REVIEW ARTICLE / ARTÍCULO DE REVISIÓN
CHROMOSOMES AND CYTOGENETICS OF HELMINTHS (TURBELLARIA,
TREMATODA, CESTODA, NEMATODA AND ACANTHOCEPHALA)
CROMOSOMAS Y CITOGENÉTICA DE HELMINTOS (TURBELLARIA, TREMATODA,
CESTODA, NEMATODA Y ACANTHOCEPHALA)
1 1 1 2 3
Tanveer A. Sofi , Fayaz Ahmad , Bashir A. Sheikh , Omer Mohi Ud Din Sofi & Khalid M. Fazili
1Post Graduate Department of Zoology, University of Kashmir, Srinagar, Kashmir, 1900 06, India.
2SK University of Agricultural Sciences and Technology, Shuhama, Aluestang Srinagar, 1900 06, India.
3Post Graduate Department of Bitechnology, University of Kashmir, Srinagar, Kashmir, 1900 06 Ph. No. India.
09797127214. stanveer96@gmail.com
Neotropical Helminthology, 2015, 9(1), jan-jun: 113-162.
ABSTRACT
Keywords: chromosomes – cytogenetics - Acanthocephala- Cestoda- - Nematoda- Trematoda- Turbellaria.
We review the literature from 1886 to 2014 and the current status of knowledge of the
chromosomes and cytogenetics of all species of Turbellaria, Trematoda, Cestoda, Nematoda, and
Acanthocephala. Karyological data are discussed and tabulated for 614 species: 115 species of
Turbellaria, 278 species of Trematoda, 117 species of Cestoda, 85 species of Nematoda and 19
species of Acanthocephala. Turbellarians are not parasitic except for a few possible exceptions
and they show a gradual reduction of the basic number of chromosomes. Trematodes are
numerous which points towards the continued efforts in this field of research. Data on
chromosomes are lacking for acetabulate cestodes of the orders: Litobothriidea,
Lecanicephalidea, Cathetocephalidea, Rhinebothriidea and Tetrabothriidea.
113
RESUMEN
Palabras clave: Acanthocephala- Cestoda- citogenética - cromosomas - Nematoda- Trematoda- Turbellaria.
En este artículo revisamos la literatura desde 1886 hasta 2014 y el estado actual del conocimiento
de los cromosomas y la citogenética de todas las especies de las familias de turbellaria,
trematoda, cestoda, nematoda y acanthocephala. Datos cariológicos son analizados y tabulados
para 614 especies: 115 especies de turbellaria, 278 especies de trematoda, 117 especies de
cestoda, 85 especies de nematoda y 19 especies de acantocephala. Los Turbelarios no son
parásitos a excepción de unas pocas posibles excepciones y muestran una reducción gradual del
número básico de cromosomas. Trematodes son numerosos requiriendo apuntar hacia los
esfuerzos continuos en este campo de investigación. Los datos sobre los cromosomas se carecen
para cestodos acetabulados de las órdenes: Litobothriidea, Lecanicephalidea,
Cathetocephalidea, Rhinebothriidea y Tetrabothriidea.
ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
INTRODUCTION
114
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015
As with molecular data, cytogenetic
information can reveal differences and
similarities that may not be obvious at the
morphological level. White (1978) estimated
that more than 90% of all speciation events are
accompanied by karyotypic change. If this is
correct, then chromosomal studies should be
widely applicable to the problems of sorting
groups of morphologically similar (sibling)
species. Chromosomes are studied as a
morphological manifestation of the genome in
terms of their microscopically visible size,
shape and number, and karyology represents a
qualitative approach to phylogeny. To what
extent, though, can karyotypic features be
suitable for phylogenetic inference? Patterns
of chromosomal divergence within a group
may not necessarily parallel those of
morphological features (Gold, 1980; Baker &
Bickham, 1980), but most often species related
from a morphological point of view show
karyological affinities. If karyotypic features
are plotted over a phylogenetic tree based on
molecular or morphological data, the
processes involving chromosome evolution
might be clarified.
A karyotype is the number and appearance of
chromosomes in the nucleus of eukaryotes
(Stebbins, 1950; White, 1973). The term is also
used for the compliment set of chromosomes
in a species or an individual organism.
Karyotype describes the number of
chromosomes and what they look like under a
light microscope. Attention is paid to their
length, the position of chromosomes, any
differences between the sex chromosomes and
any other physical characteristics (King et al.,
2006). The preparation and study of
karyotypes is a part of cytogenetic. The study
of whole sets of chromosomes is known as
karyology. The chromosomes are depicted (by
rearranging a microphotograph) in a standard
format known as karyogram or ideogram: in
pairs, ordered by size and position of
centromeres for chromosomes of the same
size. The basic number of chromosomes in the
somatic cells of an individual or a species is
somatic number and is designated as 2n. In
normal diploid organisms, autosomal
chromosomes are present in two copies.
Polyploid cells have multiple copies of
chromosomes and haploid cells have single
copies. Karyotypes can be used for many
purposes such as to study chromosomal
aberrations and taxonomic relationships and to
gather information about past evolutionary
events.
Most karyotype studies use cells that are near
the end of prophase or in early metaphase of
mitosis because the chromosomes are compact
and densely staining and have a characteristic
size and shape. The chromosome size, the
location of the centromere, and patterns of
light and dark staining that occur when
chromosomes are treated with different
chemical dyes are collectively referred as
chromosome morphology and the number and
morphology of an individual's chromosomes is
called that individuals karyotype. The analysis
of karyotypes of different organisms proves
quite useful in species description and
identification (Stebbins, 1950; White, 1973).
Taxonomic identification of the helminth
parasites which causes diseases is absolutely
essential for effective treatment. Taxonomy
plays very important role in the management
and prophylaxis of diseases by biological
means. Anticipating a problem is always more
time and cost effective than responding to a
crisis, no matter how effective the response.
Systematic biology provides and integrates the
knowledge that is crucial for any effort to be
proactive in the arena of emerging parasitic
and infectious diseases. The aim is to complete
the global inventory of parasitic species, an
absolute necessity if we are to assess risk of
parasitic diseases. Taxonomy is important in
the field of Biodiversity and Conservation,
Sofi et al.
115
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015
Research and Studies, Agriculture and Pest
management, Quarantine, National defence,
Fisheries and Aquaculture, Parasitology and
Veterinary Science, Conservation of Plants,
Animals and Microbes.
The purpose of this study is to: (1) Find out the
chromosome number of helminths from
different vertebrates; (2) Find out the
Karyotype characteristics of helminthes; (3)
Differentiate helminths on the basis of the
karyological characteristics; (4) Role of these
studies in cytotaxonomy, and (5) Find out the
general aspects such as trends of karyotypic
evolution and sex mechanism of trematodes.
The present methodology is in accordance
with the all articles find about chromosomes of
Turbellaria, Trematoda, Cestoda, Nematoda
and Acantocephala in Google Scholar,
Elesiever, Jstor and Springer. For karyotyping,
chromosomes descriptions were on the basis of
size and centromere position (Petkeviciute &
Leshko, 1991). Relative lengths of
chromosomes were calculated by the division
of the individual chromosome length by the
total haploid length and centromeric indices
(ci) were determined by division of the length.
The terminology relating to centromere
position follows that of Levan et al. (1964). A
chromosome is metacentric (m) if the ci falls in
the range of 37.5–50.0, submetacentric (sm) if
25.0–37.5, subtelocentric (st) if 12.5–25.0 and
acrocentric (a) if < 12.5. When the centromere
position was on the borderline between two
categories, both are listed.
Chromosomes of Turbellaria
Among the turbellarians, records of
MATERIALS AND METHODS
Chromosomes and cytogenetics of helminths
chromosome numbers among the primitive
Acoela are few, but three species of the
Convolutidae have been studied and all seem
to indicate that the somatic number of very
small chromosomes is somewhat variable but
high-ranging from 20 to 30. Records for the
other orders of this basically hermaphroditic
and occasionally parthenogenetic class are
numerous and the results have been
corroborated by various researchers. Among
the Alloeocoela, members of the
Prorhynchidae, the Plagiostomidae, and the
Bothrioplanidae usually show a basic haploid
number of 10 (reduced to 5 in one species), but
the Monocelididae have the haploid number of
3, while the Pseudostomidae have either 4-5 or
8-10. Since polyploidy is common among the
turbellarians, the basic haploid chromosome
number for the alloeocoels may be 5, although
Monocelis fusca [Ruebush (1938)]; (n = 3)
does not readily fit into the schema. Among the
Tricladida there seems to be a much greater
degree of variation in the basic haploid number
of chromosomes. Among the Planariidae the
number ranges from 6 to 24 (6, 8, 12, 16, 18,
and 24 have been recorded). Curtisia and some
polycelids have n = 6. In other polycelids
polyploidy is believed to give rise to the
species having n = 12, 18, or 24. Lepori (1953a,
b) believes that in some cases among the
polycelids true fertilization does not occur, and
that the multiples of the basic chromosome
number may perhaps be due to failure to
undergo reduction divisions (a condition
Lepori terms gynogenesis). In the genus
Planaria most of the species have the basic
chromosome number of 8. In the genus
Dugesia, the number varies from 8 to 16 or to
24, again an example of possible polyploidy,
but the appearance of 12 chromosomes in
Dugesia alpina [Rappeport (1915)]; may be an
indication that the basic number is 4 rather than
8, as stated by Benazzi-Lentati, 1949. Among
the Dendrocoelidae we again find considerable
variation in the basic haploid number.
