473
Neotrop. Helminthol., 8(2), 2014
2014 Asociación Peruana de Helmintología e Invertebrados Afines (APHIA)
ISSN: 2218-6425 impreso / ISSN: 1995-1043 on line
RESEARCH NOTE / NOTA CIENTÍFICA
FREQUENCY OF ANTIBODIES AGAINST TOXOPLASMA GONDII IN WILD CARNIVORES
AND MARSUPIALS IN NORTHEAST MEXICO
FRECUENCIA DE ANTICUERPOS CONTRA TOXOPLASMA GONDII EN CARNIVOROS Y
MARSUPIALES SILVESTRES EN EL NORESTE DE MEXICO
1 2 3
Emilio Rendón-Franco *; Arturo Caso ; Nayelly Gabriela Jiménez-Sánchez ;
2 4
Sasha Carvajal-Villarreal & Hector Zepeda-López ;
Abstract
Resumen
Keywords: canidae - felidae - mustelidae - procionidae.
Palabras clave: canidae – felidae – mustelidae – procionidae.
Suggested citation: Rendón-Franco, E, Caso, A, Jiménez-Sánchez, NG, Carvajal-Villarreal, S & Zepeda-López, H 2014.
Frequency of antibodies against Toxoplasma gondii in wild carnivores and marsupials in northeast Mexico. Neotropical
Helminthology, vol. 8, n°2, jul-dec, pp. 473-478.
1 Departamento de Producción Agrícola y Animal. Universidad Autónoma Metropolitana – Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud,
Delegación Coyoacán, D.F. México, C.P. 04960, México. emilio.rendon.franco@gmail.com
2 Caesar Kleberg Wildlife Research Institute. Texas A&M University-Kingsville 700 University Blvd., MSC 218, Kingsville, Texas 78363-8202, Texas, USA.
3 Academia de Biología. Centro de Estudios Científicos y Tecnológicos No. 6 "Miguel Othón de Mendizabal" Instituto Politécnico Nacional. Avenida Jardín y
calle 4 s/n, Col. Del Gas, Delegación Azcapotzalco, D.F. México, C.P. 2950, México.
4 ZELOR Instituto de Medicina de la Conservación. SAPI calle Romano No. 13525-C Fracc. Alcala La Mesa Tijuana B.C. México C.P. 22106.
* Correspondence should be to Emilio Rendón-Franco Calzada del Hueso 1100, Col. Villa Quietud, Delegación Coyoacán, C.P. 04960, D.F. México, 00 55 54 83
70 00 ext. 3658.
There is little previous information about the wild cycle of Toxoplasma gondii in wild carnivores
and marsupials in Mexico. The objective of this study was to determine the presence of antibody
against T. gondii in wild carnivores and marsupials in northeast Mexico. Frequency of T. gondii in
captured specimens was: margay (Leopardus wiedii; n=3; 33%), jaguarundi (Puma
yagouaroundi; n=2; 0%), bobcat (Lynx rufus; n= 1; 100%), coatimundi (Nasua narica; n=7;
42%), coyote (Canis latrans; n=4; 25%), gray fox (Urocyon cinereoargenteus; n=3; 66%), hog-
nosed skunk (Conepatus leuconotus; n=1; 0%), and opossum (Didelphis sp.; n=5; 20%).
Therefore, natural infection with T. gondii in wild carnivores and marsupials in northeast Mexico
was present.
Existe poca información acerca del ciclo silvestre de Toxoplasma gondii en carnívoros y
marsupiales silvestres en México. El objetivo de este estudio fue determinar la presencia de
anticuerpos contra T. gondii en carnívoros y marsupiales silvestres en el noreste de México. La
frecuencia de T. gondii en los especímenes capturados fue: margay (Leopardus wiedii; n=3; 33%),
jaguarundi (Puma yagouaroundi; n=2; 0%), lince (Lynx rufus; n= 1; 100%), coatí (Nasua narica;
n=7; 42%), coyote (Canis latrans; n=4; 25%), zorra gris (Urocyon cinereoargenteus; n=3; 66%),
zorrillo (Conepatus leuconotus; n=1; 0%), y tlacuache (Didelphis sp.; n=5; 20%). Se comprueba
la infección natural con T. gondii en carnívoros y marsupiales silvestres en el noreste de México.
Rendón-Franco et al.
Toxoplasma gondii in carnivores and opossum
Toxoplasma gondii (Nicolle, Manceaux and
Splendore 1908) is an intracellular parasite that
affects all homeothermic vertebrate. In the
domestic cat, the complete cycle of the parasite
occurs because the cat is the only definitive host.
