The Biologist
(Lima)
The Biologist (Lima), 2020, 18(2), jul-dec: 207-212.
LIFE CYCLE AND LIFE TABLE OF BLOWFLY SARCONESIA CHLOROGASTER (WIEDEMANN,
1830) (DIPTERA, CALLIPHORIDAE) UNDER LABORATORY CONDITIONS AT CUSCO, PERÚ
CICLO BIOLÓGICO Y TABLA DE VIDA DE SARCONESIA CHLOROGASTER (WIEDEMANN,
1830) (DIPTERA, CALLIPHORIDAE) EN CONDICIONES DE LABORATORIO EN CUSCO,
PERÚ
1 Laboratorio de Entomología, Universidad Nacional de San Antonio Abad del Cusco, Av. De la Cultura 733, Cusco,
Perú.
*Corresponding author: erick.yabar@unsaac.edu.pe
1 1 1 1 1,*
Karen Medina ; Addy Moyra-Rojas ; Jorge Curo-Miranda & Erick Yabar-Landa
ABSTRACT
Keywords: Cusco – forensic entomology – life table – Sarconesia
The life cycle and the life table of blowfly Sarconesia chlorogaster (Wiedemann, 1830) (Diptera,
Calliphoridae), known as a species of forensic importance, was studied. The rearing was carried out under
uncontrolled laboratory conditions, with 13±3 C and 50±4 % of relative humidity on average. The life
table was prepared taking the development stages as the age structure. The life cycle lasts 55 days: Egg: 2
days, Larva I: 2 days, Larva II: 2 days, Larva III: 26.67 days and Pupa: 21.67 days. The survival curve
shows a gradual decrease in mortality in the first stages of development, but it is pronounced between the
last two stages.
The Biologist (Lima)
ISSN Versión Impresa 1816-0719
ISSN Versión en linea 1994-9073 ISSN Versión CD ROM 1994-9081
doi:10.24039/rtb2020182768
207
The Biologist
(Lima)
VOL. 18, Nº 2, JUL-DEC 2020
The Biologist (Lima)
Versión en Linea:
ISSN 1994-9073
Versión Impresa:
ISSN 1816-0719 Versión CD-ROM:
ISSN 1994-9081
PUBLICADO POR:AUSPICIADO POR:
ESCUELA PROFESIONAL DE BIOLOGÍA,
FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA,
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL
RESUMEN
Palabras clave: Cusco – entomología forense – Sarconesia – tabla de sobrevivencia
Se estudió el ciclo biológico y tabla de vida de Sarconesia chlorogaster (Wiedemann, 1830) (Diptera,
Calliphoridae), conocida como una especie de importancia forense. La cría se realizó en condiciones de
laboratorio no controladas, a 13±3° C y a una Humedad Relativa de 50±4 %. La tabla de vida se elaboró
tomando como estructura de edades los estados de desarrollo. El ciclo de vida dura 55 días: Huevo: 2 días,
Larva I: 2 días, Larva II: 2 días, Larva III: 26,67 días y Pupa: 21,67 días. La curva de sobrevivencia
muestra un decrecimiento gradual en los primeros días de desarrollo pero es más pronunciada entre los dos
últimos estadíos.
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
Sarconesia chlorogaster (Wiedemann, 1830)
blowfly is known as one of the most important
species in the forensic insect fauna (Moura et al.,
1997; Mulieri et al., 2006; Mariluis et al., 2008;
Battán-Horenstein et al., 2016, Castillo et al.,
2017). The bionomy of this species has been
studied in Brazil (Queiroz et al., 1985), and about
synantropy and diversity of Calliphoridae (Blacio
et al., 2020).
The specimens has been collected in several
locations between the Premontane and Alpine
formations, with an upper elevational range of
4000 m and is considered to be a mostly xerophytic
species in Peru (Baumgartner & Greenberg, 1985).
