The diversity of helminths in host groups with a high diversity of species like anurans are still
underrepresented, especially in sites with severe environmental conditions such as arid and semiarid
regions is needed to understand the role of parasites at different levels of ecological . This knowledge
organization. This study aimed to evaluate the parasite composition a taxocenosis of anuran species,
describe the richness and diversity of helminths at the component and infracommunity levels, and
evaluate the influence of body size on the abundance and diversity of parasites. The anuran hosts were
collected at the Environmental Protection Area (EPA) Bica do Ipu in Brazilian semi-arid. The collected
hosts were euthanized, necropsied, and examined for helminth parasites. Helminths were identified and
the statistical tests were performed. A total of 15 host species composed this study and 1,216 helminths
were collected with mean abundance (MA) of 12.9 ± 3.38 and mean intensity of infection (MII) of 25.84 ±
6.44. The mean richness of helminth was 2.3 ± 0.53 (range = 6) and helminth diversity (H´) was 1.36.
Helminths infecting the studied amphibian hosts comprised 13 taxa: two cestode species, one
acanthocephalan, one trematode, and nine nematodes. The present study contributes to the knowledge of
the helminths infecting amphibians from Brazilian Caatinga, as well as the understanding of the diversity
patterns of parasitic infracommunities associated with amphibians.
ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
Neotropical Helminthology, 2020, 14(2), jul-dic:207-216.
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
HELMINTHS ASSOCIATED WITH 15 SPECIES OF ANURANS FROM THE IBIAPABA PLATEAU,
NORTHEASTERN BRAZIL
HELMINTOS ASOCIADOS CON 15 ESPECIES DE ANUROS DE LA MESETA DE IBIAPABA, EN EL
NORESTE DE BRASIL
1Universidade Federal da Paraíba, Programa de Pós-graduação em Ciências Biológicas- PPGCB (Zoologia). Via expressa
Padre Zé Jardim Cidade Universitária 58051001. João Pessoa, PB – Brasil, tel: (83) 32167025.
2Section of Parasitology, DBBVPZ, Universidade Estadual Paulista “Jülio Mesquita Filho”, Brazil, Research and Teaching
Laboratory of Wild Animals, Federal University of Uberlândia, Brazil
3Programa de Pós-graduação em Ecologia e Recursos Naturais, Bloco 209, Centro de Ciências, Universidade Federal do
Ceará- UFC, Campus do PICI, Av. Humberto Monte s/n, 60455-760 Fortaleza, Ceará, Brasil.
4UFU – Universidade Federal de Uberlândia - Instituto de Ciências Agrárias, LMG-746, Km 1, Monte Carmelo, 38500-000,
MG, Brasil.
* Corresponding author: aldenirferreira_@hotmail.com
1* 2 3
Aldenir Ferreira da Silva Neta ; Edna Paulino de Alcantara ; Cicero Ricardo de Oliveira ; Elvis Franklin
4 2 3
Fernandes de Carvalho³; Drausio Honorio Morais ; Reinaldo José da Silva & Robson Waldemar Ávila
Neotropical Helminthology
207
doi:10.24039/rnh2020142795
ÓrganooficialdelaAsociaciónPeruanadeHelmintologíaeInvertebradosAfines(APHIA)
Lima-Perú
VersiónImpresa:ISSN2218-6425VersiónElectrónica:ISSN1995-1043
Volume14,Number2(jul-dec)2020
ABSTRACT
Keywords: Amphibians – Inventory – Endoparasites – Nematodes – Mountain swamp – Semi-arid
INTRODUCTION
208
RESUMEN
Palabras clave: Anfibios – Inventario – Endoparásitos – Nematodos – Pantano de montaña – Semiárido
La diversidad de los helmintos en los grupos de huéspedes con gran diversidad de especies como los
anfibios anuros siguen estando subrepresentados, especialmente en sitios con condiciones ambientales
severas como las regiones áridas y semiáridas. Este conocimiento es necesario para comprender el papel
de los parásitos en los diferentes niveles de la organización ecológica. Con el fin de evaluar la
composición del parásito una taxocenosis de las especies de anuros, describir la riqueza y diversidad de los
helmintos a nivel de componentes y de la infracomunidad; además de evaluar la influencia del tamaño del
cuerpo en la abundancia y diversidad de los parásitos, se realizó este estudio. Los anuros huéspedes se
recogieron en la Zona de Protección Ambiental (EPA) Bica do Ipu en el semiárido brasileño. Los
huéspedes recolectados fueron sometidos a eutanasia y a una necropsia en busca de parásitos. En
secuencia, se identificaron los helmintos y se realizaron las pruebas estadísticas. Un total de 15 especies de
huéspedes compusieron este estudio y se recogieron 1.216 helmintos con abundancia media (MA) de 12,9
± 3,38 y intensidad media de la infección (MII) de 25,84 ± 6,44. La riqueza media de helmintos fue de 2,3
± 0,53 (rango = 6), y la diversidad de helmintos (H) fue de 1,36. La comunidad de componentes de
helmintos que infectan a los anfibios huéspedes comprende 13 taxones: dos especies de cestodos, un
acantocéfalo, un trematodo y nueve nematodos. El presente estudio contribuye al conocimiento de los
helmintos que infectan a los anfibios de la Caatinga brasileña, así como a la comprensión de los patrones
de diversidad de las infracomunidades parasitarias asociadas a los anfibios.