Dendrocoelum has species with 8 and others
with 16 chromosomes (possible examples of
RESULTS AND DISCUSSION
116
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
polyploidy). Procotyla and one variety of
Dendrocoelum lacteum [Pennypacker (1954)]
(both with 7 haploid chromosomes) and
Bdellocephala with 10 chromosomes are
variants (possible aneuploidy). Other families
such as the marine Bdellouridae and the
Procerodidae are represented by too few
species in which the basic chromosome
number has been determined (Bdelloura,
where n = 6 and fragmentation may raise the
number as high as 12; and Procerodes, with n =
6) to be indicative of their evolutionary
position, although the presence of
fragmentation may point toward a possible
compound nature of the gametic
chromosomes. Turning to the Polycladida we
again note variability in the haploid
chromosome number which ranges from 6 to 8
and occasionally to 9 or 10. The Euryleptidae,
the Leptoplanidae, and the Prosthiostomidae
seem to have the basic number of 8 while the
Planoceridae possess 10 chromosomes, but no
such consistency appears among the genera of
the Stylochidae where the basic numbers are
either 9 or 10. The single pseudocerid
examined has 9 chromosomes. It might be
suggested that in these cases possible fusion of
some of the chromosomes may have occurred,
thus reducing the number from 10 to 9, or even
to 8, and thus showing relationship to the basic
10 pattern set by the Planoceridae as a whole.
An alternative possibility is that a doubling of
one or more chromosomes has caused the
deviation from a basic number of 8, as
represented by the Euryleptidae. On purely
morphological grounds the planocerids are
regarded as the more primitive and the
euryleptids as more specialized among the
polyclads. Among the higher Rhabdocoela, we
again find considerable variation in numbers,
but the basic count is low, ranging from 2 to 6,
and it is suggested that fragmentation of one or
more chromosomes plus some group
duplication of the basic number may be
involved. Among the supposedly more
primitive rhabdocoels (Catenulidae) the basic
number runs much higher, ranging from 15 to
20 and the somatic numbers may reach to 40
[Stenostomum, Rhynchoscolex, Catenula and
Fuhrmannia = Suomina are representative
genera]. According to Pennypacker- (1954) -
such variation is of evolutionary importance in
that as a general rule a larger number of smaller
chromosomes are indicative of ancestral
conditions and a smaller number points toward
a more recently emerged species. Among the
Typhloplanidae it may be noted that
Opistomum, Krumbachia, Solenopharynx,
Amphibolella, some protoplanellids, and
Phaenocora, as well as the North American
form of Rhynchomesostoma rostratum show a
basic number of 2. (The European race of R.
rostratum has 3 chromosomes, as do
Trigonostomum, some protoplanellids, and
Co-strata.) Papi- (1950) - indicates that the
basic number for the Mesostominae is 4, but
through fusion, fragmentation, or ploidy, some
species show n = 2, 3, 5, or 8. The Dalyelliidae
all show n = 2. Jones, 1944, has indicated that
among the Macrostomidae, the basic number is
probably 3 and that a few species show
multiples in the form of 6 and 9 as the reduced
number of chromosomes (some species
however, show 2 and 8). The Graffillidae also
show at least in the genus Paravortex that the
basic number is 2, doubled in one species to 4.
The Provorticidae have a basic number of 3.
The Kalyptorhynchidae vary from 2 to 3 to 8
(Table 1).The single temnocephalid examined
has 8 chromosomes. As yet there seems to be
no complete agreement between chromosome
number and the phylogenetic position of these
forms as determined by other criteria, but on
the other hand no absolute contradictions have
come to light. Although the turbellarians are
not parasitic except for a few possible
exceptions, they have been introduced into this
discussion because they do show the gradual
reduction of the basic number of chromosomes
from a large number of small chromosomes to
a smaller number of larger units, not only
within the group as a whole, but in some cases
within races of the same species, and may
possibly give hints as to the derivation of the
117
Trematoda which do show a much greater
conformity between the chromosome number
and the taxonomic position as based on other
criteria. There seems to be considerable
evidence already available pointing to the
trematodes as evolving from a rhabdocoel
stock, and possibly from the dalyelliid group.
Cytological evidence seems to corroborate this
interpretation of a rhabdocoel ancestry, but if
such development came through the
dalyelliids, it must have been from a stock
much less specialized than the present day
forms which are regarded by many as being
among the more advanced of the rhabdocoels.
In this same connection it may be of interest to
point out that the acoelids and the alloeocelids
are regarded as the most primitive of the
turbellarian line of development and most
consistently possess the highest basic number
of chromosomes (10 in most of the species
examined). Through some form such as
Bothrioplana (n = 10) could have come the
triclads (some of the dendrocoelids show this
basic number of 10). Polyclads and the
rhabdocoels lack such close cytological
connection with a possible alloeocoelid
ancestry although some of the polyclad
planocerids and some of the rhabdocoelid
macrostomids do show practically the same
basic chromosome numbers.
Table 1. Chromosomes of Turbellaria (From 1905 Till Date).
CERCYRINAE
Cercyra hastate 2n = 14 (3sm + 3st + 1t) Galleni & Puccinelli (1982)
Balliania thetisae 2n = 22 Gourbalt (1978)
UTERIPORIDAE
Uteriporus vulgaris 2n = 16 Ball (1976)
Foviella affinis 2n = 16 Ball (1976)
PROCERODIDAE (PROCERODINAE)
Procerodes gerlachei 2n = 12 Bohmig (1908); Ruebush
(1938)
Procerodes littoralis
2n = 14
Ball (1976, 1979); Galleni & Puccinelli (1975,
1979)
Procerodes dohrni
2n = 14
Galleni &
Puccinelli (1979)
OPISTHOBURSIDAE
Opisthobursa mexicana
2n = 14
Benazzi &
Giannini (1973)
PSEUDOCERIDAE
Yungia aurantiaca
2n = 18 (4m + 2sm + 2t)
Galleni &
Puccinelli (1985)
Dugesia lugubris
2n = 8
Galleni et al. (1989)
Polycelis nigra
2n = 16; 3n = 24
Lamatsch et al. (1998)
Dugesia polychroa
2n = 8; 3n = 12 (1m + 3a)
Lamatsch et al. (1998)
Dugesia sicula Lepori
2n = 18
Fillipi et al. (1998)
Dugesia gonocephala
2n = 16; 8m
Baguna et al. (1999); Deri et al.
(1999)
Schmidtea polychroa
2n = 8
Benazzi (1957)
Schmidtea polychroa
3n = 12
Benazzi (1957)
Schmidtea polychroa
4n = 16
Benazzi (1957)
Schmidtea polychroa
5n = 20
Benazzi (1957)
Schmidtea lugubris
2n = 8
Benazzi (1957)
Schmidtea lugubris
2n = 6
Benazzi (1957)
Schmidtea mediterranea
2n = 8
Benazzi (1957)
Schmidtea mediterranea
3n = 12
Benazzi (1957)
Dugesia benazzi
2n = 16
Baguna et al. (1999)
Dugesia hepta
2n = 14
Baguna et al. (1999)
Dugesia etrusca 2n 16 Baguna et al. (1999)
Dugesia subtentaculata 2n = 16 Baguna et al. (1999)
Dugesia sicula 3n = 27 Baguna et al. (1999)
Thysanozoon brocchi 2n =18 Schockaert (1905); Ruebush (1938)
Family Species No. and Morphology of
Chromosomes Bibliographic reference
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
DENDROCOELIDAE
Dendrocoelum lacteum 2n =14 & 16 Pennypacker
(1954)
Dendrocoelum infernale 2n =32 Aeppli
(1951); Pennypacker (1954)
Procotyla fluviatilis 2n =14 Pennypacker
(1954)
Bdellocephala brunnea 2n =20 Momma
(1953)
BDELLOURIDAE
Bdelloura candida 2n =12-24 Pennypacker
(1954)
Bdellura candida 2n = 12 Pennypacker (1938)
EURYLEPTIDAE
Cycloporus papillosus 2n =16 Francotte
(1898); Ruebush
(1938)
Oligocladus aurritus 2n =16 Francotte
(1897); Ruebush
(1938)
Prostheceraeus vittatus
2n =12
Gerard
(1901); Ruebush
(1938)
LEPTOPLANIDAE
Leptoplana tremellaris
2n =16
Francotte (1898); Ruebush
(1938)
PROTHIOSTOMIDAE
Prosthiostomum siphunculus
2n =16
Francotte (1898); Ruebush (1938)
STYLOCHIDAE
Stylochus pilidium
2n =18
Gerard
(1901); Ruebush
(1938)
Eustylochus ellipticus
2n =20
Von Name
(1899); Ruebush (1938)
PLANOCERIDAE
Planocera inquilina
2n =20
Patterson & Wieman
(1912); Ruebush (1938)
Planocera nebulosa
2n =20
Von Name
(1899); Ruebush (1938)
CATENULIDAE
Fuhrmannia sp? (= Suomina sp?)
2n =32
Ruebush (1938)
Catenula virginiana
2n =40
Ruebush (1938)
Rhyncoscole simplex 2n =40 Ruebush (1938)
Stenostomum grandi 2n =40 Ruebush (1938)
Stenostomum sp?2n =40 Ruebush (1938)
118
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
RHYNCHODEMIDAE
Dolichoplana carvalhoi
2n = 14 (5m + 1sm + 1st);
3n = 21 (1a,4c,5b,6,7a,7b (m) +
1b,2a,(sm) + 3c,3d (st);
Alvarez &
Almeida (2007)
Pentacoelum hispaniense Sluys, 1989
2n = 14; 2m + 3t/st + 2sm
Vila-Farre et al. (2008)
CONVOLUTIDAE
Aphanostoma diversicolor
2n =40-60
Ruebush
(1938)
Convoluta sp?