The morphology of the developmental stages has
been studied (Greenberg & Szyska, 1984). Studies
on fauna of forensic importance in Peru have been
carried out mainly for the coastal region (Valleys of
the Chancay and Rímac rivers) (Dale, 1985) and
Lambayeque (Medina-Achín et al., 2018). An
undergraduate thesis has been developed on fauna
of forensic importance in pig carcasses at Cusco
(Cusihuallpa & Méndez, 2013).
Given the importance of insects associated with
cadavers, various studies have been carried out, life
cycle (Bonatto, 1996), immature stages
(Greenberg & Szyska, 1984; Queiroz et al., 1985;
Bonatto & Carvalho, 1996; Florez & Wolff, 2009),
diversity (Mariluis et al.,1990; Mulieri et al., 2006;
Battán-Horenstein et al., 2016), synanthropy
(Moura & Bonatto, 1999), cadaveric succession
(Vairo et al., 2015; Medina-Achín et al., 2018;
Lecheta & Moura, 2019) and other aspects (Moura
& Bonatto,1999; Labud et al., 2003; Mulieri et al.,
2006; Wells et al., 2015; Lecheta et al., 2017),
including observations about the age of
forensically useful stages (Lecheta & Moura,
2019).
The effect of temperature on development time was
studied for S. chlorogaster, concluding that its life
cycle varied with temperature (Lecheta et al.,
2015).
Several species of Calliphoridae have been studied
and their life cycle and life tables have been
elaborated (Gabre et al., 2005; Rueda et al., 2010;
INTRODUCTION
208
Pruna et al., 2019). However, despite its
importance, there are no local studies on the
biology of S. chlorogaster.
The objectives of this study are: a) to determine the
life cycle duration of S. chlorogaster under
uncontrolled laboratory conditions, b) to develop a
life table for S. chlorogaster.
Necrotrappers were used to collect adults: a) each
trap was a plastic bottle, b) the upper part of each
bottle was cut and inverted, leaving the conical
shape of the end directed towards the inside of the
container, c) each bottle was baited with a piece of
liver. The traps were installed in the APV “Pro
Housing Associations“ Santa María (Cerro Picol,
Cusco), Peru, with the following data:
13°31'26.62” S and 71°54'00.54” W, 3374 masl.
The collected adults were taken to the Entomology
laboratory of the Faculty of Sciences (UNSAAC),
Cuzco, Peru, and placed in 250 g plastic containers
that contained liver. Each container had a gauze lid
to promote air exchange.
Three plastic cups with 250 g capacity were used,
in each one the number of initial eggs was recorded,
as well as the number of larvae and pupae.
Laboratory conditions were not controlled,
registering between 13±3° C and 50±4 % relative
humidity on average. The duration of each stage of
development was recorded on a worksheet.
Measures were taken with a micrometric lens
mounted in a stereo microscope. Measures were
taken between the head apex and the posterior
spiracular plate. The samples were: egg (thirteen
samples), Larva stage I (ten samples), Larva stage
II (ten samples), Larva stage III (ten samples) and
pupa (seven samples). For each growth stage the
mean and standard deviation were measured.
The life table was elaborated taking each stage of
development using the following age groups: egg,
Larva I (LI), Larva II (LII), Larva III (LIII) and
pupa. The components of the life table were:
x=pivotal age, nx = number of individuals, lx =
number surviving at the beginning of age class, dx
= number dying during the age interval, qx =
MATERIAL AND METHODS
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Medina et al.
mortality index, Lx = number of individuals alive
between age x and x+1, Tx = Total number of
individuals x age units beyond the age x, ex = life
expectation. For the elaboration of the life table,
Southwood (1966) has was followed with some
modifications (Mariluis et al., 2008). The initial
number of eggs is the average of the three plastic
cups employed, and the number of survivors has
been followed up to the pupal stage.
RESULTS
209
Ethical aspects
The authors have followed the ethical laws of the
country.