Neotropical Helminthology, 2020, 14(2), jul-dic
intracorporeal surface, increasing the possibilities
of oral and skin infection (Santos & Amato, 2010;
Campião et al., 2016b; Hamann et al., 2009).
Amphibian's biology makes it an excellent model
for evaluating patterns in the structure of helminth
communities (Aho, 1990). They occupy a variety
of habitats, have different patterns of life cycle,
different reproductive strategies, and occupy
various positions in food webs (Koprivnikar et al.,
2012). Studies on amphibian parasites have
increased in recent years (e.g. Campião et al.,
2016a; Oliveira et al., 2019). However,
information about the parasites of some amphibian
groups is still scarce, and most of restricted to
taxonomic descriptions or records of occurrence
(Pinhão et al., 2009).
Brazil has the most diverse anuran fauna, with
1,137 species (Segalla et al., 2019). Nevertheless,
there are helminth reports for only 185 (7%)
species. About 164 helminth species are currently
known for Brazilian amphibians, totaling 57% of
the taxa described for South America. However,
studies describing the ecological aspects of
parasites associated with Brazilian amphibian
taxocenosis remain underrepresented in the
literature (Toledo et al., 2017; da Graça et al.,
2017). Data scarcity is even more pronounced in
Documenting parasite diversity and host
relationships are needed to understand the role of
parasites at different levels of ecological
organization (Wood & Johnson, 2015). Parasites
can affect host immunity and population dynamics,
thus having effects on community composition and
trophic interactions also acting on population
control (Bittencourt & Rocha, 2003; Hudson,
2005). Although play essential roles in ecological
processes, parasites remain taxonomically
neglected and the actual number of species in
different groups cannot yet be determined
(Windsor, 1998; Poulin & Morand, 2004).
The interaction host-parasite is an outcome of their
coevolutionary history, diet, body size, sex,
infection site, geographic distribution, behavior,
host species, climatic characteristics, and host
phylogeny (Muzzall et al., 2001; Araujo-Filho et
al., 2017)–––. Anurans can act as definitive,
intermediate, and paratenic hosts of a wide variety
of helminths (Campião et al., 2009; Santos &
Amato, 2010; Campião et al., 2014). Body size is a
determining factor for the composition of the
anuran parasite community, due to the greater
amount of food eaten and added extra and
Silva Neta et al.
209
snout–vent length (SVL) of each specimen was
recorded. During necropsy, hosts were sexed and
the organs like gastrointestinal tract, lungs, liver,
and kidneys were separated and surveyed for
helminths under stereomicroscope. Voucher hosts
were fixed with 10% formalin, conserved with
70% ethanol and deposited at the Herpetological
Collection of the Universidade Regional do Cariri
(URCA 9127-9132, 9134-9143, 9145-9148, 9152-
9185, 9187-9202, 9107-9211, 9226-9229, 9232-
9239, 9241-9245), municipality of Crato, Ceará
state, Brazil.
Helminths were fixed in hot alcohol and preserved
in 70% ethyl alcohol. For identification, the
nematodes were clarified in lactic acid, and
cestodes, trematodes, and acanthocephalans were
stained with hydrochloric carmine and cleared with
creosote. Thereafter, the helminths were mounted
in temporary slides and examined under the light
microscope ZEISS Axio Imager M2. Species
identification followed Travassos et al. (1969),
Vicente et al. (1991), and recent bibliographies.
The voucher species were deposited at the
Herpetological Collection of Universidade
Regional do Cariri.
Parasitological descriptors follow Bush et al.
(1997): prevalence, intensity, and abundance of
infection were calculated, followed by their
respective standard errors. All values are expressed
as the mean ± standard error (SE). Parasites'
abundance data were tested for normality by the
Kolmogorov-Smirnov test. To calculate the wealth
and diversity of the community we use the species
richness (= total number of helminth species),
Shannon index (H) (Zar, 2010). The
Berger–Parker index of dominance (d) was used to
determine the most dominant species (Magurran,
2004). Spearman's rank test (rs) was used to assess
the relationship between the host body size and
parasitological descriptors. Statistical analyses
were performed using BioEstat 5.0 (Ayres et al.,
2007) and software R platform, version 2.15.0 (RC
team, 2017).
Ethic aspects
Instituto Chico Mendes de Conservação da
Biodiversidade (ICMBIO) for collection permits
(ICMBio number 32758-1). To Comitê de Ética em
Pesquisa of the Universidade Regional do Cariri,
permits 00026/2015.
semi-arid regions where amphibians are strongly
influenced by unpredictable rainfall. Severe
environmental conditions in arid and semiarid
regions may limit species diversity by selecting
clades tolerant to such conditions while shaping
their ecology, natural history, and behavior (Garda
et al., 2017).
Therefore, the objectives of this study were: (1)
evaluate the parasite composition of 15 anuran
species; (2) describe the richness and diversity of
helminths at the component and infracommunity
levels; (3) to evaluate the influence of body size on
the abundance, diversity, and richness in anurans of
Caatinga, Brazil.
