

1 The Biologist (Lima), 2025, vol. 23 (2), XX-XX.

2 DOI: <https://doi.org/10.62430/rtb20252322073>

3 Este artículo es publicado por la revista The Biologist (Lima) de la Facultad de Ciencias Naturales y Matemática, Universidad
4 Nacional Federico Villarreal, Lima, Perú. Este es un artículo de acceso abierto, distribuido bajo los términos de la licencia Creative
5 Commons Atribución 4.0 Internacional (CC BY 4.0) [<https://creativecommons.org/licenses/by/4.0/deed.es>] que permite el uso,
6 distribución y reproducción en cualquier medio, siempre que la obra original sea debidamente citada de su fuente original.

7

8

9 COMMENTARY / COMENTARIO

10 BUILDING ACADEMIC BRIDGES: INTEGRATION OF COUNTRIES FOR THE 11 TEACHING OF PARASITIC ZOONOSES A ONE HEALTH FRAMEWORK

12

13 CONSTRUYENDO PUENTES ACADÉMICOS: INTEGRACIÓN DE PAÍSES 14 PARA LA ENSEÑANZA DE ZOONOSIS PARASITARIAS EN CLAVE ONE

15

16
17 Zully María Hernández-Ruso¹; María Amparo Rodríguez-Santiago^{2,3,4,5,6*}; José Iannacone^{5,6}; Julio
18 Cesar Giraldo Forero^{7,8} & Reinaldo José Da Silva⁹

19

20 ¹CENUR Litoral Norte, Universidad de la República, Salto, Uruguay. zhernan@unorte.edu.uy

21 ²Instituto de Ciencias del Mar y Limnología, Estación “El Carmen”, Universidad Nacional
22 Autónoma de México, Ciudad del Carmen, Campeche, México. marodriguezsa@secihi.mx

23 ³Secretaría de Ciencia, Humanidades, Tecnología e Innovación, Ciudad de México, México.

24 ⁴Núcleo Académico Básico, Centro de Investigación de Ciencias Ambientales, Universidad
25 Autónoma del Carmen, Facultad de Ciencias Naturales, Ciudad del Carmen, Campeche, México.

26 ⁵Grupo de Investigación “One Health”, Laboratorio de Zoología, Facultad de Ciencias Biológicas,
27 Universidad Ricardo Palma, Lima, Perú. joseiannacone@gmail.com

28 ⁶Grupo de Investigación en Sostenibilidad Ambiental (GISA), Facultad de Ciencias Naturales y
29 Matemática, Universidad Nacional Federico Villarreal, Lima, Perú.

30 ⁷Universidad Incca de Colombia, programa de Biología. Grupo de Investigación en Parasitología y
31 Microbiología Tropical-Unincca.

32 ⁸Universidad Militar Nueva Granada-Facultad de Medicina. julio.giraldo@unimilitar.edu.co

33 ⁹Division of Parasitology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu,
34 São Paulo 18618-689, Brazil. reinaldo.silva@unesp.br

35

36 *Corresponding author: marodriguezsa@secihti.mx

37

38 **Running Head:** Teaching of parasitic zoonoses in a One Health framework

39 Hernández-Ruso *et al.*

40

41 Zully María Hernández-Ruso: <https://orcid.org/0000-0003-0136-6330>

42 María Amparo Rodríguez-Santiago: <https://orcid.org/0000-0003-0616-237X>

43 José Iannacone: <https://orcid.org/0000-0003-3699-4732>

44 Julio Cesar Giraldo-Forero: <https://orcid.org/0000-0001-7308-8443>

45 Reinaldo José Da Silva: <https://orcid.org/0000-0002-3426-6873>

46

47 ABSTRACT

48 The workshop “Parasitic Zoonoses in the Context and Approach of One Health” was held within the
49 framework of the International Congress of Neotropical Parasitology in 2024, an event that brought
50 together multiple specialized symposia dedicated to the region’s health challenges. The purpose of
51 the workshop was to strengthen the comprehensive understanding of parasitic zoonoses from the
52 “One Health” paradigm, which recognizes the interdependence among human, animal, and

