIVERSIDAD Y ABUNDANCIA DE INSECTOS EN PAPA EMPLEANDO TRAMPAS DE COLORES
EN CUSCO, PERÚ
1
Laboratorio de Entomología, Universidad Nacional de San Antonio Abad del Cusco,Av. Cultura 733, Cusco, Perú
*Corresponding author: erick.yabar@unsaac.edu.pe
ABSTRACT
Keywords: color traps – Cusco – pests – potato
The Biologist (Lima)
ISSN Versión Impresa 1816-0719
ISSN Versión en linea 1994-9073 ISSN Versión CD ROM 1994-9081
doi:10.24039/rtb2020182807
277
The Biologist
(Lima)
VOL. 18, Nº 2, JUL-DEC 2020
The Biologist (Lima)
Versión en Linea:
ISSN 1994-9073
Versión Impresa:
ISSN 1816-0719 Versión CD-ROM:
ISSN 1994-9081
PUBLICADO POR:AUSPICIADO POR:
ESCUELA PROFESIONAL DE BIOLOGÍA,
FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA,
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL
1 1 1 1,*
Gretta Huamanrayme ; Catherine Mamani ; Jorge Curo-Miranda & Erick Yabar-Landa
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
Se evaluó la diversidad de insectos asociados a un cultivo de papa en la comunidad de Huatta (Pisac,
Calca, Cusco), Perú empleando trampas de colores blanco, amarillo, verde, rojo y azul. Las trampas
fueron bandejas de plástico con agua y detergente colocadas en el interior de los cultivos para determinar
el efecto del color de las trampas en las evaluaciones de las comunidades de insectos. Se hicieron dos
evaluaciones, una en noviembre y otra en diciembre del 2019. Las identificaciones se hicieron hasta el
nivel de familia. Los análisis realizados fueron: ANOVA multifactorial, ANOSIM, escalamiento
multidimensional no métrico y SIMPER. Se encontraron diferencias estadísticas entre los colores
evaluados y los índices de disimilitud. En total se colectaron 30 familias de insectos asociados al cultivo de
papa. Las trampas de colores mostraron independencia en el número de familias capturadas: amarillo
1.47, azul 1.36, rojo 1.35, blanco 1.32, verde 1.21. Se determinó el porcentaje de contribución de las
familias colectadas para cada color de trampa. Collembola (10,94), Drossophilidae (9,75),
Chrysomelidae (3,75), Phoridae (3,44) and Anthomyiidae (3,13) mostraron la contribución más
importante en el análisis SIMPER. Se encontró alta correlación positiva entre los colores blanco con
amarillo, rojo y azul.
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
INTRODUCTION
278
The potato crop hosts to numerous species of
insects that attack all the organs of the plant
(Radcliffe, 1982) and, due to its economic
importance, it has been the subject of several
integrated management strategies (Carrera &
Cermeli, 2001; Rondon et al., 2003; Galindo &
Español, 2004; Rondon, 2010; Cañedo et al.,
2011).
Among the main strategies for monitoring and
controlling pests in potatoes and other crops are:
the use of pheromones (Foster & Harris, 1997;
Carrizo, 1998; Weinzierl et al., 2005; Farfán &
Iannacone, 2009), color traps (Chavez & Raman,
1987; Boiteau, 1990; Cabello et al., 1991;
Rodríguez & Vásquez, 2000; Atakan & Canhilal,
2004; Jiménez et al., 2004; Bravo-Portocarrero et
al. 2020), light traps (Boiteau, 2009; Day & Reid,
1969) and others.
Color traps has demonstrated to be effective to
monitoring and control several pests, by example,
Lygus sp. (Blackmer et al., 2008), aphids (Boiteau,
1990), Chrysomelidae (Boiteau, 2009), Thripidae
(Cardenas & Corredor, 1989; Carrizo, 1998;
González et al., 1999; Cabello et al., 1991; Jiménez
et al., 2004; Demirel & Yildirim, 2008; Virgen et
al., 2011), Cicadellidae (Arismendi et al., 2009),
Agromyzidae (Chavez & Raman, 1987),
Curculionidae (Tapia et al. , 2010) and Braconidae
(Mena-Mociño et al., 2016).