2n =40-60
Ruebush
(1938)
Polychoerus caudatus
2n =62
Gardiner
(1898)
Polychoerus carmelensis
2n = 34
Costello (1970)
BOTHRIOPLANIDAE
Bothrioplana semperi
2n =20-30
Pennypacker
(1954)
PLAGIOSTOMIDAE
Hydrolimax grisea
2n =20
Pennypacker (1954)
Plagiostomum stetlatum
2n =10
Ruebush (1938); Pennypacker(1954)
PRORHYNCHIDAE
Geocentrophora applanatus
2n =20
Ruebush
(1938); Pennypacker (1954)
Prorhynchus stagnalis
2n =20
Ruebush
(1938); Pennypacker (1954)
PSEUDOSTOMIDAE
Pseudostomum caecum
2n =16-20
Jones (1943); Pennypacker (1954)
Pseudostomum sp?
2n =8-10
Ruebush
(1938); Pennypacker (1954)
MONOCELIDIDAE
Monocelis fusca
2n =6
Ruebush
(1938); Pennypacker (1954)
PLANARIIDAE
Curtisia foremanni
2n =12
Pennypacker
(1954)
Polycelis tenuis 2n =12 Melander (1950); Lepori (1953)
Polycelis nigra 2n =36 Lepori (1953)
Dugesia benazzi 2n =16 & 32 Benazzi-Lentati and Nardi (1950)
Dugesia gonocephala 2n =16 & 32 Schleip (1907); Benazzi- Lentati (1949)
Dugesia alpina 2n =24 Rappeport (1915); Benazzi- Lentati (1949)
Dugesia sp?2n =48 Ruebush (1938)
Planaria polychroa 2n =16 Mattieson (1904); Ruebush (1938)
Planaria torva 2n =16 Mattieson (1904); Ruebush (1938)
Phagocata fawcetti 2n = 38 Ball and Gourbault (1975)
Family Species No. and Morphology of
Chromosomes Bibliographic reference
Macrostomum beaufortensis
2n =6
Ferguson (1940)
Macrostomum tuba
2n =6
Ferguson (1940)
Macrostomum rirginianum
2n =6
Ferguson (1940)
Macrostomum hustedi
2n =12
Jones
(1944)
Macrostomum bispiralis 2n =16 Ferguson (1940)
Macrostomum kepneri 2n =18 Ferguson (1940)
DALYELLIIDAE
Castrella truncata 2n =2 Ruebush (1938)
Dalyellia abursalis 2n =2 Ruebush (1938)
Dalyellia armigera 2n =2 Ruebush (1938)
Dalyellia triangulata 2n =2 Ruebush (1938)
Dalyellia virginiana 2n =2 Ruebush (1938)
Dalyellia riridis 2n =2 Ruebush (1938)
Dalyellia (4 sp'?) 2n =2 Ruebush (1938)
TEMNOCEPHALIDAE
Temnocephalus canis
2n =16
Ruebush (1938)
TYPHLOPLANIDAE
Promesostoma marmoratum
2n =12
Ruebush (1938)
Bothriomesostoma personatum
2n =10
Ruebush (1938)
Bothriomesostoma essenii
2n =10
Papi
(1950)
Byrsophlebs sp?
2n =8
Ruebush (1938)
Mesostoma rhynchotum
2n =16
Valkanov (1938)
Mesostoma ehrenbergii (Europe)
2n =10
Papi
(1950)
Mesostoma ehrenbergii wardi (U.S.A.)
2n =8
Husted
et al.
(1939)
Mesostoma benazzii
2n =8
Papi (1950)
Mesostoma lingua
2n =4 & 6
Ruebush (1938)
Costrata subsala
2n =6
Ruebush (1938)
Costrata virginiana
2n =6
Ruebush (1938)
Costrata sp?
2n =6
Ruebush (1938)
Typhloplana viridata
2n =6
Ruebush (1938)
Trigonostomum lillei
2n =6
Ruebush (1938)
Protoplanella sp?
2n =6
Ruebush (1938)
Protoplanella sp?
2n =4
Ruebush (1938)
Opistomum pallidum
2n =4
Ruebush (1938); Papi (1952, 1953)
Opistomum sp?
2n =8
Ruebush (1938)
Krumbachia minuta
2n =4
Ruebush (1938)
Krumbachia virginiana
2n =4
Ruebush (1938)
Solenopharynx sp?
2n =4
Ruebush (1938)
AmphibolelIa virginiana
2n =4
Ruebush (1938)
Phaenocora kepneri
2n =4
Ruebush (1938)
Phaenocora lutheri
2n =4
Ruebush (1938)
Phaenocora virginiana
2n =4
Ruebush (1938)
Phaenocora sp?
2n =4
Ruebush (1938)
Rhynchomesostoma rostratum
2n =4 & 6
Volkanov
(1938); Papi (1950)
KALYPTORHYNCHIDAE
Polycystis goettei
2n =16
Ruebush (1938)
Microkalyptorhynchus virginianus
2n =6
Ruebush (1938)
Acrorhynchus reprobatus
2n =4
Ruebush (1938)
Gyratrix hermaphroditicus
2n =4
Ruebush (1938)
PROVORTICIDAE
Provortex affinis 2n =6 Ruebush (1938)
Provortex sp?2n =6 Ruebush (1938)
GRAFFILLIDAE
Paravortex cardii 2n =4 Hallez (1908); Ruebush (1938)
Paravortex gemellipara 2n =8 Ball (1916); Ruebush (1938)
MACROSTOMIDAE
Macrostomum hystrix 2n =4 Ferguson (1940)
Macrostomum viride 2n =4 Ferguson (1940)
119
Family Species No. and Morphology of
Chromosomes Bibliographic reference
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
a = acrocetric; a, b, c, d = chromosome variants; m = metacentric; sm = sub-metacentric; st = subtelocentric acrocentric.
120
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
recorded in most species (for a review see
Petkeviciute & Staneviciute, 2008). The
chromosome complement of Cercariaeum
crassum (Wesenberg-Lund, 1934) is unusual
among digeneans due to the low number,
2n=10. The karyotype is composed of large
and exclusively bi-armed chromosomes. Such
a karyotype presumably results from a
decrease in chromosome number through
centromere–centromere Robertsonian fusions
that have affected mono-armed chromosomes
leading to the formation of large metacentric
elements. Comparative analysis of
chromosomes of related trematode species
indicated that the reduction of chromosome
numbers resulted from centromeric fusion
rather than elimination of chromosomes
(Grossman et al., 1981). Acrocentric mono-
armed chromosomes prevail in the karyotypes
of larval B. luciopercae, 2n = 14, and larval A.
isoporum sensu Wisniewski, 1959, 2n = 14
(Petkeviciute & Staneviciute, 2008). It is
notable that the mean total length of haploid
complements (TCL) of these two species does
not exceed the TCL of C. crassum, despite
different chromosome numbers.
It may be noted, however, that all of the
heterophyids (Cryptocotyle and Acetodextra),
bucephalids (Bucephalus and Rhipidocotyle),
fasciolids (Fasciola), and zoogonids
(Zoogonus) examined (7 species), as well as 1
species of a gorgoderid (Probolitrema) and 1
of a paramphistomatid (Gigantocotyle) have a
basic number of 6 [perhaps thus indicating
some relationship to the more primitive
paramphistomatids (n = 7)]. The notocotylids
(Notocotylus) have 7 chromosomes, but too
few examples have been studied to determine
the value of such counts. One species of an
allocreadid (Bunodera), 1 gorgoderid
(Gorgoderina), and 1 schistosomatid
(Schistosomatium) have 7 chromosomes, in
addition to the 2 amphistomids (Zygocotyle
and Gastrothylax). All of the Schistosoma
species studied show n = 8, as do 2 species of
g o r g o d e r i d s ( G o r g o d e r a a n d
Chromosomes of Trematoda
A number of workers on trematode cytology,
especially Jones and his co-workers, have
pointed out the possible taxonomic value of the
study of the numbers, volume, and/or size and
shape of chromosomes, and much of our
information along these lines is based upon
their investigations. Among the Monogenea
only the Polystomidae have been investigated
for the purpose of determining the
chromosome numbers. Polystoma
integerrimum (Frolich, 1791) has the haploid
number of 4 chromosomes and Gyrodactylus
elegans has 6. This could point to a dalyelliid
ancestry (n = 2 in all species studied) although
more primitive ancestors of the dalyelliids may
have had a larger basic number of
chromosomes (Table 2). Among the Digenea,
the paramphistomatids have been regarded as
the most primitive group, but from a
cytological standpoint the basic chromosome
number is quite variable and is therefore of
little guidance in determining possible
relationships. For example, Gigantocotyle
shows a basic number of 6, Gastrothylax and
Zygocotyle have 7, Cotylophoron and
Diplodiscus have 8, while Heronimus
chelydrae has 10. No one family of the
rhabdocoel group could be regarded as being
directly ancestral based on such divergent
records. As much as the exact phylogenetic
relationships of the remaining families of the
Digenea are not as yet fully determined, even
on morphological grounds, and the various
authorities disagree as to their proper
taxonomic positions, no attempt will be made
to discuss our knowledge of chromosome
numbers in any significant succession. The
diploid chromosome numbers vary among
studied digenean taxa, from 12 to 28 (Bariene,
1993); chromosome sets with 20 or 22
elements predominate. But 56 chromosomes
were found in diploid sets of Clonorchis
sinensis (Cobbold, 1875) (Park et al., 2000).
