periodo 2006 – 2018 del distrito Daniel
Alomía Robles [Tesis de grado, Universidad
Nacional Agraria de la Selva]. Repositorio
I n s t i t u c i o n a l .
http://repositorio.unas.edu.pe/handle/UNA
S/1686.
Clark, M. 2020. Comparison of multi-seasonal
Landsat 8, Sentinel-2 and hyperspectral
images for mapping forest alliances in
Northern California. ISPRS Journal of
Photogrammetry and Remote Sensing, 159:
26-40.
Congalton, R.G. 1991. A review of assessing the
accuracy of classifications of remotely
se ns ed da ta . R em ot e S en si ng of
Environment, 37: 35-46.
Duan, Q.; Tan, M.; Guo, Y.; Wang, X. & Xin, L.
2019. Understanding the spatial distribution
of urban forests in China using Sentinel-2
images with Google Earth Engine. Forests,
10: 729.
FAO & PNUMA (Food and Agriculture
Organization & Programa de las Naciones
Unidas para el Medio Ambiente). 2020. El
estado de los bosques del mundo 2020. Los
bosques, la biodiversidad y las personas.
Roma. https://doi.org/10.4060/ca8642es.
Fokeng, R.M.; Forje, W.G.; Meli, V.M. &
Bodzemo, B.N. 2020. Multi-temporal forest
cover change detection in the Metchie-
Ngoum Protection Forest Reserve, West
Region of Cameroon. The Egyptian Journal
of Remote Sensing and Space Science, 23:
113-124.
Furuya, D.E.G.; Aguiar, J.A.F.; Estrabis, N.V.;
Pinheiro, M.M.F.; Furuya, M.T.G.; Pereira,
D.R.; Gonçalves, W.N.; Liesenberg, V.; Li,
J.; Marcato-Junior, J.; Prado-Osco, L. &
Ramos, A.P.M. 2020. A Machine Learning
Approach for Mapping Forest Vegetation in
Riparian Zones in an Atlantic Biome
Environment Using Sentinel-2 Imagery.
Remote Sensing, 12: 4086.
Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.;
Van Bemmelen, J.; Colangeli, G. &
Lehmann, A. 2020. Knowledge generation
using satellite earth observations to support
sustainable development goals (SDG): A
use case on Land degradation. International
Journal of Applied Earth Observation and
Geoinformation, 88: 102068.
Glinskis, E.A. & Gutiérrez-Vélez, V.H. 2019.
100
Quantifying and understanding land cover
changes by large and small oil palm
expansion regimes in the Peruvian Amazon.
Land Use Policy, 80: 95-106.
Hościło, A. & Lewandowska, A. 2019. Mapping
forest type and tree species on a regional
scale using multi-temporal Sentinel-2 data.
Remote Sensing, 11: 929.
Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L. & Zhao, F.
2020. Advancing the Mapping of Mangrove
Forests at National-Scale Using Sentinel-1
and Sentinel-2 Time-Series Data with
Google Earth Engine: A Case Study in
China. Remote Sensing, 12: 3120.
Koskikala, J.; Kukkonen, M. & Käyhkö, N. 2020.
Mapping Natural Forest Remnants with
Multi-Source and Multi-Temporal Remote
Sensin g Data f or More Informed
Management of Global Biodiversity
Hotspots. Remote Sensing, 12: 1429.
Kovačević, J.; Cvijetinović, Ž.; Lakušić, D.;
Kuzmanović, N.; Šinžar-Sekulić, J.;
Mitrović, M.; Stančić, N.; Brodić, N. &
Mihajlović, D. 2020. Spatio-Temporal
Classification Framework for Mapping
Woody Vegetation from Multi-Temporal
Sentinel-2 Imagery. Remote Sensing, 12:
2845.
Liu, Y.; Gong, W.; Hu, X. & Gong, J. 2018. Forest
type identification with random forest using
Sentinel-1A, Sentinel-2A, multi-temporal
Landsat-8 and DEM data. Remote Sensing,
10: 946.
MINAM (Ministerio del Ambiente). 2021.
Bosques y pérdida de bosques. Recuperado
e l 2 1 d e j u l i o d e 2 0 2 0 d e
http://geobosques.minam.gob.pe/geobosqu
e/view/perdida.php.
Miranda, E.; Mutiara, A. & Ernastuti, W. 2019.
Forest classification method based on
convolutional neural networks and
Sentinel-2 satellite imagery. International
Journal of Fuzzy Logic and Intelligent
Systems, 19: 272-282.
Nazarova, T.; Martin, P. & Giuliani, G. 2020.
Monitoring vegetation change in the
presence of high cloud cover with Sentinel-
2 in a Lowland Tropical Forest Region in
Brazil. Remote Sensing, 12: 1829.
Nguyen, L.D.; Nguyen, C.T.; Le, H.S. & Tran, B.Q.
2019. Mangrove mapping and above-
ground biomass change detection using
The Biologist (Lima). Vol. 20, Nº1, ene - jun 2022
Puerta-Tuesta & Fajardo-Gamarra