Although there is no updated record of potato pests
in Cusco, but several general references can be
taken (Carrasco, 1967; Escalante et al., 1981;
Huamaní, 2020; Kroschel et al., 2020).
The project was proposed to: a) determine the
diversity and abundance of insects associated with
potato crop, b) determine the effect of traps colors
for the evaluation of the insect community
associated with potato crop.
The work was carried out in a commercial potato
field and it was not installed by the authors, the
potato field is located at Huatta community of
Palabras clave: Cusco – papa – plagas – trampas de color
RESUMEN
MATERIALS AND METHODS
Huamanrayme et al.
Huata (Pisac, Calca) with the following data:
Altitude: 3423 m, South latitude: 13° 27'21.87 ",
West longitude: 71° 52'20.43 ". The climatic
conditions are observed in Fig. 1.
Sampling
Five-color plastic trays were setted: white, yellow,
green, red and blue, each trap was 20 cm length and
10 cm width and 8 cm depth. The trays were filled
with water up to 50% of their total capacity, 1 g of
detergent was added to break the surface tension.
Two samplings were carried out, one in November
and the other one in December 2019, using a piece
of organza cloth to filter the water from each trap.
The collected material was transferred to bottles
with alcohol, one bottle per tray, and it was taken to
the Laboratorio de Entomología de la Universidad
Nacional de San Antonio Abad del Cusco (CEUC-
UNSAAC), Perú.
Trays were arranged randomly, three repetitions
were used for each color, making a total of 15 trays
for each evaluation (Southwood, 1966).
Identification
All the material was separated by morphotypes and
identified down to the family level, except in some
cases where it reached genus and/or species. For
the identification, the Triplehorn & Johnson (2005)
keys were used.
279
Analysis
The counts were arranged in an Excel® matrix of
families by colors. A normality test was performed
and the data were transformed to √ x + 1. With the
transformed data, a multifactorial ANOVA test was
done taking as factors: colors, families and the
interaction colors by families with the Statistica
8.0® program. In cases where significant
differences were found, a Tukey test was
performed (α = 0.05). The diversity was
determined using the Simpson index:
and 1-D to determine diversity as well as the
estimator Chao1. This estimator is based on
abundance, it refers to the abundance of individuals
that belong to a certain class in a sample, which can
be site, quadrant, trap, etc. It is based,
fundamentally, on the presence of species
represented only by one individual in the sample
and the number of species represented by two
individuals in the sample (Escalante, 2007;
González-Oreja et al., 2010).
Additionally, multidimensional scaling and
ANOSIM were performed to determine the
differences between colors with the PAST®
program. Multidimensional scaling comprises a
Figure 1. Precipitation and temperature of the Huatta community (Pisac, Calca).
c=
st
i
pi2
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Insects in potato crop
family of multivariate procedures that make it
possible to represent the proximities between a set
of elements as distances in a space. The NMDS
(Non-Metric Multidimensional Scaling) uses a
monotonous least squares regression –––(López-
González & Hidalgo, 2010). The Similarity
Analysis (ANOSIM) is a non-parametric test that is
used to determine the statistical significance of the
groups by means of a cluster analysis. The program
calculates the R statistic that denotes dissimilarity
between groups if its value approaches or exceeds 1
(Giraldo, 2015). A correlation matrix was
performed using Pearson´s linear correlation
coefficient to determine the association between
the evaluated colors with SPSS 17® program.
Due to there are significant differences between
RESULTS
280
families the taxa that contributed to the most of
these differences were identified using the
SIMPER analysis (Clarke & Warwick, 2001; Cruz-
Motta, 2007).