53 environmental health as a single, dynamic, and deeply interconnected system. This article aims to
54 disseminate an integrative disciplinary experience developed by the academic community under the
55 One Health approach to parasitic zoonoses. The participation of specialists from Peru, Mexico,
56 Colombia, Uruguay, and Brazil enriched the regional perspective and enabled the discussion of
57 parasitological issues from diverse socio-ecological contexts of the Neotropics. The program was
58 structured around five thematic axes: (1) conceptual foundations of the One Health approach; (2)
59 parasitic zoonoses transmitted by companion animals and their relevance in urban environments; (3)
60 parasitic zoonotic diseases of livestock importance; (4) parasitic ichthyozoonoses; and (5) parasites
61 in aquaculture, where the main health challenges in production units were analyzed, along with
62 transmission risks between farmed and wild environments, and the need to implement preventive
63 strategies under the One Health framework to strengthen aquaculture sustainability. This last axis
64 was reinforced through a specialized workshop led by Brazilian experts, providing updated
65 knowledge on applied parasitology in Neotropical aquaculture systems. The development of the
66 workshop was integrated with academic spaces of the congress, such as the II One Health
67 Symposium, the V Neotropical Ichthyoparasitology Symposium, the II Leishmaniasis Symposium,
68 the II Neotropical Chagas Disease Symposium, and the I Neotropical Plant Health Symposium,
69 which allowed for deep interdisciplinary exchange by integrating perspectives from human,
70 veterinary, environmental, agricultural, fisheries, and aquaculture parasitology. The outcomes of this
71 academic experience highlight the urgency of strengthening local and regional capacities,
72 promoting international collaboration, and consolidating coordinated strategies for surveillance,
73 prevention, and control of parasitic zoonoses, particularly those associated with expanding
74 productive systems such as aquaculture. Overall, the workshop reaffirms the value of the One
75 Health approach as an essential tool for addressing emerging and persistent challenges that impact
76 human, animal, and environmental health in the Neotropical region.

77 **Keywords:** aquaculture – ichthyozoonoses – Neotropical region – One Health – parasitic zoonoses

78

79 **RESUMEN**

80 El taller “Zoonosis parasitarias en el contexto y enfoque de One Health-Una Salud” se desarrolló en
81 el marco del Congreso Internacional de Parasitología Neotropical en el 2024, un evento que reunió
82 múltiples simposios especializados dedicados a los desafíos sanitarios de la región. El propósito del
83 taller fue fortalecer la comprensión integral de las zoonosis parasitarias desde el paradigma “One
84 Health”, el cual reconoce la interdependencia entre la salud humana, animal y ambiental como un
85 sistema único, dinámico y profundamente interconectado. Este artículo pretende difundir una
86 experiencia integradora disciplinar de la comunidad académica bajo el enfoque One Health de las
87 zoonosis parasitarias. La participación de especialistas de Perú, México, Colombia, Uruguay y
88 Brasil enriqueció la perspectiva regional y permitió abordar las problemáticas parasitológicas desde
89 diversos contextos socioecológicos del Neotrópico. El programa se estructuró en cinco ejes
90 temáticos: (1) fundamentos conceptuales del enfoque One Health; (2) zoonosis parasitarias
91 transmitidas por animales de compañía y su relevancia en entornos urbanos; (3) enfermedades
92 zoonóticas parasitarias de importancia pecuaria; (4) ictiozoonosis parasitarias y (5) parásitos en la
93 acuicultura, donde se analizaron los principales desafíos sanitarios en unidades de producción, los
94 riesgos de transmisión entre ambientes cultivados y silvestres, y la necesidad de implementar
95 estrategias preventivas bajo el enfoque Una Salud para fortalecer la sostenibilidad acuícola. Este
96 último eje se reforzó mediante un taller especializado impartido por expertos brasileños, aportando
97 conocimientos actualizados sobre parasitología aplicada a sistemas acuícolas neotropicales. El
98 desarrollo del taller se articuló con espacios académicos del congreso como el II Simposio One
99 Health-Una Salud, el V Simposio de Ictioparasitología Neotropical, el II Simposio de
100 Leishmaniasis, el II Simposio Neotropical de la Enfermedad de Chagas y el I Simposio de
101 Fitosanidad Neotropical lo que permitió un intercambio interdisciplinario profundo, integrando
102 perspectivas de la parasitología humana, veterinaria, ambiental, agropecuaria, pesquera y acuícola.
103 Los resultados de esta experiencia académica subrayan la urgencia de fortalecer capacidades locales
104 y regionales, impulsar la cooperación internacional y consolidar estrategias coordinadas de