The measures for the stages of development of S.
chlorogaster and the standard deviation are
observed in Table 1.
Table 1. Measurements, in mm, of the development stages of Sarconesia chlorogaster: average and standard
deviation (SD). L= larvae*.
Egg LI
LII
LIII Pupa
Average 1,32 3,42
8,264
15,013 11,537
SD 0,07 0,120
0,403
0,481 1,164
*measures were taken with mature stage
The duration of the stages of development, in days,
are shown in figure 1. The life table shows the biological parameters
of S. chlorogaster (Table 2).
Developmental stages
0
2
4
6
8
10
12
14
16
18
Huevo L1 L2 L3 Pupa
Egg
days
Figure 1. Duration, in days, of the developmental stages of Sarconesia chlorogaster (egg: 1.32±0.07; Larva I:
3.32±0.43; Larva II: 8.49±0.44; Larva III: 14.96±0.47; pupa: 11.46±1.33).
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Life cycle and life table of Sarconesia chlorogaster
The duration of the life cycle, taking into account
the stages of development coincide quite well with
that reported for this species in Peru (Greenberg &
Szyska, 1984), even though, for this study, the
breeding was carried out at 1,000 masl and some
conditions were modified manually, such as the
humidity that was added in the brood chambers. It
was demonstrated, with S. chlorogaster, that the
development time is influenced by the temperature
(Lecheta et al., 2015). In the case of Lucilia
sericata (Meigen, 1826) there was a negative
relation between life cycle and the temperature
DISCUSSION
210
(Pruna et al., 2019). Additionally, management in
the laboratory of a colony of L. sericata was similar
to S. chlologaster (Rueda et al., 2010). It´s possible
to assume that temperature has an important
influence in the life cycle, but this aspect is only
noticeable under controlled conditions.
The life table shows a higher life expectancy for the
first stages of development (Table 2) and a rapidly
decreasing survival curve from LIII to pupa (Fig.
2). It is possible to assume errors in the
management of the last stages of development, but,
taking into account the rearing conditions, it can
also be assumed that, having grown up in plastic
cups with limited capacity, (250 g capacity), the
Table 2. Life table of Sarconesia chlorogaster under laboratory conditions. Cusco. 2019.*
x nx lx dx qx Lx Tx Ex
0-Egg 196 1 5 0,03 193,5
560
2,86
Egg-Larva I 191 0,97 40 0,21 171 366,5
1,92
Larva I-Larva II 151 0,77 40 0,26 131 195,5
1,29
Larva II-Larva III 111 0,57 102 0,92 60 64,5
0,58
Pupa 9 0.05 9 1 4,5 0
* x=pivotal age, nx = number of individuals, lx = number surviving at the beginning of age class, dx = number dying during the age
interval, qx = mortality index, Lx = number of individuals alive between age x and x+1, Tx = Total number of individuals x age units
beyond the age x, ex = expectation of life
The survival curve shows that there is a gradual
mortality as the life cycle progresses (Fig. 2).
Figure 2. Survival curve of Sarconesia chlorogaster under laboratory conditions. Cusco, Perú.
0.00
0.20
0.40
0.60
0.80
1.00
1.20
Egg Larva 1 Larva 2 Larva 3 Pupa
Surviving number
Growth stages
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Medina et al.
environment has resulted too small to offer
adequate conditions for survival. Duration of egg
and the duration of the age-stages were similar to
Chrysomya megacephala (Fabricius, 1794), but,
study with C. megacephala were made under
controlled conditions and taken into account
several aspects that were no considered with S.
chlorogaster (Gabre et al., 2005).
In conclusion, the life cycle of S. chlorogaster
under uncontrolled laboratory conditions lasted 55
days: Egg - 2 days, LI -2 days, LII -2 days, LII -
26.67 and pupa-21.67 days at temperatures of 13±3
C and 50±1 % RH. The survival curve shows a
gradual decrease in mortality in the first stages of
development, but it is pronounced between the last
two stages.