Anurans were sampled from the Environmental
Protection Area (EPA) Bica do Ipu (4°19'10” S,
40°43'04” W), Ipu municipality, Ceará state, Brazil
(Fig. 1). The EPA Bica do Ipu, is located at the
slopes of the Ibiapaba plateau with an extension of
3,500 ha approximately. The Ibiapaba plateau is a
highland marsh (known as brejo de altitude)
composed by a mosaic of phytophysiognomies
(Santos & Souza, 2012).
Amphibians (n = 92 specimens), comprising
representatives of five families: Bufonidae:
Rhinella jimi (Stevaux, 2002) (n = 1), Rhinella
granulosa (Spix, 1824) (n = 11); Hylidae:
Corythomantis greeningi Boulenger, 1896 (n = 1),
Scinax x-signatus (Spix, 1824) (n = 4);
Phyllomedusidae: Pithecopus nordestinus
(Caramaschi, 2006) (n = 4); Leptodactylidae:
Leptodactylus fuscus (Schneider, 1799) (n = 4),
Leptodactylus macrosternum Miranda-Ribeiro,
1926 (n = 4), Leptodactylus mystaceus (Spix,
1824) (n = 1), Leptodactylus vastus Lutz, 1930 (n
= 6), Physalaemus albifrons (Spix, 1824) (n = 21),
Physalaemus cicada Bokermann, 1966 (n = 9),
Physalaemus cuvieri Fitzinger, 1826 (n = 3),
Pleurodema diplolister (Peters, 1870) (n = 10),
Pseudopaludicola mystacalis (Cope, 1887) (n =
12); Odontophrynidae: Proceratophrys cristiceps
(Müller, 1883) (n = 1) were captured by hand
during visual surveys from 7 to 15 April 2014.
Specimens were euthanized with intraperitoneal
injection of Propofol (CFMV, 2013), after the
MATERIAL AND METHODS
Neotropical Helminthology, 2020, 14(2), jul-dic Helminths associated with anurans from Brazil
The richness found in the present study is similar to
other studies dealing with the helminth community
associated with anurans (Aguiar et al., 2014;
Campião et al., 2014; 2016a; da Graça et al., 2017;
Müller et al., 2018). However, it may be
underestimated because of unidentified species,
since the occurrence of cryptic species has already
been recorded for the region, as in Rhabdiasidae
(Müller et al., 2018). Also, larger numbers of
nematode species seem to be a general pattern for
South American amphibians (Campião et al.,
2014).
Monoxenous nematodes, such as R. spectans and
O. mazzai, infected more host species. According
to Anderson (2000), parasites with direct life cycles
have low specificity and simple mode of
transmission that can occur through egg ingestion
or larval penetration through the host skin.
Moreover, R. spectans and O. mazzai have been
recorded infecting several Brazilian anurans,
including P. diplolister, Dermatonotus muelleri
(Boettger, 1885), Leptodactylus latrans (Steffen,
1815), Rhinella crucifer (Wied Neuwied, 1821),
Rhinella icterica (Spix, 1824), L. fuscus, L.
mystaceus, Physalaemus albifrons, P. cicada, and
P. cuvieri (Campião et al., 2014; Teles et al., 2015;
Alcantara et al., 2018; Oliveira et al., 2019).
Cylindrotaenia americana is also a monoxenous
parasite infecting the intestinal mucosa (Stumpf,
1981). Actually, it has been reported in North and
South America, Asia, and Europe in hosts of the
families Bufonidae, Ranidae, Hylidae,
Brachycephalidae, and Dendrobatidae (Goldberg
& Bursey, 2008). In Brazil, there are records of this
cestode species infecting R. icterica, Rhinella
fernandezae (Gallardo, 1957), Ischnocnema
guentheri (Steindachner, 1864), Hypsiboas
prasinus (Burmeister, 1856) (Campião et al.,
2014), Ischnocnema parva (Girard, 1853),
Hylodes phyllodes Heyer & Cocroft, 1986 (Aguiar
et al., 2014), and P. cicada (Oliveira et al., 2019).
Pleurodema diplolister is a new host recorded for
C. americana.
A c a n t h o c e p h a l a n s o f t h e g e n u s
Oligacanthorhynchus are heteroxenous and
usually have mammals as final hosts (Gallas &
Of the 92 analyzed hosts, 44 (47.8%) were
parasitized with at least one helminth species. Only
three analyzed host species presented no infection
with helminth parasites (C. greening, R. jimi, and S.
x-signatus). A total of 1,190 helminths from 13 taxa
was recovered from 12 hosts of five anuran
families (Table 1), with mean abundance of 12.9 ±
3.38 and mean intensity of infection of 25.84 ±
6.44. Helminth diversity (H`) was 1.36. The mean
helminth richness was 2.3 ± 0.53 (max. = 6) species
per infected host.
Schrankiana sp. and Raillietnema spectans
Gomes, 1964 were the most abundant taxa (d =
0.39, d = 0.36 respectively). Oswaldocruzia mazzai
Travassos, 1935 and R. spectans were the helminth
taxa that infected the greatest number of host
species (8 and 9, respectively). The nematodes
Aplectana membranosa Schneider, 1866,
Ochoterenella sp., Parapharyngodon sp., and
Physaloptera sp. larvae were found only in anuran
species. The digenean Gorgoderina parvicava
Travassos, 1922 was found only in L. vastus.