105 vigilancia, prevención y control de las zoonosis parasitarias, particularmente aquellas vinculadas a
106 sistemas productivos en expansión como la acuicultura. En conjunto, el taller reafirma el valor del
107 enfoque Una Salud como herramienta esencial para enfrentar los retos emergentes y persistentes
108 que afectan la salud humana, animal y ambiental en la región neotropical.

109 **Palabras clave:** acuicultura – ictiozoonosis – One Health – región neotropical – zoonosis
110 parasitarias

111

112 INTRODUCTION

113 The *One Health* approach is considered a strategy for addressing various health related situations
114 within the context of the interface and interactions among humans, animals, and the environment
115 (Agrawal *et al.*, 2024; Behravesh *et al.*, 2024). This approach is grounded in the concept that the
116 health of the three components humans, animals, and ecosystems is interconnected and
117 interdependent (One Health High-Level Expert Panel, 2023). In this sense, effectively addressing
118 these complex challenges requires holistic, integrated, and collaborative actions involving multiple
119 disciplines at different levels (Manterola *et al.*, 2024).

120 This approach is particularly applicable and essential for addressing parasitic zoonoses, as it
121 considers the circulation of parasites between human and animal hosts and the influence of
122 environmental factors on transmission dynamics. Consequently, it encompasses key aspects of
123 global health, including the prevention, promotion, diagnosis, and treatment of zoonotic parasitic
124 agents, with actions directed at the community level or from a broader, global perspective
125 (Mettenleiter *et al.*, 2023).

126 Within the framework of the One Health philosophy, the XII International Congress of Neotropical
127 Parasitology, organized by the Peruvian Association of Helminthology and Related Invertebrates
128 (APHIA) and the San Martín University Foundation, Faculty of Health Sciences, held in Bogotá,
129 Colombia, from October 28 to November 1, 2024, adopted the theme “One Health: Challenges of

130 Parasitology in the 21st Century under the One Health Approach". In this context, a course
131 workshop entitled *Parasitic Zoonoses in the Context and Approach of One Health* was proposed
132 and conducted. Its purpose was to strengthen a comprehensive understanding of parasitic zoonoses
133 from the One Health paradigm, which recognizes the interdependence of human, animal, and
134 environmental health as a single, dynamic, and deeply interconnected system. Accordingly, this
135 article aims to disseminate an integrative and multidisciplinary academic experience focused on
136 parasitic zoonoses under the One Health approach.

137 The participating countries in the initiative were Brazil, Colombia, Mexico, Peru, and Uruguay. In
138 line with the characteristics of the One Health paradigm, the implementation of this activity
139 required collaboration, communication, and coordination among the professionals who planned and
140 carried out the course workshop.

141 **Nominal list of course workshop speakers**

142 The course workshop brought together specialists from several countries with extensive experience
143 in parasitology and the One Health approach. José Iannacone Oliver from Peru is a specialist in
144 general parasitology, ecotoxicology, and the One Health framework. María Amparo Rodríguez
145 Santiago from Mexico specializes in fish parasitology, environmental parasitology, and public
146 health. Zully María Hernández Russo from Uruguay is a professor of Parasitology and Parasitic
147 Diseases, with a focus on animal production and parasitic zoonoses. Julio César Giraldo Forero
148 from Colombia is an expert in clinical parasitology and public health, addressing topics according
149 to the workshop program. Reinaldo José da Silva from Brazil specializes in fish parasites and
150 aquaculture, with emphasis on tilapia production systems.