Allocreadiid species possess comparatively
large chromosomes, up to 13–14 mm, but low
haploid numbers of six, seven or eight were
121
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Phyllodistomum), 1 troglotrematid
(Paragonimus), 3 species of allocreadids
(B u n o d e r a , C re p i d o s t o m u m and
Allocreadium), 1 species of a rhopaliid
(Rhopalias), and 2 species of the reniferids
(Staphylodora and Telorchis), in addition to
the 2 species of paramphistomatids
(Cotylophoron and Diplodiscus). Two species
of the azygiids (Azygia and Proterometra), 2
species of the plagiorchids (Eustomas and
Glypthelmins), 1 species of a spirorchid
(S p i r o r c h i s ) , 1 p r o n o c e p h a l i d
(Macrovestibulum), 1 lecithodendriid
(Brandesia), 1 monorchid (Asymphylodora), 1
hemiurid (Halepegus), and 1 reniferid
(Auridistomum), in addition to 1 race of the
paramphistomatid Diplodiscus (temperatus)
have 9 chromosomes. Those having a basic
number of 10 chromosomes are 1 species of a
cyclocoelid (Cyclocoelum), 2 species of
dicrocoelids (B rachy coelium and
D i c ro c o e l i u m ) , 1 c l i n o s t o m a t i d
(C l i n o s t o m u m ) , a n d 1 h e m iur i d
(Isoparorchis). Only Heronimus of the
paramphistomatids falls in this cate-gory. Four
species of plagiorchiids (3 Pneumonoeces and
1 Plagitura), 1 echinostomid (Parorchis), 2
lecithodendriids (Acanthatrium and
Loxogenes), and 15 species of reniferids (1
Dasymetra, 1 Lechriorchis, 1 Natriodora, 6
Neorenifer, 2 Pneumatophilus, 1 Renifer, and
3 Telorchis) have 11 chromosomes. In these
cases again no direct relationship to the
paramphistomatids can be noted in terms of
chromosome number, although in terms of the
presence of an increased number of
chromosomes as indicating a possible
primitive condition, these forms might be
regarded as less specialized than others of the
Digenea. It should be pointed out, however,
that in many cases it is not only in the matter of
actual number of chromosomes that
similarities (relationships) may be indicated:
total volume of chromatic material, shapes and
sizes of the chromosomes, point of spindle
attachment to individual chromosomes, and
behavior during division may afford evidence
of equal importance. It is also definite that
sufficient differentiation occurs to facilitate
identification of species. One species of
Cephalogonimus has 14 chromosomes which
may be a case of doubling of the usual number
of 7 in this genus. If one follows the belief of
Ciordia (1949), who doubts the existence of
polyploidy among the Trematodes, this would
be an example of extreme aneuploidy-
duplication of individual chromosomes and
not of the set as a unit. The matter of the
presence or absence of the so-called
heterochromosome ("sex chromosome") has
not been determined in most of the trematode
species examined, but in a few cases the
recognition of two types of sex cells differing
from each other in terms of the number, size,
shape, volume or behavior of the chromosomal
elements would seem to indicate that such
sexual differentiation does occur. As examples
we may mention the studies on Schistosoma
and Schistosomatium. The earlier observations
on Schistosoma haematobium, S. mansoni, and
S. japonicum (Katsurada, 1904); seemed to
indicate that two types of sperm could be
identified and that adult males possessed 15
and adult females possessed 16 somatic
chromosomes. This would seem to mean that
an X-O condition obtained in these forms.
Other studies reported the numbers as 14 and
16, respectively, and were interpreted as
showing the presence of a 2X + 12 and a 4X +
12 chromosome complex. Niyamasena (1940)
in his studies on S. mansoni found the somatic
number of chromosomes to be 16 in each sex,
and could not find any evidence of the presence
of recognizable sex chromosomes although the
possibility of an X-Y condition could not be
ruled out. Most recent studies support the
finding of 16 chromosomes as the diploid
number in all adults of all three of the above
Schistosoma species and the inability to
recognize sex chromosomes as being present,
16 chromosomes are also present in each sex of
S. mansoni carcariae (Bilharz, 1852). Recent
studies on Schistosomatium douthitti (Bilharz,
1852); have presented 2 different
122
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
interpretations of what is undoubtedly an
example of the presence of distinguishable sex
chromosomes. One study (Woodhead, 1957)
indicates the presence of a single "X"
chromosome in the male, while the other
(Short, 1957) presents evidence of the
heterogametic condition as prevailing in the
female. Studies in this laboratory seem to
substantiate this second interpretation. The
somatic (diploid) number of chromosomes in
each sex is 14, with the male showing a pair of
large V-shaped chromosomes that are not
matched in the female. In the latter case there is
a single large V-shaped chromosome
apparently paired with a single rod-shaped
body. This rod-shaped chromosome does not
appear in any of the male cells. It is interpreted
as indicative of a ZZAA condition in the male
and a ZWAA condition in the female. Short &
Menzel (1957) report a similar condition in the
cercariae of Ornithobilharzia canaliculata,
where 2n = 16. No other records of the
presence of recognizable sex chromosomes
among the trematodes seem to have been
substantiated by recent investigations. No
records of the "diminution" phenomenon have
been brought to our attention. Le Roux (1958)
in a study of mammalian blood flukes, has
suggested a division of the genus
Schistosonmai into several groups:
Schistosoma (S. haematobium, type),
Afrobilharzia (A. mansoni, type),
Sinobilharzia (S. japonicum type),
Rhodobilharzia (R. margrebovici, type), and
Eurobilharzia (E. bomfordi, type). These
genera are in addition to the already recognized
genera of Bivitellobilharzia, Heterobilharzia
and Schistosomatium as members of this group
of flukes. Restudy of the chromosomes of
these species might help to evaluate such a
separation. The same technique might also
help solve the complexities of the taxonomy of
avian Schistosomes.
Table 2. Chromosome number of Trematoda from 1902 Till Date.
Family Species No. and Morphology of Chromosomes Reference
SCHISTOSOMIDAE
Schistosum japonicum Katsurada, 1904 2n = 16 (6t +2at) Short & Menzal (1960)
Austrobilharzia variglandis 2n=16 Short & Menzal (1960)
Gigantobilharzia huronensis 2n=16(+B) Short & Menzal (1960); LoVerde & Kuntz (1981)
Heterobilharzia americana 2n=20(ZW); ZZ/ZW, m/st;
6m+4sm+2sm-st+ 8st
Short & Grossman (1986)
Texas (Male) 2n=20(ZZ); ZZ, m; 4m + 2m-s m+4sm-
st+2sm+2st-1+6st
Short et al. (1987)
Louisiana (Female)
2n=20(ZWA); WA, m; 3m+2m -sm
+4sm-st+2sm+2st-t+6st
Short et al. (1987); Britt (1947)
Ornithobilharzia huronensis
2n=16
(XY)
Short & Menzel (1960)
Schistosoma bovis, Schistosoma haematobium,
Schistosoma intercalatum, Schistosoma mattheei
2n=16
Short & Menzel (1960); Grossman et al. (1981a)
Schistosoma japinicum
2n=16; ZZ/ZW, m/sm
Grossman et al. (1981b)
Schistosoma mekongi
2n=16; ZZ/ZW, sm/sm; 4sm+8 a + 4t
Grossman et al. (1981b)
Schistosoma mansoni
2n=16 (ZW No. 1)
Short & Menzel (1960); Short et al. (1979);
Grossman et al. (1980)
Schistosoma mansoni
2n=16; ZZ/ZW; st/st-sm; 2m + 4 m-sm
+ 4 s t-sm + 4st + 2t
Atkinson (1980); Short & Grossman et al. (1981a)
2n=16 (ZW No. 2); m/st; 4m + 2sm-m +
2m-sm + 2 s m-st+ 2st + 2t-st
Atkinson (1980); Grossman et al. (1981); Grossman
(1981)
Schistosomatium douthitti
2n=14 (ZW No. 1);
m/st; 4m + 2sm-m + 2m-sm + 2 s m-st+
2st + 2t-st
Short & Menzel (1960); Short & Grossman (1981);
Puente &
Short (1985); Short
(1957); Short & Menzel
(1959)
Trichobilharzia physellae,
2n=16
Short &
Menzel (1960); Short (1983)
Trichobilharzia stagnicola
2n=16
Short &
Menzel
(1960); Short (1983)
Trichobilharzia szidati
2n=16 (5m+2sm+1sm-st)
Spakulova et al. (1996)
Trichobilharzia regent Horak, Kolarova et Dvorak, 1998 2n=16 ((5m+1sm+1sm-m+1sm-
m(Z)+1m(W)+1sm (Supernumerary B) Spakulova et al. (2001)
Schistosoma rodhaini 2n=16; ZZ/ZW, s t /st; 2m+2sm-m+4sm-
st +4st +2t-st Atkinson (1980); Grossman
et al. (1981a); Short & Grossman (1981)
Schistosoma haematobium 2n=16; ZZ/ZW, s t/st;8m +8st Short (1983)
123
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Family Species No. and Morphology of Chromosomes Reference
Megalodiscus temperatus 2n=18; Van der Woude (1954); Saksena (1969)
Diplodiscus amphichrus magnus 2n=18; 6m + 6sm+6a Saksena (1962)
Schistosoma bovis
2n=16;
LoVerde &
Kuntz (1981); Short (1983)
Schistosoma matthei
2n=16;
LoVerde &
Kuntz (1981); Short (1983)
Schistosoma intercalatum
2n=16;
Short
(1983)
Schistosoma margrebowiei
2n=16;
Grossman et al.
(1981a); Short (1983)
Schistosoma japonicum
2n=16; ZZ/ZW, sm/sm
Gao Longsheng et al.
(1985)
Schistosomatium sp.
2n=14; ZZ/ZW, m/a; 12m+2m-sm
Barsiene et al.
(1989)
Bilharziella polonica
2n=16; ZZ/ZW, st-sm (Male); 4m 4sm-
m+2m-sm+4sm+2st
Barsiene
&
Stanyavichyute
(1993)
Ornithobilharzia caniculata
2n=16; ZZ/ZW
Short
(1983)
Austrobilharzia variglandis
2n=16; ZZ/ZW, sm-m/a; 12m+2sm +2a
Barsiene et al.