Cylindrotaenia americana Jewell, 1916 (Cestoda),
and Oligacanthorhynchus sp. (Acanthocephala)
were found only in P. diplolister (Table 1).
The highest intensity of parasites was found in the
rufous frog L. fuscus (n = 446). Pleurodema
diplolister and R. granulosa were the hosts
exhibiting the highest helminth richness (n = 6).
The diversity of the helminths tended to be greatest
in P. cicada (H' = 1.15) followed by L. vastus (H'=
1.03) (Table 2).
The overall host body size correlated positively
with richness (rs = 0.542, p < 0.001) and abundance
of parasites (rs = 0.578, p < 0.001). Considering the
analysis of each anuran host species, it was also
observed a significant positive correlation with
abundance and parasite richness for P. albifrons
(abundance/length: rs = 0.489, p = 0.02;
richness/length: rs = 0.475, p = 0.02) and P.
diplolister (abundance/length: rs = 0.882, p <
0.001; richness/length: rs = 0.740, p = 0.01).
However, for L. vastus, the relation of abundance
and length was negatively correlated (rs = -0.941, p
= 0.01) (Table 3).
210
RESULTS DISCUSSION
Neotropical Helminthology, 2020, 14(2), jul-dic Silva Neta et al.
(11)
Parasite taxa d % MA ± SE Range
Number of parasites/host species
Lfus
(4)
Lmac
(4)
Lmys
(1)
Lvas
(6)
Phal
(21)
Phci
(9)
Phcu
(3)
Pinor
(4)
Pldi
(10)
Prca
(1)
Psmy
(12)
Rhgr
Acantocephala
Oligacanthorhynchus sp. 0.003 1.1 0.01 ± 0.01 4 4
Cestoda
Cylindrotaenia americana 0.003 1.1 0.01 ± 0.01 4 4
Unidentified 10 10
Digenea
Gorgoderina parvicava 0.0008 1.1 0.01 ± 0.01 10 10
Nematoda
Aplectana membranosa 0.0008 1.1 0.01 ± 0.01 1 1
Falcaustra mascula 0.04 4.35 0.58 ± 0.36 1-31 49 1
Ochoterenella sp. 0.0008 1.1 0.01 ± 0.01 1 1
Oswaldocruzia mazzai 0.18 18.5 2.34 ± 1.19 1-104 104 60 16 20 1 12 1 1
Parapharyngodon sp. 0.0008 1.1 0.01 ± 0.01 1 1
Physaloptera sp. larvae 0.0008 1.1 0.01 ± 0.01 1 1
Raillietnema spectans 0.36 19.6 4.59 ± 2.16 1-180 20 56 4 9 4 3 2 218 109
Rhabdias sp. 0.007 3.3 0.09 ± 0.07 1-7 1 1 7
Table 1. Helminths recorded in the 12 host species collected in the Environmental Protection Area (EPA) Bica do Ipu, Ceará, Brazi. Dominance
(d), prevalence (%), mean abundance (MA) ± standard deviation (SE), range and number of parasites/host species are presented. Lfus =
Leptodactylus fuscus; Lmac = L. macrosternum; Lmys = L. mystaceus; Lvas = L. vastus; Phal = Physalaemus albifrons; Phci = P. cicada; Phcu
= P. cuvieri; Pinor = Pithecopus nordestinus; Pldi = Pleurodema diplolister; Prca = Proceratophrys caramaschii; Psmy = Pseudopaludicola
mystacalis; Rhgr = Rhinella granulosa. The number in parenthesis is the number of studied hosts.
211
Neotropical Helminthology, 2020, 14(2), jul-dic Helminths associated with anurans from Brazil
and three Amazonian strains infecting anurans in
the northeast region: Rhabdias breviensis
Nascimento et al. 2013 in R. granulosa from Piauí
state, Rhabdias pseudosphaerocephala Kuzmin,
Tkach & Brooks, 2007 in Rhinella jimi from Piauí
and Ceará states, and R. cf. stenocephala in
Leptodactylus vastus and L. macrosternum.
Rhabdias spp. are pulmonary parasites of anurans
and lizards (Baker, 1987; Teles et al., 2015;
Campião et al., 2016a; Toledo et al., 2017; Teles et
al., 2018). Rhabdias spp. are cryptic species, so
only with classical taxonomy, without the help of
molecular, it was not possible to precisely identify
the species.
Variation in host specificity may determine the
structure of helminth communities (Toledo et al.,
Silvera, 2012; Richardson et al., 2014). Eventually,
some vertebrates can act as paratenic hosts
(Yamaguti, 1963; Goldberg & Bursey, 2004), in
this case, the parasites can encyst until they reach
the proper host (Baker, 2007). In South America,
Oligacanthorhynchus sp. was recorded infecting
Odontophrynus americanus (Duméril & Bibron,
1841) in Paraguay (Campião et al., 2014). Thus P.
di pl oli st er is a new host record for
Oligacanthorhynchus sp.