Infected hosts may be in an infectious stage all
their lives and this helps the worldwide
distribution of the disease (Frenkel, 1990; Della,
1999; Wolfe, 2003). The wild felids are also
considered definitive hosts since this parasite
have been found in different species of wild cats
(Dreesen, 1990; Wolfe, 2003; Cañon-Franco et
al., 2013). Even though these animals have been
the definitive hosts, there are a few studies about
their role on the wild cycle of the parasite. A
recent revision reported that in the only
neotropical small felid species that this parasite
has been found is in ocelot (Leopardus pardalis;
Linné,1758), Geoffroy´s Cat (L. geoffroyi;
D´Orbigny and Gervais, 1844) and Oncilla (L.
tigrinus; Schreber, 1775) (Cañon-Franco et al.,
2013).
There are also a few records of the presence of
antibodies of this parasite in other wild
neotropical carnivores. A research on
neotropical mammals, included in its analysis
the coatimundi (Nasua nasua Linnaeus, 1766)
and common opossum (Didelphis marsupialis
Linnaeus, 1758) (Thoisy et al., 2003). Other
carnivores such as canids have been used as
indicators for T. gondii, however these studies
have been done in the neartic regions (Dubey et
al., 1999). In Mexico, studies about T. gondii in
wildlife are in small numbers and also focused
on neartic species (Kikuchi et al., 2004; Suzan &
Ceballos, 2005; Rendón-Franco et al., 2012). In
areas where domestic cats are not present, wild
felids are the final hosts; therefore it is very
important to evaluate which role they play in the
wild cycle of the parasite. In the other hand, it is
important to determine if other carnivores or
marsupials participate in the wild cycle of T.
gondii as an infectious host for the felids or even
for humans, since some carnivores such as the
coatimundi, skunk, and opossum are consumed
by people in rural areas (Naranjo et al., 2004;
Tlapaya & Gallina, 2010; Contreras-Moreno et
al., 2012).
The objective of this study is to determine the
presence of T. gondii antibodies in wild
carnivores and marsupials in a neotropical area
within northeast Mexico.
As a part of a felid ecological project developed
by Caso, captures were done with the use of box
traps (Tomahawk live Trap model No. 109.5,
Tomahawk Live Trap Company, Hazelhurst,
Wisconsin 54531,USA; Caso, 2013). Blood was
obtained from jaguarundis (Puma yagouaroundi
É. Geoffroy, 1803), coyotes (Canis latrans Say,
1823), coatimundis (Nasua narica Linnaeus,
1766), bobcats (Lynx rufus Schreber, 1777),
hog-nosed skunks (Conepatus leuconotus;
Lichtenstein, 1832), and common opossums
(Didelphis sp.) at Los Ebanos and Los Pericos
(23º 27' N, 97º 48' W) cattle ranches from 1998
to 2006 (Caso, 2013). In the other hand, captures
of margays (Leopardus wiedii Schinz, 1821),
gray foxes (Urocyon cinereoargenteus
Schreber, 1775) and coatimundis were done at El
Cielo Biosphere Reserve (23º03'N, 90º13'W) in
2003 (Carvajal-Villarreal et al., 2012). Both
study areas are in the state of Tamaulipas,
Mexico. P. yagouaroundi and L. wiedii are
protected by Mexican laws under category of
near threatened and risk of extinction
respectively (SEMARNAT, 2010). All
carnivores in this study are considered as least
concern by the UICN, except L. wiedii, which is
considered near threatened (UICN, 2014).
Samples were obtained after chemical
immobilization, and serum was maintained
frozen at -20 until lab analysis (Caso et al.,
2005; Caso, 2013). Each individual was safely
handled according to the recommendations of
the American Society of Mammalogists (Sikes
& Gannon, 2007) and all were released at the
same capture point when the effects of
immobilization were not present.
Antibody detection was done through a test latex
INTRODUCTION
MATERIAL AND METHODS
474
Neotrop. Helminthol., 8(2), 2014
agglutination test (Toxotest-MT, Eiken
Chemical Co. LTD, Tokyo 110-8408, Japan)
accordingly with lab specifications. This test
has been used before in wild felids to test the
presence of T. gondii (Ramos et al., 2001;
Kikuchi et al., 2004; Rendón-Franco et al.,
2012). Titers > 1:32 were considered positives
for felines while titers > 1:16 were considered
positives for the other species according with
manufacture recommendations. We calculated
the frequencies and confidence intervals 95%
for each species using epidemiological software
(Epidat 3.1 ® software, Servicio de
Epidemiología Dirección Xeral de Innovación e
Xestión de Saúde Pública, Santiago de
Compostela, Coruña, Spain).