Ethic aspects: The authors have followed the
ethical regulation of the country.
ANOVA shows statistically significant differences
for colors, families and families by color
interaction (Table 1).
Table 1. Response of insect families to color traps in potato cultivation
White Yellow
Green
Red
blue
1.32 bc*
1.47
a
1.21 c 1.35
b 1.36 a b
ANOVA
Colors (P = 0.00000)
Families (P = 0.00000)
Families x colors (P = 0.00000)
*Different letters for each color indicate statistically significant differences (LSD, α = 0.05)
The Simpson Index shows greater diversity (1-D =
0.90) for red color, but the value of Chao 1 indicates
the greatest number of families could correspond to
yellow (Chao1 = 26) (Table 2).
The Non-Metric Multidimensional Scaling shows
dissimilarity between the colors used (Fig. 2)
Table 2. Number of families, Simpson's diversity index (1-D) and Chao1 estimator for color traps in
potato cultivation.
Color # Families
Simpson Index
(1-D) Chao1
White 22
0.87 24
Yellow 25
0.88 26
Green 20
0.80 22.5
Red 20
0.90 20
blue 22 0.88 22.75
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Huamanrayme et al.
Pearson´s linear correlation coefficient shows a
greater association between color pans used to
evaluate insects associated to potato cultivation.
(Table 3).
281
The dissimilarity analysis shows an R value is close
to 0: 0.22 (P = 0.03), which indicates dissimilarity
between the evaluated colors (Table 4).
Figure 2. Non-metric multidimensional scaling for insects captured by color traps in potato cultivation.
Table 3. Pearson´s linear correlation coefficient between color pans in potato cultivation.
White
Yellow
Green Red Blue
White
Yellow 0.887**
Green 0.403*
0.585**
Red 0.530**
0.420*
0.072
Blue 0.859**
0.846**
0.590** 0.536**
** correlation is significant at 0.01 level. * correlation is significant at 0.05 level
Table 4. ANOSIM (Dissimilarity Analysis) values for the colors used.
N permutation
9999
Average range
of
dissimilarity
within
groups 42.8
Range prom
and
gave
the
dissimilarity
between
groups 54.7
A: 0.22
P 0.03
The SIMPER analysis shows the contribution
percentage of the identified families (Table 5).
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Insects in potato crop
Color traps have demonstrated to be an efficient
technique to evaluate and control several pest
species. However, most studies with color traps
have been done almost exclusively for monitoring
and control of specific pests, especially trips and
cicadellids (Cardenas & Corredor, 1989; Cabello et
al., 1991; Carrizo, 1998; González et al., 1999;
Jiménez et al., 2004; Demirel & Yildirim, 2008;
Virgen et al., 2011), Agromyzidae (Chavez &
Raman, 1987), Dryoptoridae (Tapia et al., 2010)
and Braconidae (Mena-Mociño et al., 2016).
In this case, an evaluation was made with the total
DISCUSSION
282
of species captured and the results show that the use
of color traps was a good instrument to detect insect
species in potato.
Statistical differences show each color, is acting on
a determined number of families, how it has been
indicated in several references (Chavez & Raman,
1987; Boiteau, 1990; Dreistadt et al., 1998; Atakan
& Canhilal, 2004; Demirel & Yildirim, 2008). The
present research showed that the color traps can
attract a large number of species not necessarily
harmful to the crop. Thus, more than 30 families
are reported (Table 5) but only some of them
contain species that are harmful to potato crop.
A possible limitation for this type of research is
Table 5. SIMPER analysis for number of individuals by families identified in color pans evaluated in potato
cultivation.