Currently, the genus Rhabdias is composed of 84
species (Kuzmin & Tkach, 2018), being 18
reported in Neotropical anurans (Kuzmin et al.,
2016; Willkens et al., 2020). Müller et al. (2018)
assessing the molecular diversity of Rhabdias in
Brazil, reports the occurrence of cryptic species
Component community Lfus
(4)
Lmac
(4)
Lmys
(1)
Lvas
(6)
Phal
(21)
Phci
(9)
Phcu
(3)
Pinor
(4)
Pldi
(10)
Prca
(1)
Psmy
(12)
Rhgr
(11)
Richness
4 2 1 4
4
4
2
1
6
1
1 6
Diversity (H′) 0.72
0.08 0 1.03
0.98
1.15
0.69
0
0.46
0
0 0.98
Dominance (d)
0.70
0.90 - 0.60
0.60
0.50
-
1
0.90
-
- 0.50
Dominant species S Om - Fm Om Rs - Rs Rs - - S
S = Schrankiana sp.; Om = Oswaldocruzia mazzai; Fm = Falcaustra mascula; Rs = Raillietnema spectans.
Table 2. Ecological indices of parasite communities from species of anuran hosts collected in the Environmental
Protection Area (EPA) Bica do Ipu, Ceará, Brazi. Lfus = Leptodactylus fuscus; Lmac = L. macrosternum; Lmys = L.
mystaceus; Lvas = L. vastus; Phal = Physalaemus albifrons; Phci = P. cicada; Phcu = P. cuvieri; Pinor =
Pithecopus nordestinus; Pldi = Pleurodema diplolister; Prca = Proceratophrys caramaschii; Psmy =
Pseudopaludicola mystacalis; Rhgr = Rhinella granulosa. The number in parenthesis is the number of studied hosts.
212
Neotropical Helminthology, 2020, 14(2), jul-dic Silva Neta et al.
Table 3. Spearman correlation (r ) between richness/abundance and the body size of anuran hosts collected in
s
Ibiapaba plateau, Northeastern Brazil. N number of studied hosts. *values statistically significative (p < 0.05).
Hosts
N
Richness Abundance
rs p rs p
Physalaemus albifrons
21
0.47 0.029* 0.48 0.02*
Physalaemus cicada
9
0.54 0.11 0.63 0.05
Pleurodema diplolister
10
0.74 0.010* 0.88 < 0.001*
Leptodactylus fuscus
4
0.25 0.75 0.20 0.91
Rhinella granulosa
11
-0,06 0.83 -0.51 0.11
Leptodactylus macrosternum
4
-0.25 0.75 -1.00 0.08
Pseudopaludicola mystacalis
12
0.50 0.10 0.50 0.10
Leptodactylus vastus
6
-0.75 0.10 -0.94 0.01*
Total hosts 84 0,54 < 0.001* 0.57 < 0.001*
213
ACKNOWLEDGMENTS
Neotropical Helminthology, 2020, 14(2), jul-dic Helminths associated with anurans from Brazil
abundance of parasite species. According to Toledo
et al. (2017), this fact may be related to the greater
surface area available for colonization by parasites,
as well as the greater intake and more diversified
diet of larger frogs. However, an interesting case
was observed for L. vastus, in which the abundance
of parasites were negatively correlated with host
size, contrasting to the pattern mentioned above
(Poulin, 2004; Yoder & Coggins, 2007; Ibrahim,
2008; Hamann et al., 2012, 2013; Campião et al.,
2016b; Toledo et al., 2015, 2017).
The present study contributes to the knowledge of
the helminths infecting amphibians from Brazilian
Caatinga, as well as the understanding of the
diversity patterns of parasitic infracommunities
associated with amphibians.
We thank the Conselho Nacional de
Desenvolvimento Científico e Tecnológico
(CNPq) by the grants to A.F.S.N. (#141572/2019-
1), E.P.A. (#141322/2018-7), R.W.A.
(#303622/2015-6; #305988/2018-2), D.H.M.
(#313241/2018-0) and R.J.S. (#309125/2017–0),
PROTAX (#440496/2015–2) and the financial
support of Coordenação de Aperfeiçoamento de
Pessoal d e Nível Superior - C APES
(#88887.501922/2020-00) and Fundação de
Amparo à Pesquisa do Estado de São Paulo
FAPESP (#2016/50377–1).
2017). Herein, R. spectans, O. mazzai,
Schrankiana sp., and Rhabdias sp. may be
considered generalists and infected more than one
host species. Thus, sympatric hosts, although
phylogenetically distant may share some helminth
taxa, as they are exposed to similar environmental
conditions (Krasnov et al., 2012; Lima et al., 2012;
Brito et al., 2014). Schrankiana sp. has been
recorded in amphibians from the Hylidae and
Leptodactylidae families (Goldberg et al., 2007;
Campião et al., 2014; Müller et al., 2018; Oliveira
et al., 2019). This is the first record for Bufonidae
®. granulosa).
The high pattern of infection, abundance, and
prevalence was evident among individuals of R.
granulosa and L. fuscus. In general, members of
the Leptodactylidae are associated with terrestrial
habitats being frequently found closer to water
bodies, which may expose then to both aquatic and
terrestrial parasites (Campião et al., 2016a).