Results obtained were the following: margay 1
of 3 (33%), jaguarundi 0 of 2 (0%), bobcat 1 of 1
(100%), coatimundi 3 of 7 (42%), coyote 1 of 4
(25%), gray fox 2 of 3 (66%), hog-nosed skunk 0
of 1 (0%) and common opossum 1 of 5 (20%).
Titers in positive animals were from 1:16 in
carnivores to 1:256 in coatimundis, and positive
for opossum 1:16 titer (Table 1).
RESULTS
Table 1. Frequencies and antibodies titer against Toxoplasma gondii in wild carnivores and marsupials.
Specie/serum dilution
>1:16
1:16b
1:32a 1:64 1:128 1:256 n Positive Frequency
% (CI 95%)
Margay
(Leopardus wiedii
)
1
1
1 3 1 33 (1-90)
Jagurundi
(Puma yagouaroundi)
1
1
2 0 0 (ND)
Bobcat
(Lynx rufus)
1 1 1 100 (ND)
Coatimundi
(Nasua narica)
4
1
2 7 3 42 (10-81)
Coyote
(Canis latrans)
3
1
4 1 25 (1-80)
Gray fox
(Urocyon cinereoargenteus)
1
1 1 3 2 66 (9-99)
Hog-nosed skunk
(Conepatus leuconotus)
1
1 0 0 (ND)
Opossum
(Didelphis sp) 4
1
5 1 20 (0-72)
a=positive feline b= positive other than feline, ND=no done.
DISCUSSION
There are not previous reports of antibodies
prevalence of T. gondii in margay and
jaguarundi; however, in jaguarundis it has been
found that they can excrete oocytes naturally or
during experiments (Jewell et al., 1972; Pizzie et
al., 1978). In this study, we did not find any
evidence of anti-Toxoplasma antibodies in
jaguarundis, but because to the small sample size
(n = 2), is not possible to say that jaguarundis
could not be infected by the parasite in the wild.
Even though the small number of individual
margays, these results are important since they
ensure that margays could be infected by T.
gondii in the wild. In the case of the gray fox,
there have been reports that indicate that the
prevalence of T. gondii in this species is high in
the U.S. since it runs from 25% to 75%
depending on the area, and this is consistent with
the present study. Same research also found that
the prevalence of T. gondii in coyotes is 59%,
however in the present study it is lower. It is
important to mention that sample size of this
study for both species is low; therefore is not
possible compare these results with the ones in
U.S (Dubey et al., 1999).
475
Rendón-Franco et al.
Toxoplasma gondii in carnivores and opossum
This is the study that has obtained the best
sample size for wild coatimundis (n = 7). These
results indicate that the prevalence found of 42%
is lower of what was found by the only previous
study of 72% of prevalence (Thoisy et al., 2003).
Due to the small simple size in hog-nosed skunk
(n = 1), is not conclusive that they could not be
infected by T. gondii. In the case of opossums,
20% of prevalence was record, that is within the
rank (13-29%) reported for the U.S., but it is
higher with the one reported (10%) for central
Mexico, where mean ambient humidity is lower
(Smith & Frenkel, 1995; Hill et al., 1998; Suzan
& Ceballos, 2005; Mitchell et al., 2006). This
could explain the differences since in
neotropical regions there is more humidity and
this helps the parasite to remain viable for longer
periods. In French Guyana, it was found 15%
(n=34) of prevalence in common opossums and
20% (n=15) in white-eared opossum (D.
albiventris; Thoisy et al., 2003). In Brazil, it
was found 20.4% (n=396) of prevalence in
common opossums (Yal et al., 2003).
The prevalence of T. gondii found in
coatimundis and opossums have an important
zoonotic risk, since as it was mentioned earlier;
these species are hunted and consumed as food
by people in rural areas of Mexico (Naranjo et
al., 2004; Mitchell et al., 2006; Tlapaya &
Gallina, 2010; Contreras-Moreno et al., 2012).
The role of wild cats on the cycle of T. gondii is
important particularly in areas where domestic
cats coexist with them. In the case of other wild
carnivores, there is little information about what
is their role in the wild cycle of T. gondii.
However, it is important to know their role as
hosts since they compete for the infected prey
and therefore they can lower the prevalence of
the disease. Since opossums are commonly
depredated by different carnivores including
felids, it is important to determine the prevalence
in them to know which is the parasite's infectious
cycle. It is also important to generate studies
that include intermediate hosts with the
objective of identifying how the parasite cycle
closes in the wild (ferraroni et al., 1980).