151 **Course workshop program: Parasitic zoonoses in the context and approach of One Health**

152 The course workshop program was structured around five thematic axes. These included the
153 conceptual foundations of the One Health approach, parasitic zoonoses transmitted by companion

154 animals and their relevance in urban environments, parasitic zoonotic diseases of importance in
155 livestock production, parasitic ichthyozoonoses, and parasites in aquaculture. Within the
156 aquaculture axis, the main sanitary challenges in production units were analyzed, including
157 transmission risks between cultured and wild environments and the need to implement preventive
158 strategies under the One Health approach to strengthen aquaculture sustainability. This axis was
159 reinforced through a specialized workshop delivered by Brazilian experts, providing updated
160 knowledge on parasitology applied to Neotropical aquaculture systems.

161 The development of the workshop was articulated with academic spaces of the congress, such as the
162 Second One Health Symposium, the Fifth Neotropical Ichthyoparasitology Symposium, the Second
163 Neotropical Symposium on Leishmaniasis, the Second Neotropical Symposium on Chagas Disease,
164 and the First Neotropical Symposium on Phytosanitary Health. This integration enabled a deep
165 interdisciplinary exchange, incorporating perspectives from human, veterinary, environmental,
166 agricultural, fisheries, and aquaculture parasitology.

167 **Thematic axes and conceptual foundations of the One Health approach**

168 The One Health approach represents a fundamental concept that emphasizes the intrinsic
169 interdependence among human health, animal health, and environmental or ecosystem health. It is
170 defined as an integrated and unifying framework aimed at achieving sustainable balance and
171 optimizing the health of people, animals, and ecosystems. The central premise of One Health
172 recognizes that human well being is closely linked to the health of other species and to the shared
173 environment of planet Earth.

174 Conceptually, One Health advocates a collaborative, multisectoral, and interdisciplinary or
175 transdisciplinary strategy to achieve optimal health outcomes. Its core foundations include
176 interaction, harmonization, teamwork, and capacity building among the human, animal, and
177 environmental health sectors, together with other relevant stakeholders.

178 Historically, the concept evolved from the idea of One Medicine, introduced in 1964 by Dr. C.
179 Schwabe, who is recognized as its initial visionary. While One Medicine focused on integrating
180 human and veterinary medicine to address zoonoses, the critical innovation of One Health was the
181 incorporation of ecosystem health, including wildlife. Today, One Health is considered a broader
182 and more comprehensive concept, capable of encompassing comparative and translational
183 medicine, public health, and ecology.

184 Health under this framework is analyzed at three distinct levels: individual health in humans and
185 animals, population health including public health and herd health, and ecosystem health. The
186 approach is also supported by fundamental principles of collaboration, including equity, parity,
187 responsible stewardship, and socioecological balance.

188 One Health is essential for addressing complex global health challenges that arise at the human
189 animal environment interface, including emerging and re emerging zoonoses, antimicrobial
190 resistance, neglected tropical diseases, sustainable food security, and the impact of climate change
191 on disease transmission. It is also applicable to non communicable and chronic diseases linked to
192 exposure to multiple stressors, including toxic stress and modern lifestyles.

193 For this approach to be operational and sustainable, it is crucial to overcome interdisciplinary
194 barriers separating human and veterinary medicine from ecological, evolutionary, and
195 environmental sciences. Integrating One Health principles into public health policy is indispensable
196 for building a resilient health system capable of responding to the complex interactions that shape
197 well being in an interconnected world.

198 **Parasitic zoonoses transmitted by companion animals and their relevance in urban
199 environments**

200 Parasitic zoonoses associated with transmission from companion animals are based on the premise
201 that the relationship between humans and animals is as ancient as humanity itself. At present, pet

202 ownership within households is widespread and is associated with factors such as emotional
203 attachment, companionship, and security. Among the most common companion animals are dogs
204 (*Canis lupus familiaris* Linnaeus, 1758) and cats (*Felis catus* Linnaeus, 1758), which maintain a
205 close relationship with humans and other domestic animals.