211
BIBLIOGRAPHIC REFERENCES
Battán-Horenstein, M.; Bellis, L.M. & Gleiser,
R.M. 2016. Diversidad de moscas
necrófagas (Diptera: Calliphoridae) de
importancia médica y veterinaria en
ambientes urbanos en Córdoba (Argentina).
Caldasia, 38: 183–195.
Baumgartner, D.L. & Greenberg, B. 1985.
Distribution and medical ecology of the
Blow Flies (Diptera: Calliphoridae) of Peru.
Annals of the Entomological Society of
America, 78: 565–587.
Bonatto, S.R. 1996. Ciclo de vida de Sarconesia
chlorogaster (Wiedemann) (Diptera,
Calliphoridae, Toxotarsinae), criada sob
condições de laboratório em dieta artificial.
Revista Brasileira de Zoologia, 13:
685–706.
Bonatto, S.R. & de Carvalho, C.J.B. 1996. Análise
morfológica das formas imaturas de
Sarconesia chlorogaster (Wiedemann)
(Diptera, Calliphoridae, Toxotarsinae).
Revista Brasileira de Zoologia, 13:
707–726.
Blacio, K.; Liria, J. & Soto-Vivas, A. 2020.
Diversity and synanthropy of flies
(Diptera: Calyptratae) from Ecuador, with
new records for the country. Journal of
Threatened Taxa, 12: 1578415793.
Castillo, P.; Sanabria, C. & Monroy, F. 2017.
Insectos de importancia forense en
cadáveres de cerdo (Sus scrofa) en la paz
Bolivia. Medicina Legal de Costa Rica, 34:
2634.
Cusihuallpa, A.A. & Méndez, M. 2013. Estudio de
la entomofauna de importancia forense
asociados a la descomposición de
cadáveres de cerdos domésticos (Sus
scrofa) en la localidad de Tankarpata
(Cusco-Perú). Universidad Nacional de
San Antonio Abad del Cusco.
Dale, W.E. 1985. Identidad de las moscas
Calliphoridae en la costa central del Perú.
Revista Peruana Entomología, 28: 63-70.
Florez, E. & Wolff, M. 2009. Descripción y clave
de los estadios inmaduros de las principales
especies de Calliphoridae (Diptera) de
importancia forense en Colombia.
Neotropical Entomology, 38: 418429.
Gabre, R.M.; Adham, F.K. & Chi, H. 2005. Life
table of Chrysomya meg acepha la
(Fabricius) (Diptera: Calliphoridae). Acta
Oecologica, 27: 179183.
Greenberg, B. & Szyska, M.L. 1984. Immature
stages and biology of fifteen species of
Peruvian Calliphoridae (Diptera). Annals
of the Entomological Society of America,
77: 488517.
Labud, V.A.; Semenas, L.G. & Laos, F. 2003.
Diptera of sanitary importance associated
with composting of biosolids in Argentina.
Revista de Saude Publica, 37: 722728.
Lecheta, M.C. & Moura, M. O. 2019. Estimating
the age of forensically useful blowfly,
Sarconesia chlorogaster (Diptera:
Calliphoridae), using larval length and
weight. Journal of Medical Entomology,
56: 915920.
Lecheta, M.C.; Thyssen, P.J. & Moura, M. O.
2015. The effect of temperature on
development of Sarconesia chlorogaster, a
blowfly of forensic importance. Forensic
Science, Medicine, and Pathology, 11:
538543. Mariluis, J.; Schnak, J.; Muzón, J.
& S p i n e l l i s , G . 1 9 9 0 . M o s c a s
Calliphoridae y Mesembrinellidae de
Puerto Iguazu. Composición específica y
ecologia (Insecta, Diptera). Graellsia, 46:
718.
Lecheta, M.C.; Corrêa, R.C. & Moura, M. O.