(1989)
Triehoilharzia physellae
2n=16;
Triehoilharzia szidati
2n=16; 6m+2sm-m+6sm+ 2st-sm
Barsiene &
Stanyavichyute (1993)
Trichobilharzia
sp. 1
2n=18; 14m +4sm-m
Barsiene et al.
(1989)
Trichobilharzia sp. 2
2n=16; 12m +2sm-m+2sm
Britt
(1947)
Gigantobilharzia huronesis
2n=16;
Britt
(1947)
PRONOCEPHALIDAE
Macrovestibulum kepneri
2n = 20
Jones et al. (1945)
PARAMPHISTOMIDAE
Ceylonocotyle dicranocoelium
2n = 18
Subramanyam &
Venkat Reddy (1977)
Cotylophoron cotylophorum
2n=16
Subramanyam &
Venkat Reddy (1977)
Cotylophoron sp.
2n=16
Subramanyam &
Venkat Reddy (1977)
Fischoederius elongates
2n=16
Subramanyam &
Venkat Reddy (1977)
Gastrothylax crumenifer
2n=18; 4m +6sm+2a+6st
Romanenko (1974); Subramanyam & Venkat Reddy
(1977)
Gigantocotyle explanatum
2n=18
Subramanyam &
Venkat Reddy(1977)
Liorchis scotiae
2n=18
Romanenko (1974)
Megalodiscus (Diplodiscus) temperatus
2n=20
Grossman &
Cain (1981)
Paramphistomum cervi
2n=14
Venkat Reddy &
Subramanyam (1975)
Paramphistomum epiclitum
2n=18
Subramanyam &
Venkat Reddy (1977)
Paramphistomum ichikawal
2n=18
Romanenko (1974)
Paramphistomum microbothrium
2n=18
Mutafova (1983a)
Stichorchis subtriquetrus
2n=18
Romanenko (1974)
Diplodiscus temporatus
2n = 16
Cray (1909)
2n=14
Sey
(1971)
Paramphistomum microbothrium
2n=18, 2 s m + 10m + 6st
Mutafova
(1983a)
Paramphistomum explanatum
2n=18, 2sm+16a
Sharma & Lal
(1984)
Paramphistomum hiberniae
2n=12
Willmott
(1950)
Paramphistomum ichikawai
2n=18; 2 m + 4 s m + 12st
Romanenko
(1974)
Paramphistomum epiclitиm
2n=18; 2 m + 14sm + 2st
Subramanyam &
Venkat Reddy (1977)
Paramphistomum crassum
2n= 14;
Srivastava &
Iha
(1964a)
2n= 14; 4m +l0sm
Subramanyam &Venkat Reddy
(1977)Paramphistomum cervi
2n=18; 6m + 4sm + 8 st
Rhee et al. (1987a)
Paramphistomum elongatum
2n=16; 6m+6sm +4st
Dhingra
(1955a)
Paramphistomum sp.( Planorbarius corneus) 2n=18; 2m + 2m-sm+6sm + 8st Barsiene (1991)
Paramphistomum sp. (Planorbis planorbis)
2n=18; 2m + 10sm + 6st
Barsiene
(1991b)
Gigantocotyle bothycotyle
2n= 12;
Willmott
(1950)
Gigantocotyle explanatum
2n=18; 4m+l0sm + 4a
Venkat Reddy &
Subramanyam
(1975b);
Subramanyam &
Vekat Reddy
(1977)
2n=18; 4m + 14a
Romanenko
(1972)
Liorchis scotiae
2n=18; 2m + 8 sm + 8a
Romanenko
(1974)
2n=18; m + sm Britt (1947)Gastrothylax cruminifer
2n=14; Dhingra (1955a)
Fischoederium cobboldi 2n=18; 8 m + l0sm Rhee et al. (1988)
Zygocotyle lunata 2n=14; Willey & Godman (1951)
Cotylophoron elongatum 2n=16; Dhingra (1955b)
Cyclonocotyle dicranocoelium 2n=18; 4m + 10sm + 4st Britt (1947)
Cyclonocotyle orthocoelium 2n=18; Sharma et al. (1968)
Cyclonocotyle dawesi 2n=20; Britt (1947)
Cyclonocotyle scoliocoelium 2n=22; Britt (1947)
Stuncardia dilymphosa 2n=18; Sharma & Nakhasi (1974)
124
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Family Species No. and Morphology of Chromosomes Reference
Diplodiscus subclavatum
2n=20; 2sm -m + 8sm + 2st-sm + 6 s t +
2a
Petkeviciute
et al.(1989b)
2n=20; 2 m + 12 + sm + 4st + 2a
Britt (1947)
2n=21-30;
Britt (1947)
Notocotylus noyeri Joyeux, 1922
2n=20; 2sm-m+12sm+4st+2a
Barsiene &
Grabda-Kazubska (1991b)
Gastrodiscoides hominis
2n=20;
Romenenko
(1974)
Stichorchis subtriguentrus
2n=20;
Britt (1947)
Heronimus chelydrae
2n=18; 4sm 14a
Guilford
(1955)
ZOOGONIDAE
2n = 10
Goldschmidt (1905)
Zoogonus mirus
2n = 12
Schreiner (1908); Gregoire (1909); Wassermann
(1913)
DICROCOELLIDAE
Dicrocoelium lanceolatum
2n = 20
Goldschmidt (1908); Dingler (1910)
Dicrocoelium lanceolatum
2n=24
Romanenko (1979)
Eurytremum pancreuticum
2n=26
Romanenko (1979)
Paradistomoides orientalis
2n=28
Scharma &
Nakahasi (1974)
Dicrocoelium lanceatum
2n=24; 22m + 2sm
Sharma &
Nakhasi
(1974)
Eurytrema coelomaticum
2n=26; 1 0 m + 2 sm+12st + 2t
Moriyama
(1982a, 1982b)
Eurytrema pancreaticum
2n=26; 10m+4sm + 8st + 4t
Britt (1947)
Paradistomoides orientalis
2n=28; 1 4 s t + 10st + 4t
Dhar &Sharma
(1984)
BRACHYCOELIDAE
Brachycoelium salamandrae
2n = 20
Von Kemnitz (1913)
HETEROPHYIDAE
Cryptocotyle lingua
2n = 12
Cable (1931); Britt (1947)
Apophallus miiehlingii
2n = 14 ( 3m+4sm)
Barsiene et al. (1995)
ECHINOSTOMIDAE
Parorchis acanthus
2n = 22
Rees (1939)
Episthmium bursicola
2n=18; 12m+4sm+2st
Barsiene &Kiseliene
(1990a)
Echinochasmus baleocephallus
2n=14; 6m+2m-sm+4sm+2a
Britt (1947)
Parorchis acanthus
2n=22;
Rees
(1939)
2n=22;
Churchill (1950)Echinostoma reuolutum
2n=22; 2m +20st
Mutafova & Kanev (1986)
Echinostoma revolutum (L. stagnalis)
2n=22; 2m+4sm+2 st-sm +10st+4a
Barsiene & Kiseliene (1991)
2n=22; 2m 2sm-m+4sm+14st
Britt (1947)Echinostoma revolutum (L. ovata)
2n=24; 2 В
Britt (1947)
Echinostoma jurini
2n=22; 6m+8sm+4st+4a
Britt (1947)
Echinostoma miyagawai
2n=22; 2m+2sm+2st-sm+16st
Barsiene & Kiseliene, 1991
2n=22; 2m + 20st
Mutafova & Kanev (1986)
2n=22; 2m+2sm-m+2sm+12st+4a
Barsiene &
Kiseliene
(1991)
Echinostoma echinatum
2n=22; 2m + 2sm-m +2sm+16st
Britt (1947)
Echinostoma barbosai;
Echinostoma echinatum 2n=22; 2sm + 20a Mutafova & Kanev (1983)
Echinostoma hortense
2n=20; 2m+2m-sm+8sm-st + 8st-t
Terasaki et al. (1982)
Echinostoma tinetorchis
2n=22; 2m + 2sm-st+12st+4st + 2t
Britt (1947)
Echinostoma caproni
2n=22; 4sm-st, t
Richard &
Voltz (1987)
Neoacanthoparyphium echinatoides 2n=20; 2m + 4 s t + 1 4a Barsiene & Kiseliene (1990b)
Moliniella anceps 2n=20; 2m + 8 s t + 1 0a Barsiene et al. (1990b)
Isthmiophora metis (из Lymnaea stagnalis) 2n=20; 4m+4sm+2st+10asm Britt (1947)
Pegosomum asperиm 2n=20; Aleksandrova & Podgornova (1978)
Lymnaea saginatum 2n=20; Britt (1947)
Echinoparyphium recurvatum 2n=20; 2m + 2sm + 16t Mutafova et al. (1987)
Echinoparyphium recurvatum А (Lymnaea auricularia,
Lymnaea ovata) 2n=20; 2m-+4sm + 14st Barsiene (1991а)
Echinoparyphium recurvatum В (Lymnaea corиus,
Lymnaea palustris) 2n=20; 4m + 6sm+10a Britt (1947)
Echinoparyphium pseudorecurvatum A (PI. planorbis 2n=20; 2sm -m+4 sm+4st +10a Britt (1947)
Echinoparyphium pseudorecurvatum В(A. acronicus) 2n=20; 2sm-m + 2st-sm + 8st + 8a Britt (1947)
Echinoparyphium bacutus (Vatvata piscinatis) 2n=20; 2 m+12 s t+2a-st+4a Britt (1947)
2n=20; 2m-sm + 2sm + 16t Mutafova et al.(1987); Mutafova & Kanev (1984)Echinoparyphium aconiatum
2n=20; 2m + 2st-sm+ 4st+4st-a +8a Barsiene & Kiseliene (1990b)
2n=20; 4 m + 1 6 s t Mutafova et al.,1986Hypoderaeum conoideum 2n=20; 2 m + 4 s m + 12st Barsiene & Kiseliene, 1990b
Cathamaesia hians (Lymnaea stagnalis ПНР) 2n=20; 8m 4sm-m +4sm+4st Barsiene (1990)
Cathamaesia hians (Planorbis planorbis. ПНР) 2n=20; 4m + 4sm-m+8sm +2st-s m + 2 s
tBarsiene (1991b)
125
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Family Species No. and Morphology of Chromosomes Reference
BUCEPHALIDAE
Bucephalus elagans
2n = 12
Woodhead (1931)
Bucephalus pusillus
2n = 12
Woodhead (1931); Britt
(1947)
Rhipidocotyle papillosum
2n=12
Ciordia
(1956)
TROGLOTREMATIDAE (PARAGONIMIDAE)
Paragonimus kellicotti
2n = 16
Chen (1937)
Paragonimus kellicotti
2n = 22 (2a + 9sm)
Loverde (1979)
Paragonimus ohirai
2n = 22 (2a + 9sm)
Loverde (1979)
Paragonimus miyazakii
2n=22
Sakaguchi &
Tada (1975, 1976); Terasaki (1977);
Hirai et al.