206 Companion animals are exposed to numerous microorganisms, including viruses, bacteria, fungi,
207 and parasites. Gastrointestinal parasitic infections are the most frequent and are generally associated
208 with zoonotic protozoa responsible for diseases such as giardiasis caused by *Giardia* spp. and
209 coccidiosis, with relevant genera including *Cystoisospora* spp., *Cryptosporidium* spp., and
210 *Toxoplasma gondii* (Nicolle y Manceaux, 1908). Helminth infections are mainly related to
211 nematodes such as *Ancylostoma caninum* (Ercolani, 1859) Hall, 1913, *Ancylostoma brasiliensis*
212 Gomes de Faria, 1910, *Strongyloides stercoralis* (Bavay, 1876) Stiles & Hassall, 1902, and
213 *Toxocara canis* (Werner, 1782) Stiles, 1905, as well as cestode infections caused by *Dipylidium*
214 *caninum* (Linnaeus, 1758). These parasitoses are generally diagnosed through direct examinations
215 based on microscopic observation of cysts, oocysts, eggs, or larvae in fecal samples, using
216 concentration techniques or, in some cases, macroscopic visualization of adult helminth stages.

217 The growth of companion animal populations in urban areas, together with inadequate practices for
218 fecal waste disposal in public spaces, reports of antiparasitic resistance, and the capacity of parasites
219 to adapt to different ecosystems and climatic factors, favors human infection.

220 Currently, gastrointestinal parasitic zoonoses in companion animals are frequently neglected or
221 underdiagnosed, limiting recognition of their importance in public health and their role as emerging
222 epidemiological concerns. Additionally, parasitic infections in companion animals are not subject to
223 mandatory notification, resulting in limited information regarding the dynamics of pet populations
224 carrying parasitic infections. This situation constitutes one of the main public health challenges
225 within the One Health framework.

227 **Parasitic zoonoses related to animal production**

228 This section addresses the main parasitic zoonotic diseases that also have a significant impact on
229 animal production, particularly in species of major importance in Uruguay such as cattle, sheep, and
230 pigs. Epidemiological aspects, production losses in their respective hosts, the role of the
231 environment as a source of infection, and the implications for human health were discussed for
232 toxoplasmosis, fasciolosis, and cystic echinococcosis. These diseases occur in different regions with
233 varying relevance depending on geographic and environmental conditions, production systems,
234 management practices, and cultural factors. In this context, the human, animal, and environmental
235 triad was examined for each parasitic zoonosis, highlighting their interactions and interdependence.
236 This analysis underscores that epidemiological surveillance, health promotion, prevention, and
237 control measures must be implemented from a global perspective to achieve an effective and
238 sustainable long-term approach.

239 **Parasitic ichthyozoonoses**

240 This section presents an integrated overview of the main parasitic ichthyozoonoses and their
241 relevance to public health from a One Health perspective, which recognizes the close
242 interdependence between human, animal, and environmental health. The most important groups of
243 zoonotic helminths are described, including trematodes, cestodes, and nematodes, emphasizing that
244 although approximately fifty species are capable of infecting humans, only about ten represent a
245 significant sanitary risk. Ecological, environmental, and sociocultural conditions that favor
246 transmission are analyzed, particularly the consumption of raw or undercooked fish, as well as the
247 role of aquatic ecosystems in maintaining parasitic life cycles. Species of global relevance such as
248 *Clonorchis sinensis* (Cobbold, 1875) Looss, 1907, *Heterophyes* spp., *Diphyllobothrium* spp.,
249 *Anisakis* spp., and *Gnathostoma* spp. are examined, highlighting their geographic distribution,

250 clinical manifestations, and the main strategies for diagnosis, control, and prevention. Finally, the
251 influence of environmental change, fishing practices, and globalization on the emergence and re
252 emergence of these diseases is emphasized, underscoring the need for integrated surveillance,
253 consumer education, and coordinated preventive actions within the One Health framework.