2017. Climate shapes the geographic
distribution of the blowfly Sarconesia
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Life cycle and life table of Sarconesia chlorogaster
chlorogaster (Diptera: Calliphoridae): An
environmental niche modeling approach.
Environmental Entomology, 46: 10511059.
Mariluis, J.C.; Schnack, J.A.; Mulieri, P.P. &
Patitucci, L.D. 2008. Calliphoridae
(Diptera) from wild, suburban, and urban
sites at three Southeast Patagonian
localities. Revista de La Sociedad
Entomológica Argentina, 67: 107114.
Medina-Acn, L.; Sosa-Neyra, J.; Villacorta-
Angulo, M.; Santa Cruz-López, C. &
Calderón-Arias, C. 2018. Sucesión
e n t o m o l ó g i c a a s o c i a d a a r e s t o s
cadavéricos de Sus scrofa Linnaeus
(Artiodactyla: Suidae) y su utilidad en la
estimación del Intervalo Post Mortem en
Lambayeque, Pe. Revista Chilena de
Entomología, 44: 443461.
Moura, M.O. & Bonatto, S.R. 1999. Análise de
sobrevivência e estimativa de entropia para
Sarconesia chlorogaster (Wiedemann)
(Diptera, Calliphoridae). Revista Brasileira
de Zoologia, 16(S1): 221226.
Moura, M.; de Carvalho, C.J.B. & Monteiro-
Filho, E.L.A. 1997. A Preliminary Analysis
of Insects of Medico-legal Importance in
Curitiba, State of Paraná. Memorias do
Instituto Oswaldo Cruz, 92: 269274.
Mulieri, P.R.; Torretta, J.P.; Schnack, J.A. &
Mariluis, J. C. 2006. Calliphoridae
(Diptera) of the coastline of Buenos Aires,
Argentina: Species composition, numerical
t r e n d s , a n d b a i t s p r e f e r e n c e s .
Entomological News, 117: 139148.
Pruna, W.; Guarderas, P.; Donoso, D.A. &
Barragán, Á. 2019. Life cycle of Lucilia
sericata (Meigen 1826) collected from
A n d e a n m o u n t a i n s . Ne o t r o p i c a l
Biodiversity, 5: 39.
212
Queiroz, S.M.P.; Almeida, J.R. de, de Carvalho, C.
J. B. & Dudas, L. 1985. Bionomia de
Sarconesia chlorogaster (Wiedmann,
1830) (Diptera, Calliphoridae) em
Curitiba, Paraná, Brasil. Anais da
Sociedade Entomológica do Brasil, 16:
265288.
Rueda, L.C.; Ortega, L.G.; Segura, N.A.; Acero,
V.M. & Bello, F. 2010. Lucilia sericata
strain from Colombia: Experimental
colonization, life tables and evaluation of
two artifcial diets of the blowfy Lucilia
sericata (Meigen) (Diptera: Calliphoridae),
Bogotá, Colombia strain. Biological
Research, 43: 197203. Southwood, T.R.E.
nd
1966. Ecological Methods (2 .). New York:
Chapman and Hall.
Vairo, K.P.; Corrêa, R.C.; Lecheta, M.C.;
Caneparo, M.F.; Mise, K.M.; Preti, D., de
Carvalho, C.; Almeida, L. & Moura, M.O.
2015. Forensic use of a subtropical blowfly:
The first case Indicating Minimum
Postmortem Interval (mPMI) in Southern
Brazil and first Record of Sarconesia
chlorogaster from a Human Corpse. Journal
of Forensic Sciences, 60(S1): S257–S260.
Wells, J.D.; Lecheta, M.C.; Moura, M.O. &
LaMotte, L. R. 2015. An evaluation of
sampling methods used to produce insect
growth models for postmortem interval
estimation. International Journal of Legal
Medicine, 129: 405–410.
Received July 23, 2020.
Accepted August 22, 2020.
The Biologist (Lima). Vol. 18, Nº2, jul - dec 2020
Medina et al.