(1985)
Paragonimus ohirai; 2 geographical races (Paragonimus
iloktsuemensis; Paragonimus sadoensis)
2n=22
Sakaguchi &
Tada (1975, 1976); Terasaki (1977);
Hirai et al.
(1985)
Paragonimus westermani
2n=22
LoVerde (1979); Hirai et al.
(1985); Sugiyama et al.
(1985)
Paragonimus westermani, (Paragonimus pulmonalis)
2n=22
Sakaguchi &
Tada (1976b); Terasaki (1977);
Agatsuma &
Habe (1985); Hirai et al. (1985)
Paragonimus westermani
2n=22
Blair (2000)
Paragonimus heterotremus
2n=22 (1m+4st+3m/sm+3sm/st)
Komalamisra (2005)
Paragonimus kellicotti
2n=16
Benazzi &Benazzi Lentati (1976)
2n=22;
Britt (1947)
2n=22; 4m + 18sm
Britt (1947)
Paragonimus ohirai
2n=22; 2 m + 1 0 sm + 10st
Hirai еt аl.
(1985)
2n=22; 4 m + 10sm + 8st
Sakaguchi &
Tada
(1976а); Terasaki (1977)
3 n = 33;
Sakaguchi &
Tada
(1976a); Miyazaki (1978)
2n=22; 6m+8sm+8st
Pengpeng et al.
(1986)
2n=33; 2m + 8 st + 12m, sm, st
He Lian-Yin et al.
(1982)
Paragonimus westermani
2n=22; m + 6 st + 2 sm + 12m, sm, st
Britt (1947)
Paragonimus westermani Shoawu,
Fujian
2n=22; 2m + 4st + 4sm + 12m, sm, st
Britt (1947)
Paragonimus westermani filipinus
2n=22; 2m + 6m-sm + 6sm-st + 8st
Terasaki (1983)
Paragonimus westermani westermani
2n=22; 8m + 6sm-st + 8st
Britt
(1947)
Paragonimus skrjabini
2n=22; 6m+6sm-m + 2sm +8st
Li and Zheng
(1983)
3n=33; 2m+6m- sm+6sm-st+ 8st
Terasaki
(1980); Sakaguchi &
Tada (1976b)
2n=22; 2m + 6m-sm + 6sm- st + 8st
Terasaki
(1977)
Paragonimus pulmonalis
3n=33; 3 m + 12sm + 6 st +12a
Hirai еt аl.
(1985)
2n=22; 2m + 6m-sm+6sm-st + 8st
Terasaki
(1977); Sakaguchi &
Tada (1980)Paragonimus iloktsuenensis
2n=22; 2m + 10sm+10st Hirai еt аl. (1985)
2n=22; Terasaki (1977); Sakaguchi & Tada (1980)Paragonimus sadoensis 2n=22; 2m + 10sm+ l0st Hirai et al. (1985)
Paragonimus peruvian us 2n=22; 2m+6m-sm + 6sm-
st + 8st Terasaki (1978)
Paragonimus hueitungensis 2n=22; 2m + 8 st + 12m, sm, st He Lian-Yin et al. (1982)
Euparagonimus cenocopiosus 2n=22; 6 m + 8 s m + 8 s t Lei Changqui et al. (1985)
AZYGIIDAE
Proterometra macrostoma 2n =18 Anderson (1935)
Azygia acuminata 2n = 18 Britt (1947)
Azygia lucii 2n=20; 10m + 6 a + 4 st Barsiene (1991b)
ALLORCEADIIDAE
Allocreadium isoporum 2n =16 Britt (1947)
Crepidostomum serpentinum 2n = 16 Britt (1947)
Bunodera saculata 2n = 16 Britt (1947)
Bunodera luciopercae 2n = 14 Britt (1947)
Cercariaeum crassum Wesenberg-Lund, 1934 2n=10 (1m+1sm+sm-m+1m-sm) Petkeviciute et al. (2011)
Allocreadium fasciatusi 3n=21; 3 m + 12sm + 6st Ramanjaneyulu &Madhavi (1983)
Bunodera sacculata 3n=23; Cannon (1971)
Allocreadium fasciatusi 3n=21 Ramanjaneyulu & Madhavi (1984)
Allocreadium handiai 2n=14 Ramanjaneyulu & Madhavi (1984)
Bunodera luciopercae 2n=14 (2m+1sm/st+4a) Petkeviciute & Staneviciute (2008)
Allocredium isoporum 2n=14 (2m+5a) Petkeviciute & Staneviciute (2008)
Crepidostomum serpentinum 2n=14 (1m+5a) Petkeviciute & Staneviciute (2008)
Cercariaeum crassum Wesenberg-Lund, 1934 2n=10 (1m+1sm+2sm-m+1m-sm) Petkeviciute et al. (2011)
CLINOSTOMIDAE
Clinostomum marginatum 2n = 20 Britt (1947)
LECITHODENDRIIDAE
Loxogenes bicolor 2n = 22 Britt (1947)
Acanthatrium pipistrella 2n = 22 Britt (1947)
Ganeo kumaonensis 2n=20; Saksena (1969)
Acanthatrium pipistrella 2n=22; Britt (1947)
Mahroarchis ranarum 2n=22; Saksena (1969)
Pleurogenoides medians 2n=22; 16m + 4st + 2a Barsiene, Grabda-Kazubska (1991c)
Pleurogens claviger
2n=22; 1 2 m + 6 s t + 4a
Barsiene, Grabda-Kazubska (1991c)
Pleurogonidum orientalis
2n=18;
Saksena
(1969)
Prosotocus kashabia
2n=12;
Britt (1947)
Ganeo tigrinum
2n=22
Subramanyam &
Venkat Reddy (1977)
CEPHALOGONIMIDAE
Cephalogonimus americanus
2n = 28
Britt (1947)
GORGODERIDAE
Probolitrema californiense
2n = 12
Markell (1943)
Gorgoderina attenuate
2n = 14
Britt (1947)
Gorgodera amplicava
2n = 16
Britt (1947)
Phyllodistomum folium
2n=18
Petkeviciute et al. (2003)
Gorgodera amplicava
2n=16;
Britt (1947)
Gorgodera pagenstecheri
2n=18; 2m +2sm +2st-a+12а
Barsiene
(1991)
Gorgoderina attenuata
2n=14;
Willey & Koulish
(1950)
Probilotrema californiense
2n=12;
Britt (1947)
Phyllodistomum spatula
2n=16;
Dhingra (1954a)
Phyllodistomum pungitti
2n=18; 2 m + 12st +4a
Britt (1947)
PLAGIORCHIDAE
Eustomas chelydrae
2n = 18
Britt (1947)
Glypthelmins quieta
2n = 18
Britt (1947)
Plagitura salamandra
2n = 22
Britt (1947)
Pneumobites breviplexus
2n = 22
Britt (1947)
Pleumocoeces medioplexus
2n = 22
Pennypacker (1936)
Pleumocoeces similiplexus
2n = 22
Pennypacker (1940)
Pleumocoeces similiplexus
2n = 22
Britt (1947)
Trematorchis ranarum
2n=18
Subramanyam &
Venkat Reddy (1977)
Glypthelmins guieta
2n=18;
Britt (1947)
Plagitura salamandrae
2n=22;
Britt (1947)
Haematoloechus mediplexus
2n=22;
Burton
(1960)
Haematoloechus parviplexus 2n=22; Pennypacker (1936)
Haematoloechus semiplexus 2n=22; Britt (1947)
Haematoloechus similis 2n=22; 12m+6sm + 2sm-m+2st Barsiene, Grabda-Kazubska (1988b)
Haematoloechus asper 2n=22; 14m+4sm + 2sm-m +2st Britt (1947)
Skrjabinoeces sp. 2n=22; 10m + 2sm-m + 4sm +2sm-st +
4st Petkeviciute et al. (1990)
Monodistomum salamandra 2n=20; Britt (1947)
Encylometra colubrimurorum 2n=12; Saksena (1969)
Staphylodora bascaniensis 2n=16; Britt (1947)
2n=20; Sanderson (1959)Haplometra cylindracea
2n=22; 4m + 8 s m-m + 4 sm +6st Barsiene, Grabda-Kazubska (1988a)
Plagiorchis sp. (L. stagnalis,
ПНР) 2n=22; 2m + 8sm-m + 4sm +
+ 8st Barsiene, Grabda-Kazubska (1988b)
Opisthioglyphe ranae 2n=22; 2m + 6sm-m+6sm+ 4st + 4a Barsiene, Grabda-Kazubska (1988a)
Opisthioglyphe ranae (L. stagnalis) 2n=22; 6m +6sm + 2sm-st
+2st +4a-st+2a Petkeviciute et al. (1990)
Leptophallus nigrouenosus 2n=20; 12m + 2sm-m + 2sm +2st + 2a Barsiene, Grabda-Kaka (1988а)
Paralepoderma progeneticum 2n=20; 14m + 2sm + 2st-a + 2a Barsiene, Grabda-Kaka (1991a)
Paralepoderma brumpti 2n=20; 10m+2m-sm + 2sm+ 2st + 4a Petkeviciute et al. (1990)
Omphalometra flexuosum 2n=20; 4sm-m + 4 sm + 4st +8a Barsiene, Grabda-Kazubska (1991a)
RENIFERIDAE
Natriodera verlatum 2n = 22 Britt (1947)
Dasymetra villicoeca 2n = 22 Britt (1947)
Pneumatophilus leidyi 2n = 22 Britt (1947)
Pneumatophilus variabilis 2n = 22 Britt (1947)
Lechriorchis abduscens 2n = 22 Britt (1947)
Renifer ellipticus 2n = 22 Britt (1947)
Neorenifer wardi 2n = 22 Britt (1947)
Neorenifer georgianus 2n = 22 Britt (1947)
Neorenifer aniarum 2n = 22 Britt (1947)
Neorenifer orula 2n = 22 Britt (1947)
Neorenifer drymarchon 2n = 22 Britt (1947)
Neorenifer elongates 2n = 22 Britt (1947)
Staphylodora bascaniensis 2n = 16 Britt (1947)
Auridistomum chelydrae 2n = 18 Britt (1947)
Telorchis robustus 2n = 16 Britt (1947)
Telorchis lobusus 2n = 22 Britt (1947)
Telorchis medius 2n = 22 Britt (1947)
Telorchis corti 2n = 22 Britt (1947)
RHOPALIADIDAE
Rhopalias macracanthus Chandler, 1932 2n = 16 Ciordia (1949)
126
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Family Species No. and Morphology of Chromosomes Reference
DICLYBOTHRIIDAE
Diclybothrium hamulatum (Simer, 1929) Price, 1942
2n = 12
Pickle &Jones (1967)
SPIRORCHIIDAE
Spirorchis magnitestis
2n = 18 (4a/t + 1a + 3sm)
Teehan &
Short (1989)
Spirorchis parvus
2n = 18 (4a/t + 1a + 3sm)
Teehan &
Short (1989)
Spirorchis magnitestis
2n=18; 2m + 16а
Jones &
Mayer
(1953)
Spirorchis parvus
2n=18; 2m + 16st
Grossman
еt al.