Host body size can influence the establishment of
parasite communities; usually larger individuals
offer larger colonization areas providing adequate
resources for parasite development and
reproduction (Poulin, 2004; Campião et al.,
2016b). Besides, some studies suggest that body
size influence on species richness and abundance
of parasitic helminths (Yoder & Coggins, 2007;
Ibrahim, 2008; Hamann et al., 2012, 2013; Toledo
et al., 2015, 2017). In the present study, the overall
size and the size of some amphibian individuals
were a determining factor in the richness and
Figure 1. Map of the study site in the municipality of Ipu, Ceará state, northeastern Brazil.
214
Aguiar, A, Morais, DH, Cicchi, PJP & Silva, RJ.
2014. Evaluation of helminths associated
with 14 amphibian species from a
neotropical Island near the southeast coast
of Brazil. Herpetology Review, vol. 45, pp.
227–236.
Aho, JM. 1990. Helminth communities of
amphibians and reptiles: comparative
approaches to understanding patterns and
processes. In: Parasite Communities:
Patterns and Processes. Springer
Netherlands, Dordrecht, pp 157–195.
Alcantara, EP, Ferreira-Silva, C, Silva, LAF, Lins,
AGS, Ávila, RW, Morais, DH & Silva, RJ.
2018. Helminths of Dermatonotus muelleri
(Anura: Microhylidae) from Northeastern
Brazil. Journal of Parasitology, vol. 104, pp.
550–556.
Anderson, RC. 2000. Nematode parasites of
vertebrates. Their development and
nd
transmission., 2 ed. Guelph, Ontario,
Canada.
Araujo-Filho, JA, Brito, SV, Lima, VF, Pereira,
AMA, Mesquita, DO, Albuquerque, RJ &
Almeida, WO. 2017. Influence of temporal
variation and host condition on helminth
abundance in the lizard Tropidurus hispidus
from north-eastern Brazil. Journal of
Helminthology, vol. 91, pp. 312–319.
Ayres, M, Ayres Jr, M, Ayres, LD & Santos, AA.
2007. Aplicações estatísticas nas áreas das
ciências bio-médicas. Instituto Mamirauá,
Belém.
Baker, DG. 2007. Flynn's Parasites of Laboratory
nd
Animals: 2 ed., Second. Blackwell
Publishing Ltd, Oxford, UK.
Baker, MR. 1987. Rhabdias collaris n. sp.
(Nematoda: Rhabdiasidae) from frogs of
Tanzania. Systematic Parasitology, vol. 9,
pp.199–201.
Bittencourt, EB & Rocha, CFD. 2003. Host-
ectoparasite Specificity in a Small Mammal
Community in an Area of Atlantic Rain
Forest (Ilha Grande, State of Rio de
Janeiro), Southeastern Brazil. Memórias do
Instituto Oswaldo Cruz, vol. 98, pp.
793–798.
Brito, SV, Corso, G, Almeida, AM, Ferreira, FS,
Almeida, WO, Anjos, LA, Mesquita, DO &
BIBLIOGRAPHIC REFERENCES Vasconcelos, A. 2014. Phylogeny and
micro-habitats utilized by lizards determine
the composition of their endoparasites in
the semiarid Caatinga of Northeast Brazil.
Parasitology Research, vol. 113, pp
3963–3972.
Bush, AO, Lafferty, KD, Lotz, JM & Shostak, AW.
1997. Parasitology Meets Ecology on Its
Own Terms: Margolis et al. Revisited.
Journal of Parasitology, vol. 83, pp. 575.
Campião, KM, Da Silva, RJ & Ferreira, VL. 2009.
Helminth parasites of Leptodactylus
podicipinus (Anura: Leptodactylidae) from
south-eastern Pantanal, State of Mato
Grosso do Sul, Brazil. Journal of
Helminthology, vol. 83, pp. 345–349.
Campião KM, Morais DH, Dias OT, Aguiar, A,
Toledo, GM, Tavares, LER & Silva, RJ.
2014. Checklist of Helminth parasites of
Amphibians from South America. Zootaxa,
vol. 3843, pp. 1–93.
Campião KM, Silva, ICO, Dalazen, GT, Paiva, F &
Tavares, LER. 2016a. Helminth parasites of
11 anuran species from the Pantanal
Wetland, Brazil. Comparative Parasitology,
vol. 83, pp. 92–100.
Campião, KM, Dias, OT, Silva, RJ, Ferreira, VL &
Tavares, LER. 2016b. Living apart and
having similar trouble: Are frog helminth
parasites determined by the host or by the
habitat? Canadian Journal of Zoology, vol.
94, pp. 761–765.
CFMV. Conselho Federal de Medicina Veterinária.
2013. Métodos de eutanasia. In: Guia
brasileiro de boas práticas para eutanásia
em animais. Comissao de Ética, Bioética e
Bem-da.
Graça, RJ, Oda, FH, Lima, FS, Guerra, V,
Gambale, PG & Takemoto, RM. 2017.
Metazoan endoparasites of 18 anuran
species from the mesophytic semideciduous
Atlantic Forest in southern Brazil. Journal
of Natural History, vol. 51, pp. 705–729.