254 **Parasites of tilapia (*Oreochromis niloticus*) in aquaculture in Brazil**

255 This section analyzes the main parasites affecting fish, the introduction of parasitic species through
256 aquaculture systems, their spread to native species, and the presence of zoonotic species in cultured
257 fish. Fish can be parasitized by a wide diversity of metazoans, including myxozoans, trematodes,
258 monopisthocotyleans, polyopisthocotyleans, cestodes, acanthocephalans, leeches, nematodes,
259 copepods, argulids, and isopods. The occurrence of parasites from these groups in tilapia reared in
260 aquaculture systems is highlighted, together with aspects related to their morphology, life cycles,
261 pathogenicity, control, and treatment.

262 The discussion further addresses how the translocation and introduction of fish into non native
263 regions may facilitate the co introduction of invasive parasites, leading to negative effects on native
264 biota. In this context, cases involving the introduction of *Lernaea cyprinacea* Linnaeus, 1758,
265 commonly known as the anchor worm, and *Schyzocotyle acheilognathi* (Yamaguti, 1934), a cestode
266 belonging to the order Bothrioccephalidea associated with commercial carp farming, are presented,
267 as well as monopisthocotylean and trichodinid species reported in tilapia fish farms. These parasites
268 affect the health of both native and cultured fish in Brazil. Finally, the presence of zoonotic species
269 associated with the consumption of farmed tilapia [*Oreochromis niloticus* (Linnaeus, 1758)] is
270 addressed, including bacteria, fungi, protozoans, trematodes, and nematodes.

271 Figure 1 illustrates the five thematic axes of the course workshop, while Figure 2 shows the team of
272 participating instructors and the group of attending students from the San Martín University
273 Foundation, Medicine Program.

274

275

276

277

278

279

280

281

282

283

284

285

286

287 **Figure 1.** Participation of international speakers during the workshop *Parasitic Zoonoses in the*
288 *Context and Approach of One Health One Health*, held within the framework of the XII
289 International Congress of Neotropical Parasitology. Images show moments from the presentations
290 corresponding to the five thematic axes: foundations of the One Health approach, zoonoses
291 transmitted by companion animals, parasitic zoonotic diseases of importance in livestock
292 production, parasitic ichthyozoonoses, and parasites in aquaculture. The workshop included the
293 participation of specialists from Peru, Mexico, Colombia, Uruguay, and Brazil.

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313 **Figure 2.** Final photograph of the workshop *Parasitic Zoonoses in the Context and Approach of*
314 *One Health One Health*, conducted during the XII International Congress of Neotropical
315 Parasitology. The image shows the team of participating instructors and the group of attending
316 students from the San Martín University Foundation, Medicine Program, who successfully
317 completed the training activities focused on the One Health approach to parasitic zoonoses.

318

319 **Relevance of the One Health approach in the surveillance and control of parasitic zoonoses**

320 The surveillance and control of parasitic zoonoses require an integrated approach that goes beyond
321 the traditional boundaries of human or veterinary health and recognizes the dynamic
322 interdependence among people, animals, and ecosystems, a principle reinforced by recent
323 conceptual advances in the One Health framework (Destoumieux-Garzón *et al.*, 2018; Brown,

324 2024). In this context, the One Health paradigm constitutes an essential operational framework for
325 the early detection of emerging risks, the understanding of parasitic life cycles involving multiple
326 hosts, and the assessment of environmental factors that influence transmission, such as climate
327 change, ecosystem degradation, and production intensification (Desvars-Larrivé *et al.*, 2024;
328 Deiana, 2024).

329 Interdisciplinary collaboration integrating parasitology, veterinary medicine, public health, ecology,
330 and environmental sciences has been shown to enhance epidemiological analysis and outbreak
331 response capacity, enabling the development of more effective and adaptive preventive strategies in
332 the face of changing scenarios (Morchón *et al.*, 2025). Furthermore, the One Health approach
333 emphasizes community participation, health education, and multilevel coordination among
334 institutions, which are key elements for reducing human exposure to zoonotic agents, optimizing
335 animal management practices, and strengthening food safety (Lerner & Berg, 2015; Bongono *et al.*,
336 2025). Overall, this integrated perspective contributes to the construction of more resilient
337 surveillance systems capable of anticipating and responding efficiently to emerging parasitic
338 challenges associated with global change and human mobility.

