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ABSTRACT
A small, intelligent i i i designed to achieve optimal

seawater desalinati ha ¢ acific coast. This

Keywords: Desaliniator — Structures — Optilmization — Smart sensors

RESUMEN
Se propone un sistema inteligente de ufiSubmarino desalinizador pequeio, el cual tiene como
objetivo de obtener una desalinizacion optima del agua de mar que pueda ser adaptada y
empleada a lo largo de la costa cercana al océano pacifico del Pert. Este submarino
desalinizador fue disefiado con aplicaciones de analisis termodinamico para organizar las

mediciones de variables fisicas del agua de mar y también durante el proceso de

desalinizacion (temperatura, posicion, velocidad, fuerza). Se programé la autonomia del
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sistema desalinizador para tomar sus propias decisiones sobre las variables fisicas medidas
por los sensores del submarino, inclusive la correlacion de las variables medidas con modelos
teoricos de quimica y termodindmica; que a su vez son un soporte para obtener sistemas
optimos, adaptativos y predictivos para la tarea de desalinizacion. El sistema propuesto puede
operar sobre la superficie del océano, y ayudar a las comunidades humanas afectadas por la
carencia de agua.

Palabras clave: desalinizador — nanoestructuras —.optimizacion — sensores inteligentes

INTRODUCTION

Desalinator systems are quite ne when there are many
towns without access to get water [, 2023; Alenezi &
Alabaiadly, 2025).
Consequently, it w

desalinator system ( ) i | grgy absorbance,

recognize that a short response
or this reason, the targets were
(Calderdn et al., 2022), this means that the main control algorithm of the designed system
will get more time to execute intrieate, tasks (Lei et al., 2007) in order to achieve an optimal
desalinization; ergo, the proposed submarine was based on simple and standard designs, but
improved by advanced sensors due to achieve good performance in the navigation because
of optimal dynamical analysis as it described on paragraphs above (Ranjna et al., 2023;
Yunhwan et al., 2025; Analog Devices, 1999).

The Fig. 1 depicts part of the setup for the desalinization physical analysis, in which is

represented the desalinator system, this is composed by its collector “A” (light blue cylinder),
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also by its depositor “W” (a cone with own filter), as well as the main ocean water depositor
“B” (the bigger cylinder in the system). Hence, the sun “S” heat achieved by the desalinator

system is the main energy to get the water condensation over “A”.

Figure 1. Scheme

filter. B = th

Therefore, in this research are prop@sed some systems to solve this task, which is supported
by a previous understanding of the problematic "desalinate ocean water for domestic use".
Thus, it was possible to design a mathematical model based on the correlation between
thermodynamic analysis with Modulating Functions according to obtain a robust model to

describe the desalinization process.

MATERIALS AND METHODS
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The designed system can be explained by the dynamics and thermodynamics of the proposed
smart desalinator. Most of the measured physical variables are given by first order models
(That is based on their linear operating work chosen for this research), hence, it was necessary
to study that equations, such as given by the equation (1) in Laplace domain “S”, in which

“T” is the temperature variable, “U” is the input excitation variable, “K,” is the gain of the

system (Astrom & Higglund, 2004; Bistak et al
its time delay (Vajta, 2000; Idrees, 2017).

“T” is the response time and “L” is

The following equation (2) is conset ansformation on the
equation (1), in whi he delay analysis. In

addition that “y” he i i during the water

For the operating Wt C ed the equation (3), which

1s the result from the @

In the context that “U” is zero OUmder its time domain, because the system is not under its

stimulation, such as a consequence previous equation (3) is reduced to the equation (4).

T =T, (4

Whereas, for the context t >= L, it was obtained the equation (5).
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dT (1) B
T7 + T(t) = K,U (5)

Correlating the solutions from previous equations, with the Fourier heat transfer model,

which is given by the equation (6), where “q” is the heat, “k” is the thermal resistivity, and

“T” is the temperature in dependence on the geometry and heat propagation road. Otherwise,

it was possible to get good estimations of the condensed water mass.

(Landau & Lifshitz,

Furthermore, it is known the equat 9) (Landau & Lifshitz, 1959; Feynman ef al., 1962).

From the equation (8), it is proposed the equation (10).

x=2"" (10

T KT
It is achieved the equation (11) from the equation (10).

6



167 Tdx=dw (11)
168  The equation (12) is achieved replacing the equation (8) in the equation (9).

Q_(” hw3

169 ” o daw (12)

0 m2(C3 (eﬁ - 1)
170  From equations (10) and (11) in equation (12), i ained the equation (13).
171

172 In which, it is proposed the equat

173

174  Therefore, from the e
175

176  From the eq

177

178  Moreover, the equation (

[00]

179

x3 Ze‘"" dx (17)

n=0

180  Nevertheless, it was organized the equation (18) from the previous equation (17) (Landau

181 & Lifshitz, 1959; Feynman et al., 1962).