(1981b)
Spirorchis sp.
2n=18; 2 sm + 6 st-sm +8t-st + 2t
Teehan &
Short
(1989)
CONVOLUTIDAE
Convolute convolute
2n = 16 (7m-sm + 1st)
Birstein (1990)
Baltalimania agile
2n = 14
Birstein (1990)
MIROPHALLIDAE
Microphallus pygmaeus
2n = 18
Birstein & Mikhailova (1990)
Microphallus piriformis
2n = 18; 8m + 2sm + 4st + 4?
Birstein & Mikhailova (1990)
Microphallus triangulatus
2n = 18
Birstein & Mikhailova (1990)
Microphallus pygmaeus
2n=18; 8m + 2sm + 4st +4?
Britt (1947)
Microphallus triangulatus
2n=18; 8m + 6 s m + 4?
Britt
(1947)
MONORCHIIDAE
2n=18; Dhingra (1955a, 1955b)
2n=20; 6m+2m -sm + 2sm+ 4st + 6a Dhingra (1955a)
2n=20; 12m + 6sm-m + 2 s t-sm Dhingra (1955a)
Asymphylodora sp.
2n=22; 8m + 8sm-m+2sm-
st + 2st Dhingra (1955a)
Palaeorchis sp.2n=14; 2m + 2sm-m+6sm+ 2st + 2a Dhingra (1955a)
Asymphylodora spp.2n = 20 (5m+4sm+1st) Barsiene et al. (1995)
NOTOCOTYLIDAE
Notocotylus attenuates, Notocotylus imbricatus, 2n=20 Petkeviciute & Barsiene (1988)
Notocotylus ephemera 2n=20,21 Petkeviciute & Barsiene (1988)
Notocotylus filamentis 2n=14; Ciordia (1950)
2n=20; 2m + 6sm-m+ 4sm+ 2st + 6a Petkeviciute & Barsiene (1988)
2n=21; Britt (1947)
Notocotylus ephemera
2n=22; Britt (1947)
2n=22; 4m + 4sm-m+4sm+ 8a Britt (1947)Notocotylus attenuatus 2n=20; 4sm + ? Rao & Venkat Reddy (1982)
Notocotylus imbricatus 2n=20; 2 m + 10sm +2st+6a Petkeviciute & Barsiene (1988)
2n=20; 2m + 2m-sm + 4sm+ 4st +8a Petkeviciute et al. (1989а)
2n=21; Britt (1947)
Notocotylus noyeri
2n=20; 4m + 4sm +4st +8t Barsiene & Grabda-Kazubska (1991b)
2n=20; 2m +6sm+4 st+8a Barsiene et al. (1990)
2n=21; Britt (1947)
Notocotylus sp. (Anisus acronicus,)
2n=21-30; Britt (1947)
CYCLOCOELIDAE
Cyclocoelium oculeum 2n=20;4m + 6sm + 8st + 2a Taft & LeGrande (1979)
Cyclocoelum bivesiculatum 2n=20; Dhingra (1954a)
FASCIOLIDAE
Fasciola gigantica 2n=20 (2sm+1t+7st) Romanenko & Pleshanova (1975); Subramanyam &
Venkat Reddy (1977)
Fasciola gigantica 2n=20 (6sm+1m-sm+3st) Venkat Reddy & Subramanyam (1973);
Subramanyam & Venkat Reddy (1977)
Fasciola hepatica 2n=20 (1sm-m+5st+2sm+1m+1sm) Romanenko & Pleshanova (1975)
Fasciola hepatica 2n=20 (5sm+4st+1t) Li et al. (1988)
Fasciola hepatica 2n=20 (1sm-m+4st+5sm) Spakulova & Kralova (1991)
Fasciola hepatica 2n=20 (1m+5sm+4st) Reblanova et al. (2011)
Fasciola sp.2n=20 Sakaguchi & Wakako (1976); Sakaguchi (1980);
Moriyama et al. (1979); Rhee et al. (1987); Yin & Ye
(1990)
Fasciola sp. 3n=30 (8sm+2st) Sakaguchi and Nakayama (1975); Sakaguchi &
Wakako (1976);
Fasciola gigantica 2n=20 Sakaguchi (1980)
Fasciola hepatica 2n=12
2n=22 (1sm-m+1sm+9st) Srimuzipo et al. (2000);
Henneguy (1902); Schubmann (1905); Schellenburg
(1911)
Fascioloides magna 2n=22 (9st+1sm-m+1sm) Reblanova et al. (2010)
Fasciolopsis buski 2n = 14 (6m+1t) Gao (1985)
Fasciolopsis buski 2n = 14 (4m+2sm+1t) Dai (1990)
Parafasciolopsis fasciolaemorpha 2n=20 (1m+1t+6st+2sm) Barsiene (1990)
3n=30 Britt (1947)
2n=20/30; Britt (1947)
2n=20; 2m + 10sm + 8st Rhee et al. (1987b)
2n=20/30; Sakaguchi, Yoneda (1976)
2n=20; Britt (1947)
Fasciola sp.
127
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Family Species No. and Morphology of Chromosomes Reference
3n=30; 3m + 12sm+ 15st Rhee et al. (1987b)
2n=20 Sanderson (1953, 1959)Fasciola hepatica 2n=20; 6 m + 2 sm + 1 2 st Li et al. (1988)
2n=20; 4sm+4sm-s t + 12st
Moriyama et al.
(1979)
2n=20; 2m + 12sm + 6st
Subramanyam &
Venkat Reddy (1977)
3n=30;
Sakaguchi
(1980)
Fasciola giganticа
2n=20/30;
Mariyama et al.
(1979)
PHILOPHTHALMIDAE
Philophthalmus gralli
2n=20
Grossman & Cain (1981)
Philophthalmus sp.