339 **CONCLUSIONS**

340 The workshop represented a high value training experience for strengthening regional capacity
341 building and cooperation in the study, surveillance, and control of parasitic zoonoses in Latin
342 America. The participation of specialists from Peru, Mexico, Colombia, Uruguay, and Brazil
343 enriched the academic exchange by integrating epidemiological, environmental, and production
344 related perspectives specific to each country, allowing the identification of common features and
345 shared challenges within the Neotropical region. This convergence of knowledge highlights the
346 need to promote regional cooperation strategies that articulate academic institutions, public health
347 sectors, animal production systems, and local communities under the One Health paradigm.

348 Moreover, the experience confirms that interdisciplinary training, collaborative work, and the
349 creation of exchange networks are essential pillars for effectively addressing emerging and
350 persistent parasitic risks. Taken together, the workshop contributed to consolidating a more
351 integrated and resilient regional vision, capable of confronting health challenges derived from
352 global change, human mobility, and environmental transformations in Latin America.

353

354 **Author contributions: CRediT (Contributor Roles Taxonomy):**

355 **ZMHR** = Zully María Hernández-Ruso

356 **MARS** = María Amparo Rodríguez-Santiago

357 **JI** = José Iannacone

358 **JCGF** = Julio Cesar Giraldo-Forero

359 **RJS** = Reinaldo José Da Silva

360

361 **Conceptualization:** ZMHR, MARS

362 **Data curation:** ZMHR, MARS

363 **Formal Analysis:** ZMHR, MARS, JI, JCGF, RJS

364 **Funding acquisition:** ZMHR, MARS

365 **Investigation:** ZMHR, MARS, JI, JCGF, RJS

366 **Methodology:** ZMHR, MARS, JI, JCGF, RJS

367 **Project administration:** ZMHR, MARS

368 **Resources:** ZMHR, MARS, JI, JCGF, RJS

369 **Software:** ZMHR, MARS

370 **Supervision:** ZMHR, MARS

371 **Validation:** ZMHR, MARS, JI, JCGF, RJS

372 **Visualization:** ZMHR, MARS

373 **Writing – original draft:** ZMHR, MARS, JI, JCGF, RJS

374 **Writing – review & editing:** ZMHR, MARS, JI, JCGF, RJS

375

376 **ACKNOWLEDGEMENTS**

377 Thanks are extended to the Peruvian Association of Helminthology and Related Invertebrates
378 (APHIA) for organizing the XII International Congress of Neotropical Parasitology (COPANEO
379 2024) and for its continued contribution to strengthening Neotropical parasitology. Recognition is
380 also given to the San Martín University Foundation, Faculty of Health Sciences – Medicine
381 Program (Bogotá campus), and the INFUSALUD Research Group for the facilities provided and the
382 logistical support that enabled the successful development of the congress. Special thanks are
383 extended to the academic authorities of the host institution, Rector José Fernando Restrepo Escobar
384 and Dean Clara Judith Benavides Villamarín, as well as to J.C.G.F., President of COPANEO 2024,
385 for the invitation and academic coordination of the event. Institutional support from the Institute of
386 Marine Sciences and Limnology of the National Autonomous University of Mexico (ICMyL–
387 UNAM), particularly the “El Carmen” Station, for facilitating participation in and dissemination of
388 the academic activities, is also gratefully acknowledged. Finally, thanks are extended to all
389 participants and attendees of the workshop from different Neotropical countries, whose active
390 involvement enriched the exchange of knowledge and reaffirmed the value of the One Health
391 approach as an integrative framework for addressing current and emerging challenges in
392 parasitology across the region.