Gallas, M & Silvera, EF. 2012. Pathologies of
O l i g a c a n t h o r h y n c h u s p a r d a l i s
(Acanthocephala, Oligacanthorhynchidae)
in Leopardus tigrinus (Carnivora, Felidae)
in Southern Brazil. Revista Brasileira de
Parasitologia Veterinária, vol. 21, pp.
308–312.
Garda, AA, Stein, MG, Machado, RB, Lion, MB,
Juncá, FA & Napoli, MF. 2017. Ecology,
Neotropical Helminthology, 2020, 14(2), jul-dic Silva Neta et al.
Biogeography, and Conservation of
Amphibians of the Caatinga. In: JMC,
Silva, I, Leal, M, Tabarelli (eds) Caatinga.
Springer International Publishing, Cham,
pp 133–149.
Goldberg, SR & Bursey, CR. 2004. Coelomic
metazoan endoparasites of 15 colubrid and
two elapid snake species from Costa Rica.
Caribbean Journal of Science, vol. 40, pp.
62–69.
Goldberg, SR & Bursey, CR. 2008. Helminths from
fifteen species of frogs (Anura, Hylidae)
from Costa Rica. Phyllomedusa, vol. 7, pp.
25–33.
Goldberg, SR, Bursey, CR, Caldwell, JP, Vitt, LJ &
Costa, GC. 2007. Gastrointestinal
helminths from six species of frogs and three
species of lizards, sympatric in Pará State,
Brazil. Comparative Parasitology, vol. 74,
pp. 327–342.
Hamann, MI, Kehr, AI, González, CE, Duré, MI &
Schaefer, EF. 2009. Parasite and
reproductive features of Scinax nasicus
(Anura: hylidae) from a South American
subtropical area. Interciencia, vol. 34, pp.
214–218.
Hamann, MI, Kehr, AI & González, CE. 2012.
Community structure of helminth parasites
of Leptodactylus bufonius (Anura:
Leptodactylidae) from northeastern
Argentina. Zoological Studies, vol. 51, pp.
1454–1463.
Hamann, M.I., Kehr, A.I. & González, C.E. 2013.
Helminth communities in the burrowing
toad, Rhinella fernandezae, from
northeastern Argentina. Biologia, vol. 68,
pp.1155–1162.
Hudson, P. 2005. Parasites, diversity, and the
ecosystem. In: F, Thomas, TF, Reanud, JF,
Guegan (eds) Parasitism and Ecosystems.
Oxford University Press, New York, pp
1–12.
Ibrahim, MM. 2008. Helminth infracommunities of
the maculated toad Amietophrynus
regularis (Anura: Bufonidae) from Ismailia,
Egypt. Diseases of aquatic organisms, vol.
82, pp. 19–26.
Koprivnikar, J, Marcogliese, DJ, Rohr, JR,
Orlofske, SA, Raffel, TR & Johnson, PTJ.
2012. Macroparasite infections of
amphibians: What can they tell us?
Ecohealth, vol. 9, pp. 342–360.
215
Krasnov, BR, Fortuna, MA, Mouillot, D,
Khokhlova, IS, Shenbrot, GI & Poulin, R.
2012. Phylogenetic signal in module
composition and species connectivity in
compartmentalized host-parasite networks.
The American Naturalist, vol. 179, pp.
501–511.
Kuzmin, Y & Tkach, VV. 2018. Rhabdias. In:
World Wide We b Electron. P u bl.
http://izan.kiev.ua/ppages/rhabdias/list.htm
. Accessed 3 Mar 2019.
Kuzmin, Y, Melo, FTV, Silva-Filho, HF & Santos,
JN. 2016. Two new species of Rhabdias
Stiles et Hassall, 1905 (Nematoda:
Rhabdiasidae) from anuran amphibians in
Para, Brazil. Folia Parasitologica, vol. 63,
pp. 3-10.
Lima, DP, Giacomini, HC, Takemoto, RM,
Agostinho, AA & Bini, LM. 2012. Patterns
of interactions of a large fish-parasite
network in a tropical floodplain. Journal of
Animal Ecology, vol. 81, pp. 905–913.
Magurran, AE. 2004. Measuring Biological
Diversity. Blackwell Publishing Company,
Oxford.
Müller, MI, Morais, DH, Costa-Silva, GJ, Aguiar,
A, Ávia, RW & Silva, RJ. 2018. Diversity in
t he g e nu s Rhabd ias ( N em a to d a,
Rhabdiasidae): Evidence for cryptic
speciation. Zoologica Scripta, vol. 47, pp.
595–607.
Muzzall, PM, Gillilland, MG, Summer, CS &
Mehne, CJ. 2001. Helminth communities of
green frogs Rana clamitans Latreille, from
Southwestern Michigan. Journal of
Parasitology, vol. 87, pp. 962.
Oliveira, CR, Ávila, RW & Morais, DH. 2019.
He lmi nth s ass oci at e d wi t h th re e
P h y s a l a e m u s s p e c i e s ( A n u r a :
Leptodactylidae) from Caatinga Biome,
Brazil. Acta Parasitologica, vol. 64, pp.
205–212.
Pinhão, R, Wunderlich, A, Anjos, LA & da Silva,
RJ. 2009. Helminths of toad Rhinella
icterica (bufonidae), from the municipality
of Botucatu, São Paulo State, Brazil.