Taxon Av. Dissim Contrib. % Cumulative% Mean
1
Mean
2
Collembola 10.94 21.51 21.51 14.3 6.67
Drosophilidae
9,751
19.17
40.67
9.33
7
Chrysomelidae
3,752
7,375
48.05
2.33
3
Phoridae
3,441
6,764
54.81
3.67
5.67
Anthomyiidae
3,136
6,163
60.97
3
4.33
Cicadellidae
2,312
4,545
65.52
1.67
2.33
Cecidomyiidae
1,806
3.55
69.07
1
2.33
Muscidae
1,806
3.55
72.62
2
0.667
Tipulidae
1,774
3,487
76.1
0.667
2
Ptiliidae
1,412
2,775
78.88
1.33
1
Aphididae
1,372
2,696
81.58
0.333
1.33
Pteromalidae
1,308
2,571 84.15 1.33
1.33
Araneae
1,225
2,407 86.55 0.333
1
Braconidae
1,049
2,062 88.62 0.667
0.667
Sarcophagidae
0.8907
1,751 90.37 0.667
0.333
Dolichopodidae
0.8646
1,699 92.07 0.333
0.667
Bibionidae
0.801
1,574 93.64 0
0.667
Staphylinidae
0.7847
1,542 95.18 0
0.667
Psyllidae
0.4245
0.8345
96.02
0
0.333
Chloropidae
0.4245
0.8345
96.85
0
0.333
Pergidae
0.4245
0.8345
97.69
0
0.333
Apidae
0.4245
0.8345
98.52
0
0.333
Calliphoridae
0.3805
0.748
99.27
0.333
0
Agromyzidae
0.372
0.7312
100
0.333
0
Tephritidae
0
0
100
0
0
Tachinidae
0
0
100
0
0
Syrphidae
0
0
100
0
0
Coccinellidae 0 0 100 0 0
Sciaridae 0 0 100 0 0
Mycetophilidae 0 0 100 0 0
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Huamanrayme et al.
that the insect fauna associated with potato
cultivation in Cuzco is not adequately known, and,
in many cases, species such as “sp.” or “spp” are
still reported (Carrasco, 1967; Escalante et al.,
1981; Huamaní, 2020), even in species of great
economic importance such as the “skeletonizer”
(García-Sinche & Catalán-Bazán, 2011) or the
potato moth.
The multidimensional scaling shows independence
between the evaluated colors even when a slight
overlap between the blue and white colors is
observed (Fig. 2), which one is confirmed by
observing the values found in the pair analysis
(Table 3) and the ANOSIM values, with an R value
close to 0 (Table 4).
Regardless of the results found so far, it can be
assumed that it is feasible to use color traps to
monitor insect populations in the potato crops. This
will be more effective with an adequate knowledge
of the insects associated with the crop, and not
necessarily using other types of traps (Atakan &
Canhilal, 2004; Weinzierl et al., 2005; Boiteau,
2009).
The fact of collecting many families, it does not
necessarily indicate a high efficiency of the traps, if
this is not accompanied by an adequate recognition
of the attracted insects. So, Chrysomelidae, with a
contribution of 7,375 contains several of the most
economically important species for crop, by
example, Epitrix spp., Diabrotica Chevrolat, 1837
(several species), Calligrapha curvilinea Stal,
1859, etc. The Cicadellidae family, with a
contribution of 4,545%, includes species of
economic importance, such as Empoasca (Walsh,
1862) and other genera. However, it is necessary to
point out the case of the Pergidae family, with a
contribution of 0.8345%, which includes one of the
species considered to be a key pest for potato crops
in the highland of Peru and is associated with
yellow traps: Tequus ducra (Smith, 1980)
(Hymenoptera, Pergidae).
These species are considered very important for
potato crop and they can cause great economic
importance damages (García-Sinche & Catalán-
Bazán, 2011). However, until now, there are not an
adequate strategy for its management, mainly
because farmers and technicians do not make a
proper differentiation between adults or their
283
immature stages (Yabar, personal observation).
Therefore, the yellow traps used in the present
research are inexpensive and easy to manage, and
these could be a suitable alternative to early
detection of populations of these insects and other
pests and these techniques can also be applied to
local management strategies.