393

394 **REFERENCIAS BIBLIOGRÁFICAS**

395 Agrawal, K., Srivastava, S., Singh, V., Rohillam R., Zamanm, K., Rukadikar, A., Singh, P., Hada,
396 V., Mohanty, A., Rath, R.S., Kishore, S., & Sah, R. (2024). One health concepts and its
397 applications in clinical practice: a comprehensive review. *The Evidence*, 2, 1-10.
398 Behravesh, C.B., Charron, D.F., Liew, A., Becerra, N.C., Machalaba, C., Hayman, D.T.S., Ciacci,
399 J.R., Farag, Z.E., Chaudhary, A., Belles, H., Adisasmito, W.B., Almuhairi, S., Bilibogui, P.,

- 400 Bukachi, S.A., Casas, N., Cunningham, A.A., Debnath, N., Dar, O., Dungu, B., Gao, G.F.,
401 Khaitsa, M., Koopmans, M.P.G., Mackenzie, J.S., Morand, S., Smolenskiy, V., Zhou, L.,
402 Markotter, W., & Mettenleiter, T.C. (2024). An integrated inventory of One Health tools:
403 Mapping and analysis of globally available tools to advance One Health. *CABI One Health*,
404 3, 1.
- 405 Bongono, E. F., Sidibé, S., Hounmenou, C.G., Mbaye, A., Kadio, K.J.J.O., Nabé, A.B., Diaby, M.,
406 Beavogui, F.T., Doumbouya, M.I., Delamou, A., Touré, A., Camara, A., & Keita, A.K.
407 (2025). Performance of the One Health platform in zoonotic disease surveillance in Guinea.
408 *Frontiers in Public Health*, 13, 1634641.
- 409 Brown, H. L. (2024). One Health: a structured review and commentary on trends in the field. *One
410 Health Outlook*, 6, 11.
- 411 Deiana, G. (2024). One World, One Health: Zoonotic Diseases, Parasitic Diseases and Infectious
412 Diseases. *Healthcare*, 12, 922.
- 413 Desvars-Larrivé, A., Vogl, A.E., Puspitarani, G.A. Yang, L., Joachim, A., & Käsbohrer, A. (2024). A
414 One Health framework for exploring zoonotic interactions at the human–animal–
415 environment interface. *Nature Communications*, 15, 49967.
- 416 Destoumieux-Garzón, D., Mavingui, P., Boetsch, G., Boissier, J., Darriet, F., Duboz, P., Fritsch, C.,
417 Giraudoux, P., Le Roux, F., Morand, S., Paillard, C., Pontier, D., Sueur, C., & Voituron, Y.
418 (2018). The one health concept: 10 years old and a long road ahead. *Frontiers in Veterinary
419 Science*, 5, 14.
- 420 Lerner, H., & Berg, C. (2015). The concept of health in One Health and some practical implications
421 for research and education: what is One Health?, *Infection. Ecology & Epidemiology*, 5,
422 25300.
- 423 Manterola, C., Rivadeneira, J., Leal, P., Rojas-Pincheira, C., & Altamirano, A. (2024). Una Sola
424 Salud. Un Enfoque Multisectorial y Transdisciplinario. *International Journal of
425 Morphology*, 42, 779–786.

- 426 Mettenleiter, T. C., Markotter, W., Charron, D. F., Adisasmitho, W. B., Almuhairi, S., Behravesh, C.
427 B., Bilivogui, P., Bukachi, S. A., Casas, N., Becerra, N. C., Chaudhary, A., Zanella, J. R. C.,
428 Cunningham, A. A., Dar, O., Debnath, N., Dungu, B., Farag, E., Gao, G. F., Hayman, D. T.
429 S., & Khaitsa, M. (2023). The One Health High-Level Expert Panel (OHHLEP). *One Health
430 Outlook*, 5, 1–8.
- 431 Morchón, R., Gabrielli, S., Ciuca, L., Napoli, E., & Carretón, E. (2025). Advancements in
432 understanding zoonotic parasitic diseases. *Frontiers in Veterinary Science*, 12, 1539556.
- 433 One Health High-Level Expert Panel. (2023). *The One Health Definition and Principles Developed
434 by OHHLEP*. One Health High-Level Expert Panel. Organización Mundial de la Salud.
435 [https://cdn.who.int/media/docs/default-source/one-health/ohhlep/one-health-definition-and-
436 principles-translations.pdf?sfvrsn=d85839dd_5&download=true](https://cdn.who.int/media/docs/default-source/one-health/ohhlep/one-health-definition-and-principles-translations.pdf?sfvrsn=d85839dd_5&download=true)
- 437 Received December 19, 2025.
- 438 Accepted December 20, 2025.