Neotropical Helminthology, vol. 3, pp.
35–40.
Poulin, R. 2004. Macroecological patterns of
species richness in parasite assemblages.
Basic and Applied Ecology, vol. 5, pp.
423–434.
Neotropical Helminthology, 2020, 14(2), jul-dic Helminths associated with anurans from Brazil
216
Poulin, R & Morand, S. 2004. Parasite
Biodiversity. Smithsonian Institution
Books, Washington.
R C team. 2017. R: A Language and Environment
for Statistical Computing. R Found Stat
Comput.
Richardson, DJ, Gardner, SL & Allen, JW. 2014.
Redescription of Oligacanthorhynchus
microcephalus (Oligacanthorhynchidae).
Comparative Parasitology, vol. 81, pp.
53–60.
Santos, FLA & Souza, MJN. 2012. Caracterização
geoambiental do Planalto cuestiforme da
Ibiapaba Ceará. Revista Geonorte, vol. 3,
pp. 301–309.
Santos, VGT & Amato, SB. 2010. Helminth fauna
of Rhinella fernandezae (Anura: Bufonidae)
from the Rio Grande do Sul Coastland,
Brazil: Analysis of the parasite community.
Journal of Parasitologu, vol. 96, pp.
823–826.
Segalla, MV, Caramaschi, U, Cruz, CAG, Garcia,
PCA, Grant, T, Haddad, CFB, Santana, DJ,
Toledo, LF & Langone, JA. 2019. Brazilian
amphibians: List of species. Herpetologia
Brasileira, vol. 8, pp. 65–97.
Stumpf, IVK. 1981. Ciclo evolutivo da
Cylindrotaenia americana Jewell, 1916
(Cyclophyllidea: Nematotaeniidae) em
Bufo ictericus Spix, 1824. Acta Biologica
Paraense, vol. 10, pp. 31-39.
Teles, D, Sousa, JGG, Teixeira, AAM, Silva, MC,
Oliveira, RH, Silva, MRM & Ávila, RW.
2015. Helminths of the frog Pleurodema
diplolister (Anura, Leiuperidae) from the
Caatinga in Pernambuco State, Northeast
Brazil. Brazilian Journal of Biology, vol. 75,
pp. 251–253.
Teles, DA, Brito, SV, Araujo-Filho, JA, Ribeiro,
SC, Teixeira, AAM, Mesquita, DO &
Almeida, WO. 2018. Nematodes of the
Rhinella granulosa Spix, 1824 (Anura:
Bufonidae) from the Semiarid Northeastern
Caatinga Region of Brazil. Comparative
Parasitology, vol. 85, pp. 208–211.
Toledo, G.M., Morais, D.H., Silva, R.J. & Anjos,
L.A. 2015. Helminth communities of
L e p t o d a c t y l u s l a t r a n s ( A n u r a :
Leptodactylidae) from the Atlantic
rainforest, south-eastern Brazil. Journal of
Helminthology 89, 250–254.
Toledo, GM, Schwartz, HO, Nomura, HAQ,
Aguiar, A, Velota, RAMV, Silva, RJ &
Anjos, LA. 2017. Helminth community
structure of 13 species of anurans from
Atlantic rainforest remnants, Brazil.
Journal of Helminthology, vol. 92, pp.
438–444.
Travassos, L, Freitas, JFT & Kohn, A. 1969.
Trematódeos do Brasil. Merias do
Instituto Oswaldo Cruz, vol. 67, pp. 1–886.
Vicente, JJ, Rodrigues, HO, Gomes, DC & Pinto,
RM. 1991. Nematoides do Brasil 2a parte:
Nematoides de anfíbios. Revista Brasileira
de Zoologia, vol. 7, pp. 549– 626.
Willkens Y, Rebêlo GL, Santos JN, Furtado, AP,
Vilela, RV, Tkach, VV, Kuzmin, Y & Melo,
FTV. 2020. Rhabdias glaurungi sp. nov.
(Nematoda: Rhabdiasidae), parasite of
Scinax gr. ruber (Laurenti, 1768) (Anura:
Hylidae), from the Brazilian Amazon.
Journal of Helminthology, vol. 94, e54.
Windsor, DA. 1998. Con trove rsie s in
Parasitology, most of the species on earth
are parasites. International Journal for
Parasitology, vol. 28, pp. 1939–1941.
Wood, CL & Johnson, PTJ. 2015. A world without
parasites: Exploring the hidden ecology of
infection. Frontiers in Ecology and the
Environment, vol. 13, pp. 425–434.
Yamaguti, S. 1963. Systema Helminthum:
Acanthocephala. Interscience Publishers,
New York,
Yoder, H.R. & Coggins, J.R. 2007. Helminth
communities in five species of sympatric
amphibians from three adjacent ephemeral
ponds in southeastern Wisconsin. Journal of
Parasitology, vol. 93, pp. 755–761.
Zar, JH. 2010. Biostatistical Analysis, 5th ed.
Prentice-Hall, Upper Saddle River.
Received July 22, 2020.
Accepted September 11, 2020.
Neotropical Helminthology, 2020, 14(2), jul-dic Silva Neta et al.