In total, 30 families of insects have been found
associated with potato crop. The color traps used
in the present research show independence in the
number of families captured: Yellow 1.47, Blue
1.36, Red 1.35, White 1.32, Green 1.21. The
percentage of contribution of the families
collected, in the color traps used, has been
determined. Collembola (10.94), Drossophilidae
(9.75), Chrysomelidae (3,75), Phoridae (3,44) and
Anthomyiidae (3.13) showed the more important
contribution in SIMPER anaylisis.
The authors thank to Silvia Rondón (Oregon State
University) for the critical revision of the
manuscript and to Sulpicio Flores (University of
Puerto Rico) for the suggested corrections. Special
thanks to the anonymous reviewers for their
insightful observations that have greatly improved
this article.
ACKNOWLEDGEMENTS
BIBLIOGRAPHIC REFERENCES
Arismendi, N.; Carrillo, R.; Andrade, N.; Riegel,
R. & Rojas, E. 2009. Evaluación del color y
la posición de trampas en la captura de
cicadélidos en Gaultheria phillyreifolia
(Ericaceae) afectadas por fitoplasmas.
Neotropical Entomology, 38: 754–761.
Atakan, E. & Canhilal, R. 2004. Evaluation of
yellow sticky traps at various heights for
monitoring cotton insect pests. Journal of
Agricultural and Urban Entomology, 21: 15-
24.
Blackmer, J.L.; Byers, J.A. & Rodriguez-Saona, C.
2008. Evaluation of color traps for
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Insects in potato crop
monitoring Lygus spp.: Design, placement,
height, time of day, and non-target effects.
Crop Protection, 27: 171–181.
Boiteau, G. 1990. Effect of trap color and size on
relative efficiency of water-pan traps for
sampling alate aphids (Homoptera:
Aphididae) on potato. Journal of Economic
Entomology, 83: 937–942.
Boiteau, G. 2009. Efficiency of flight Interception
Traps for Adult Colorado Potato Beetles
(Coleoptera: Chrysomelidae). Journal of
Economic Entomology, 93: 630–635.
Bravo-Portocarrero, R.; Zela, K. & Lima-Medina,
I. 2020. Eficiencia de trampas pegantes de
colores en la captura de insectos de
hortalizas de hoja. Scientia Agropecuaria,
11: 61–66.
Cabello, T.; Abad, M.M. & Pascual, F. 1991.
Capturas de Frankliniella occidentalis
(Pergande) (Thys.: Thripidae) en trampas de
d i s t i n tos c o l o r e s en c u l t i v o s en
invernaderos. Boletín de Sanidad Vegetal.
Plagas, 17: 265–270.
Cañedo, V.; Alfaro, A. & Kroschel, J. 2011. Manejo
Integrado de Plagas de insectos en
hortalizas. Principios y referencias técnicas
para la Sierra Central de Perú. Centro
Internacional de la Papa (CIP).
Cardenas, E. & Corredor, D. 1989. Preferencia de
los trips (Thysanoptera: Thripidae) hacia
trampas de colores en un invernadero de
flores de la Sabana de Bogotá. Agronomia
Colombiana, 6: 78–81.
Carrasco, F. 1967. Algunas plagas registradas en
Cusco. Revista Peruana de Entomología, 10:
62–66.
Carrera, A.A. & Cermeli, M. 2001. Fluctuación e
identificación de áfidos en tres localidades
productoras de papa (Solanum tuberosum
L.) en el estado Monagas, durante los años
1987 - 1990. Entomotrópica, 16: 67–72.
Carrizo, P. 1998. Eficiencia de capturas con
trampas de Frankliniella occidentalis
(Pergande) en el cultivo de pimiento en
invernáculo y en malezas en el Gran La
Plata. Revista de La Facultad de Agronomía,
103: 1-10.