(0]

182 §= a 2f x3e ™ dx  (18)

n=1"0



183  As well as, it is known the equation (19) in order to reduce the equation (18).

184 foo‘“"d— 1<1 l) (19)
T TRl e

185  Therefore, it was achieved the equation (20).

186 f e ™dx=n"1 (20)
0

187  Derivative by “n” on the equation (20), it wa;

188

[I5-3)

189  Derivative by “n” agai

190

191

192

193

194

195

196 (25)

197  Equation (25) in (18), it was obtained the equation (26).

Q - 6
198 v =a z vy (26)
n=1
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Then, the equation (27) is consequently from the equation (26)

Q 1 1 1
V= 6a(1+2—2+¥+ﬁ+---) (27)
Even though, the equation (28) generalizes a model to achieve the heat by radiation that was

useful to get condensed water from the desalinator system that was designed for this research

(Landau & Lifshitz, 1959; Feynman et al., 1962).

control algorithm ex ' sor system for this desalinator

designed is represented B “T”, the power subsystem “A”,

with small batteries based o is research), even though part of the
recharged energy was achieved B all sun panels (based on nanostructures) during the
condensed process; therefore, there controlled the propellers “P1 and P2” owing to get

a controlled movement for the desalinator prototype also in the ocean (Wang et al., 2021).
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prototype of this

d water chamber. P1

There were not deformations on the main system and there is considered an impulse as the

main input excitation signal during a short proposed steady state, therefore it was achieved

the following equation (32).

a

d?y ()
dt?

d

dt

dy(t))z o

10

(32)
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As well as, it was proposed the equation (33).

_ay@®
V== (33)

Hence, the equation (34) was obtained as a consequence to replace the equation (33) in the
equation (32).
aq

h dv(t) = —v?dt (34)

The equation (35) is a reduction from the equa

Hence, the equation (

From which, it speed “v,” of the desalinator

designed is not nul umstances when it returns

to get static equilibriu

Furthermore, from the equation (38);#,was possible to deduce the equation (39) according

to estimate the maximal distance traveled till the desalinator will get its static equilibrium

again.

f‘l} v dt
dy = f (39)
v v h 1

0 Oa_l(t_to)‘l‘v_o
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Therefore, it was analyzed and detailed the problematic to achieve an advanced and robust
mathematical model to design a mechatronic system to be a support for users as desalinator

and support on the ocean and outside.

However, it was necessary to evaluate the performance of the designed mathematical models
(which were studied by equations described in paragraphs above) by simulations and

experimental results. It means, in the following chapter are described results of the adaptive

algorithms designed for the simulations res onsequence applications of the

RESULTS
The results achieve i C Setshof the designed

desalinatg cans 5311 em needed

¢ Fig. 3. Hence,
parine optimized its advanced
control system becaus 3 side, as well as its optimal
thermodynamic respo 0 COr concurrent with other tasks that

the desalinator was sol : al communication systems by

The condensation sea water neededi@sophisticated coordination analysis between the control

activities of the desalinator system the integration of smart sensors prepared for the
thermal responses/tasks, moreover the strategical characteristics of the desalinator system
based on the maximal possibilities to get sun energy over the condensation cabin with the
optimal heat absorbance, which depended on the nano materials covering over the

condensation cabin.

12
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of humidity, sea
signed for this

desalinator, sup i i short response time of the

not be saturated by redundant s (because the smart sensors reduce the processing task),

then the condensation process was @nough optimized by the main control system, by the
smart sensors and the optimal coverifi@hano materials to improve the heat absorbance. For
this reason, the water condensed volume also tended to get linear response on dependence of
the geometrical proportion of the designed desalinator.

For the dynamical analysis results of the designed desalinator, it was necessary to coordinate
the integration activities between the smart sensors based on nanostructures to measure its

displacement, its impulse force, its speed. Hence, the main control system identified online

13



the physical parameters for the optimal displacement of the desalinator system depending on
the correlation between dynamic physical laws of the small submarine with Modulating
Functions parameters achieved online, which was a good information proportionate optimal
trajectories for the submarine.

The Fig. 4, shows the response variables “speed and position” of the designed desalinator,
while it is moving inside and outside the sea. The previous equations above helped to design

the adaptive algorithms to get optimal estimatio e main physical variables to correlate

the condensation task with the desalinator the sea, as well as for outside

tasks.

Figure 4. Res e variables of the desalinator dynamics.
DISCUSSION
It had been designed a small automate that can displace itself inside the sea, by the dynamical
analysis of the external forces around it. The designed system has the possibility to get smart
responses due to most of its physical variables are measured by sensors based on
nanostructures, it means there were obtained short response time and high robustness in

comparison of the traditional electromechanical sensors (Texas Instruments, 2017).

14
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Nevertheless, the operating work for every physical variable was not enough according to
evaluate the performance of the designed smart submarine under longer distances (Nafey &

Safwat, 1988).

For the context of the designed position sensors, it was worked by the IR sensors, which
helped to get estimations of bodies around the designed submarine, however, there were

problems during the optimal movement when the IResignal did not find appropriated surfaces

for its optimal distance estimation, hence, } ented the distance detection by

coordinate the mai i [ or the external user,

such as for example i inside thesca (Bistak et al.,

and RF) got e isti or that achieves sea water
condensation and € o to be a good support for

uscrs.
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