Thank to the Dallas Zoo, the Oklahoma City Zoo,
and Los Ebanos Ranch, for their funding and
support for this project. Also thank to the
Dirección General de Vida Silvestre and the State
of Tamaulipas to provide the necessary permits to
develop this study.
ACKNOWLEDGEMENTS
BIBLIOGRAPHIC REFERENCES
Cañon-Franco, WA, Araújo, FAP & Gennari,
SM. 2013.
Carvajal-Villarreal, S, Caso, A, Downey, P,
Moreno, A, Tewes, ME & Grassman Jr,
LI. 2012.
Caso, A. 2013.
Caso, A, Carvajal-Villarreal, S, Downey, P, &
Moreno, A. 2005.
Contreras-Moreno, FM, De la Cruz-Félix, K, &
Bello-Gutíerrez, J. 2012.
Della, MG. 1999.
Toxoplasma gondii in small
neotropical wild felids. Brazilian Journal
of Veterinary Research and Animal
Science, vol. 50, pp. 50-67.
Spattial patterns of the margay
(Leopardus wiedii, Felidae, Carnivora) at
El Cielo Biosphere Reserve,
Tamaulipas, Mexico. Mammalia, vol. 76,
pp. 237-244.
Spatial differences and local
avoidance of Ocelot (Leopardus pardalis)
and Jaguarundi (Puma yagouaroundi) in
Northeast Mexico. Tesis de Doctor en
Ciencias Biológicas, Texas A&M
University-Kingsville, Kingsville, Texas.
Técnica de captura y
manejo del margay (Leopardus wiedii) en
la Reserva de la Biosfera El Cielo. In:
Sánchez-Ramos, G, Reyes-Castillo, P &
Dirzo, R, (eds.). Historia Natural de la
Reserva de la Biosfera "El Cielo",
Tamaulipas. México. Universidad
Autónoma de Tamaulipas, Instituto de
Ecología A. C., UNAM. Toppan printing
inc. Vol. 55, pp. 538-542.
Uso patrones de
cacería y preferencia de presas en dos
sitios del parque estatal La Sierra,
Tabasco, México. Etnobiología, vol. 10,
pp. 1-9. Toxoplasmosis in zoo animals.
In: Fowler, ME, & Miller RE (eds.). Zoo
th
and Wild Animal Medicine, 4 ed. W.B.
476
Neotrop. Helminthol., 8(2), 2014
Sauders Co., Philadelphia, Pennsylvania.
pp. 131-135. Toxoplasma gondii
infections in wildlife. Journal of the
American Veterinary Medical
Association, vol. 196 pp. 274-276.
Toxoplasma gondii
antibodies in naturally exposed wild
coyotes, red foxes, and gray foxes and
serologic diagnosis of toxoplasmosis in
red foxes fed T. gondii oocysts and tissue
cysts. The Journal of Parasitology, vol. 85,
pp. 240-243.
Prevalence of Toxoplasma antibodies in
humans and various animals in the
A m a z o n . P r o c e e d i n g s o f t h e
Helminthological Society of Washington,
vol. 47, pp. 148-150.
Transmission of
toxoplasmosis and the role of immunity in
limiting transmission and illness. Journal
of the American Veterinary Medical
Association, vol. 196, pp. 233-240.
Seroprevalence of
antibodies aginst Toxoplasma gondii in
free-ranging mammals in Iowa. Journal of
Wildlife Diseases, vol. 34, pp. 811-815.
Development of
Toxoplasma oocysts in neotropical
felidae. The American Journal of Tropical
Medicine and Hygiene, vol. 21, pp. 512-
517.
Seroprevalence of Toxoplasma
gondii in American free-ranging or
captive pumas (Felis concolor) and
bobcats (Lynx rufus). Veterinary
Parasitology, vol. 120, pp. 1-9.
Prevalence of agglutinating
antibodies to Toxoplasma gondii in
striped skunks (Mephitis mephitis),
opossums (Didelphis virginiana), and
raccoons (Procyon lotor) from
Connecticut. The Journal of Parasitology,
Dreesen, DW. 1990.
Dubey, JP, Storandt, ST, Kwok, OC, Thullinez, P
& Kazacos, KR. 1999.
Ferraroni, JJ, Reed, SG & Speer, CA. 1980.
Frenkel, JK. 1990.
Hill, RE, Zimmerman, JJ, Wills, RW, Patton, S &
Clark, WR. 1998.