Chavez, G. L., & Raman, K. V. 1987. Evaluation of
trapping and trap types to reduce damage to
potatoes by the leafminer, Liriomyza
huidobrensis (Diptera, Agromyzidae).
International Journal of Tropical Insect
284
Science, 8: 369–372.
Clarke, K.R. & Warwick, R. M. 2001. Change in
marine communities: an approach to
nd.
statistical analysis and interpretation (2 ).
Plymouth: Primer-E Ltd.
Cruz-Motta, J. J. 2007. Análisis espacial de las
comunidades tropicales intermareales
asociadas a los litorales rocosos de
Venezuela. Ciencias Marinas, 33: 133–148.
Day, A. & Reid, W. J. 1969. Response of adult
southern potato wireworms to light traps13.
Journal of Economic Entomology, 62:
314–318.
Demirel, N. & Yildirim, A.E. 2008. Attraction of
various sticky color traps to Thrips tabaci
Lindeman (Thysanoptera: Thripidae) and
Empoasca decipiens Paoli (Homoptera:
Cicadellidae) in Cotton. Journal of
Entomology, 5: 389-394.
Dreistadt, S.H.; Newman, J.P. & Robb, K.L. 1998.
Sticky trap monitoring of insect pests.
University of California, Publication 21572:
1–8.
Escalante, E.T. 2007. ¿Cuántas especies hay? Los
estimadores no paramétricos de Chao.
Elementos: Ciencia y Cultura, 14: 56–58.
Escalante, J.; del Castillo, M. & Ochoa, O. 1981.
Catálogo preliminar de las plagas insectiles
de papa, maíz y frutales en el departamento
del Cusco, Perú. Revista peruana de
Entomología, 24: 87–90.
Farfán, R. & Iannacone, J. 2009. Evaluación del
diso, color y altura de colocación de
trampa con feromonas sexuales en la captura
d e Tu t a a b s o l u t a (M e y rik 19 1 7 )
(Lepidoptera: Gelechiidae), Trialeurodes
v a p o r i a r o r u m ( We s t w o o d 1 8 5 6 )
(Homoptera: Aleyrodidae) y dos dípteros no
destinatario. Biotempo, 9: 14–36.
Foster, S.P. & Harris, M.O. 1997. Behavioral
manipulation methods for insect pest-
m a n a g e m e n t . A n n u a l R e v i e w o f
Entomology, 42: 123–146.
Galindo, J. R. & Español, J. A. 2004. Dinámica de
la captura de Prem no t ry pes vor a x
(Coleoptera: Curculionidae) y la polilla
g u a t e m a l t e c a Te c i a s o l a n i v o r a
(Lepidoptera: Gelechiidae) en trampas con
diferentes tipos de atrayentes en un cultivo
de papa criolla (Solanum phureja). Revista
Colombiana de Entomología, 30: 57–64.
García-Sinche, S.Y. & Catalán-Bazán, W. 2011.
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Huamanrayme et al.
Observaciones del ciclo biológico y daño del
“gusano esqueletizador de la papa. Revista
Latinoamericana de La Papa, 16: 68-84.
Giraldo, A.E. 2015. La suficiencia taxonómica
como herramienta para el monitoreo de
ar t ró pod os ep íge os : u n a pr i me ra
aproximación en el desierto costero
peruano. Ecología Aplicada, 14: 147.
González-Oreja, J.A.; de la Fuente-Díaz-Ordaz,
A.A.; Hernández-Santín, L.; Buzo-Franco,
D. & Bon ach e-Re gid or, C. 201 0.
Evaluación de estimadores no paramétricos
de la riqueza de especies. un ejemplo con
aves en áreas verdes de la ciudad de puebla,
México. A nimal Bi odivers ity and
Conservation, 33: 31-45.
González, H.; Méndez, A.; Valle de la Paz, A.R. &
González-Ríos, M. 1999. Selección de
trampas de color y fluctuación poblacional
de trips del aguacate en Michoacán, México.
Revista Chapingo Serie Horticultura, 5:
287–290.
Huamaní, D. 2020. Identificación de plagas
insectiles en cultivo de papa nativa en dos
comunidades del distrito de Santo Tomás-
Chumbivilcas. Universidad Nacional de San
Antonio Abad del Cusco. Retrieved from
http://repositorio.unsaac.edu.pe/bitstream/h
andle/UNSAAC/4001/253T20190188.pdf?
sequence=1&isAllowed=y
Jiménez, S.; Díaz, I. & López, D. 2004.
Preferencias de color y altura en Thrips
palmi Karny (Thysanoptera : Thripidae ) en
papa. Fitosanidad, 8: 49–52.
Kroschel, J.; Mujica, N.; Okonya, J. & Alyokhin,
A. 2020. Insect pests affecting potatoes in
Tropical, Subtropical, and Temperate
regions. In: Campos, H. & Ortiz, O. (Eds.),
The Potat o Crop . its a gri cul tur al,
nutritional and social contribution to
humankind. pp. 251–306. Springer, Cham.
López-González, E. & Hidalgo, R. 2010.
Escalamiento Multidimensional No
Métrico. Un ejemplo con R empleando el
algoritmo SMACOF. Estudios Sobre
Educación, 18: 9–35.
Mena-Mociño, L.V.; Pineda-Guillermo, S.;
Martínez-Castillo, A.M.; mez-Ramos,
B.; Lobit, P.C.; Ponce-Saavedra, J. &
Figueroa-De la Rosa, J.I. 2016. Influencia
285
del color y altura de platos-trampa en la
captura de bracónidos (Hymenoptera:
Braconidae). Revista Colombiana de
Entomología, 42: 155–161.
Rodrí gue z, E. & Vá squez , L. L. 2000.
Comparación de trampas de diferentes
colores en la captura de Thrips tabaci
Lindeman (Thysanoptera: Thripidae) en el
c u l t i v o d e c e b o l l i n o ( A l l i u m
schoenoprassum Lin.). Fitosanidad, 4: 3–4.
Rondon, S.I.; DeBano, S.J.; Clough, G.H.; Hamm,
P.B.; Jensen, A.; Schreiber, A. & Dogramaci,
M. 2003. Biology and management of the
potato leafhopper. A Pacific Northwest
Extension Publication. Oregon State
University, 134 (Anonymous 2001), pp. 3-
17.
Rondon, S.I. 2010. The Potato Tuberworm: A
literature review of its biology, ecology, and
control. American Journal of Potato
Research, 87: 149-166.
Southwood, T.R.E. 1966. Ecological Methods
nd
(2 ). New York: Chapman and Hall.
Tapia, G.; Martín, E.M.; Ruiz, M.A.; Cabello, T. &
Téllez, M.M. 2010. Evaluación en campo
del efecto del color de la trampa para las
capturas masivas del picudo rojo de la
palmera, Rynchophorus ferrugineus
( O l i v e r , 1 7 9 0 ) ( C o l e o p t e r a :
Dryophthoridae). Boletín de Sanidad
Vegetal. Plagas, 36: 171–178.
Triplehorn, C.A. & Johnson, N. F. 2005. Borror
and Delong´s Introduction to the study of
th
insects. (Brooks/Cole, Ed.) (Seven Ed).
USA: Thomson Learning Academic
Resource Center.
Virgen, S.A.; Santiesteban, A. & Cruz-López, L.
2011. Evaluación de trampas de colores para
trips del mango Ataulfo en El Soconusco,
Chiapas. Revista Mexicana de Ciencias
Agrícolas, 2: 579–581.
Weinzierl, R.; Henn, T.; Koehler, P.G.; & Tucker,
C. L. 2005. Insect attractants and traps /.
University of Florida. IFAS Extension, pp.
1–9.
Received August 22, 2020.
Accepted October 3, 2020.
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Insects in potato crop