Jewell, ML, Frenkel, JK, Johnson, KM, Reed, V
& Ruiz, A. 1972.
Kikuchi, Y, Chomel, BB, Kasten, RW,
Martenson, JS, Swift, PK & O'Brien, SJ.
2004.
Mitchell, SM, Richardson, DJ & Lindsay, DS.
2006.
vol. 92, pp. 664-665.
Subsistence hunting by
three ethnic groups of the Lacandon
forest, Mexico. Journal of Ethnobiology,
Vol. 24, pp. 233-253.
Hallazgo del ciclo ontogenico selvatico
del Toxoplasma gondii en felidos salvajes
(Oncifelis geoffroyi, Felis cocolo y Felis
eira) de la provincia de Cordoba. Revista
Militar de Veterinaria, vol. 25, pp. 293-
300.
Seroprevalence of
Toxoplasma gondii in captive neotropical
felids from brazil. Veterinary
Parasitology, vol.102, pp. 217-224.
Prevalence of anti-Toxoplasma
gondii antibody in free-ranging ocelots
(Leopardus pardalis) from Tamaulipas,
Mexico. Journal of Wildlife Diseases, vol.
48, pp. 829-831.
Norma Oficial
Mexicana NOM-059-SEMARNAT-2010,
protección ambiental, especies nativas de
México de flora y fauna silvestre,
categorías de riesgo y especificaciones
para su inclusión, exclusion o cambio,
lista de especies en riesgo. Diario Oficial
de la Nación. pp. 1–78.
Guidelines of
the American Society Mammalogists for
the Use of Wild Mammals in Research.
Journal of Mammalogy, vol. 88, pp. 809-
23. Prevalence of
antibodies to Toxoplasma gondii in wild
mammals of Missouri and east central
Kansas: biologic and ecologic
considerations of transmission. Journal of
Wildlife Diseases, vol. 31, pp. 15-21.
The role of feral
Naranjo, EJ, Guerra, MM, Bodmer, RE &
Bolaños, JE. 2004.
Pizzie, HL, Rico, CM, & Pessat, OAN. 1978.
Ramos, SJ, Ogassawara, S, Adania, CH,
Ferreira, F, Gennari, SM, & Ferreira-
Neto, JS. 2001.
Rendón-Franco, E, Caso-Aguilar, A, Jiménez-
Sánchez, NG, Sandoval-Sánchez, AL,
Brousset, HJDM, & Zepeda-López, HM.
2012.
SEMARNAT (Secretariìa de Medio Ambiente y
Recursos Naturales). 2010.
Sikes, RS & Gannon, WL 2007. The animal care
and use committee of the American
Society of Mammalogists.
Smith, DD & Frenkel, JK. 1995.
Suzan, G & Ceballos, G. 2005.
477
Rendón-Franco et al.
Toxoplasma gondii in carnivores and opossum
mammals on wildlife infectious disease
prevalence in two nature reserves within
Mexico City limits. Journal of Zoo and
Wildlife Medicine, vol. 36, pp. 479-484.
Ecologic correlates of Toxoplasma
gondii exposure in free-ranging
neotropical mammals. Journal of Wildlife
Diseases, vol. 39, pp. 456-459.
Cacería de
mamíferos medianos en cafetales del
centro de Veracruz, México. Acta
Zoologica Mexicana (n.s.), vol. 26, pp.
259-277.
Red list of
threatened animals. UICN Species
Survival Commission, Glad, Suiza.
Thoisy, B, Demar, M, Aznar, C & Carme, B.
2003.
Tlapaya, L & Gallina, S. 2010.
UICN (Unión Internacional para la
Conservación de la Naturaleza y los
Recursos Natrales). 2014.
A v a i l a b l e o n l i n e :
http://www.iucnredlist.org
Toxoplasmosis. In: Fowler,
ME & Miller, RE (eds.). Zoo and Wild
th
Animal Medicine. 5 ed. W.B. Saunders
Co., St. Louis Missouri. pp. 745-749.
Seroprealence of
Neospora caninum and Toxoplasma
gondii antibodies in the South American
opossum (Didelphis marsupialis) from the
city of Sao Paulo, Brazil. The Journal of
Parasitology, vol. 89, pp. 870-871.
Wolfe, BA. 2003.
Yal, LEO, Cañon-Franco, WA, Geraldi, VC,
Summa, MEL, Camargo, MCGO, Dubey,
JP & Gennari, SM. 2003.
Received August 1, 2014.
Accepted October 21, 2014.
478