2n=20
Venkat Reddy &
Subramanyam (1971)
Philophthalmus sp. (Georgia, USSR; Bulgaria)
2n=20
Mutafova et al. (1986)
Philophthalmus megalurus
2n=20;
Kahlil & Cable
(1968)
Philophthalmus indieus 2n=20; 2sm + 2 a + 1 6t Subramanyam & Venkat Reddy (1977)
Philophthalmus hegeneri 2n=20; Fried (1975)
Philophthalmus sp.2n=20; 2sm + 18a Mutafova (1983b)
Philophthalmus gralli 2n=20; 8sm + 12a LoVerde (1978)
HEMIURIDAE
Isoparorchis euritremum; Isoparorchis hypselobargi 2n=20 (XY) Chattopadhyay & Manna (1987)
Halipegus occidualis 2n=18; Jones (1956); Guilford1(1961)
Halipegus eccentricus 2n=22; Guilford (1961)
Isoparorchis eurytreum 2n=18; Srivastava & Iha (1964b)
2n=20; 10sm + 8a + 2XY
( X = sm; Y = a) Chattopadhyay & Manna (1987); Dhingra (1954b)Isoparorchis hypselobagri
2n=18; 4m + 14a Srivastava & Iha (1964b); Iha (1975)
DIPLOSTOMATIDAE
Diplostomum indisticum; Diplostomum mergi;
Diplostomum pseudospathaceum; Diplostomum
spathaceum
2n=20 Romanenko & Shigin (1977); Mutafova &
Niewiadomska (1988)
Tylodelphys clavata 2n=20 Romanenko & Shigin (1977)
Diplostomum sp. 1 2n=20; 6m + 4sm-m + 2st-
sm + 8 s t Barsiene & Staneviciiite (1991)
Diplostomum sp. 2 2n=20; 6m+2sm-m + 4sm
+ 4st + 2st- a + 2a Britt (1947)
Diplostomum baeri 2n=20; 2m + 2sm-m + 6sm
+ 6st + 4a Barsiene еt аl. (1990а); Barsiene & Staneviciute
(1991)
Diplostomum mergi 2n=20; 10m + l0t Romenenko & Shigin (1977)
Diplostomum pseudospathaceum 2n=20; 6m + 4sm + 6st + 4a Barsiene & Staneviciute (1991) Barsienеet al. (1991)
Diplostomum paracaudum 2n=20; 6m+6sm +8st Barsienе et al. (1990a)
Barsiene & Staneviciute (1991)
2n=20; 8m + 2m-sm + 8st + 2? Romenenko &Shigin (1977)Tylodelphys clavata
2n=20; 6m + 2sm-m + 4st+ 2st-a + 6 a Barsiene (1991c)
Proalorioides tropidonotis 2n=16; Saksena (1969)
Posthodiplostomum cuticola 2n=20; 4 sm + 6 st + l0t Barsiene (1991c)
STRIGEIDAE
Gogatea serpentium indica 2n=16 Subramanyam & Venkat Reddy (1977)
Ichthyocotylurus erraticus (Rudolphi, 1809) 2n=20 (4m+2sm+1sm-st+3st-a) Bell et al. (1998)
Ichthyocotylurus variegates (Creplin, 1825) 2n=20 (4m+1sm+1m-sm+4st) Bell et al. (1998)
Apatemon gracilis (Rudolphi, 1819) 2n=20 (3m+1m-sm+3sm-
st+1sm+1a+1st-a) Bell et al. (1998)
Apatemon gracilis 2n=20 (3m+3sm-st+1sm+2a+1st-a) Petkeviciute & Staneviciute (1999)
Cotylurus cornutus (Lymnaea zazuriensis) 2n=20; 2m + 6st + 2a-s t + 1 0a Barsiene et al. (1990)
Apatemon gracilis (Lymnaea ovata) 2n=20; 6m + 4sm + 4sm-st +2st + 4a Petkeviciute (1991)
2n=20; 2 m + 6 s m + 4st + 2a-st + 6a Barsiene (1992)Apatemon minor (Planorbarius planorbis)
2n=21;
Apatemon fuligulae 2n=20; 4 m + 8 s m + 4 s t + 6a Barsiene et al. (1990)
OPISTHORCHIIDAE
Opisthorchis felineus 2n=14 Romanenko (1973)
Opisthorchis felineus 2n=14 (4sm+3m) Polyakov et al. (2010)
Clonorchis sinensis 2n=56 (3m+1m-sm+16sm+8st) – Korea
(2m+2m/sm+16sm+8st) – China Park et al. (2000)
Clonorchis sinensis 2n=56 Park & Young (2003)
Opisthorchis felineus (Rivolta, 1884) 2n=14 (2m/sm+5) Zadesenets et al. (2012)
Opisthorchis viverrini (Poirier, 1886) 2n= 12 (2sm+1sm+1sm/st+1st/a +1a) Zadesenets et al. (2012)
Metorchis xanthosomus (Creplin, 1846) 2n=14 Zadesenets et al. (2012)
Metorchis billis (Braun, 1893) 2n=14 Zadesenets et al. (2012)
Clonorchis sinensis (Cobbold, 1875) 2n=14, 2n=56 Zadesenets et al. (2012)
Opisthorchis viverrini 2n=12 (4m+1sm+1a) Kaewkong et al. (2012)
TRANSVERSOTREMATIDAE
Transversotrema patialense 2n=20 Madhavi & Ramanjaneyulu (1986)
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Family Species No. and Morphology of Chromosomes Reference
128
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Family Species No. and Morphology of Chromosomes Reference
OMPHALOMETRIDAE
Rubenstrema exasperatum 2n=16 (3m+4sm-m+1sm(X1)+1st(X) Mutafova &Kanev (1996)
NEODIPLOSTOMATIDAE
Neodiplostomum seoulense 2n=20 (2m+5sm/st+3t) Park et al. (1998)
ASPIDOGASTREA
Aspidogaster conchicola 2n=10 (1st+4a) Petkeviciute (2001b)
Cotylogaster occidentalis 2n=12 (2m+2sm+2a) Loverde & Fredericksen (1978)
Cotylapis insignis 2n=22 Loverde & Fredericksen (1978)
DIPLOZOIDAE
Diplozoon paradoxum 2n=8 (3m+1a) Koskova et al. (2011)
Paradiplozoon bliccae 2n=14 (7a) Koskova et al. (2011)
Paradiplozoon sapae 2n=14 (7a) Koskova et al. (2011)
Paradiplozoon nagibinae 2n=14 (7a) Koskova et al. (2011)
Eudiplozoon nipponicum 2n=7 Koroleva (1968b)
Paradiplozoon megan 2n=7 Koroleva (1968b)
Diplozoon paradoxum 2n=8, (3m+1a) Koroleva (1968a,b)
Paradiplozoon bliccae (syn. Diplozoon gussevi) 2n=14, (7a) Koroleva (1968a,b)
Paradiplozoon bliccae (syn. Diplozoon markevitchi) 2n=14, (7a) Koroleva (1968b, 1969)
Paradiplozoon sapae 2n=14, (7a) Koroleva (1969)
Paradiplozoon nagibinae 2n=14, (7a) Koroleva (1969)
Paradiplozoon pavlovskii 2n=14, (7a) Koroleva (1968a,b)
Paradiplozoon homoion 2n=14, (7a) Koroleva (1968a,b)
Diplozoidae sp. 2n=14, (7a) Bovet (1967)
Diplozoidae sp. (sp. n.) 2n=10, (2m+3a) Koroleva (1969)
Diplozoidae sp. 2n=7 Baer & Euzet (1961)
Diplozoidae sp. 2n=7 Bovet (1967) Incorrect data
according to Koroleva (1968b)
PSILOSTOMIDAE
Psilotrema sp.2n=16; 4m + 2sm-m + 2sm+ 8st Britt (1947)
Sphaeridiotrema globulus 2n=14; 4m + 4sm-m + 4s m+ 2a Britt (1947)
SANGUINICOLIDAE
Sanguinicola sp.2n=22; 1 6 m + 2 sm + 4st Britt (1947)
BRACHYLAEMIDAE
Leucochloridiomorpha constantiae 2n=16; Filippone & Fried (1974)
CYATHOCOTYLIDAE
Gogotea serpentium 2n=16; Saksena, 1969, Subramanyam, Venkat Reddy (1977)
CRYPTOGONIMIDAE
Acetodexira amiuri 2n=12; Perkins (1956)
Atrophecaecum bur minis 2n=14; 14sm Madhavi & Ramanjaneyulu (1988)
OPECOELIDAE
Sphaerostoma bramae 2n=24; Gresson (1958)
EUCOTILIDAE
Cercaria pectinata 2n=12; 6m + 2st+4m-sm Ieyama & Ozaki (1987)
Cercaria tapidis 2n=16; 8m + 2st-sm + 2st +2sm-st +2sm-
mBritt (1947)
Sm =sub-metacentric; a = acrocentric; m =metacentric. t =telocentric. X =sex chromosome. Y =sex chromosome. ZZ =sex chromosomes. ZW =sex chromosomes.
Chromosomes of Cestoda
Studies of the chromosomal patterns among
the Cestoidea have not been numerous. Most
of the recent ones have originated from one
laboratory, and there seems to have been no
broad sampling of the Class as a whole. No
records of studies on members of the
Cestodaria have come to our attention, and
attempts in this laboratory have not been
successful in obtaining reliable results. Among
the Cestoda only one of the nine commonly
recognized orders, the Cyclophyllidea, seems
to have been examined for chromosome
numbers. Among the cyclophyllideans the
family Hymenolepididae is represented by
records from four genera (8 species). These
indicate that in Diorchis (ralli and reynoldsi)
and in Protogynella (blarinae), the diploid
number of chromosomes is 10. One species of
Hymenolepis (H. fraterna) has 10
chromosomes but in 3 other species (H.
ananthocephalus (van Gundy, 1935), H.
diminuta (Rudolphi, 1819), and H. serpentulus
(Goeze, 1782) the number is 12. Twelve
chromosomes are also present in an
unidentified species of Aploparaksis. H.
serpentulus is represented by two sub-races
(sturni and turdi), each with the same number
of chromosomes (12), but the two sets of
chromosomes show such consistent and easily
129
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
recognizable differences that the races can be
readily separated on the basis of cytological
grounds alone, without reference to collection
records. The Hymenolepididae, while not
having a common basic number of
chromosomes, are cytologically quite uniform.
The same may not be said for the Dilepididae.
For example, Dipylidium caninum (Linnaeus,
1758) has the diploid number of 10
chromosomes; Liga brasiliensis has 14
chromosomes, and unnamed species of
Anonchotaenia and Choanotaenia each have
1 6 c h r o m o s o m e s . A m o n g t h e
Anoplocephalidae, Avitellina centripunctata
(Rivolta, 1874) has somatic chromosomes,
Oochoristica has 10, and Moniezia expansa
(Rudolphi, 1805) and M. planissima (Moniez,
1879) have 12. For the Taeniidae records of 2n
= 16 for Hydatigera taeniaeformis (Batsch,
1786) and 2n = 20 for Taeniarhynchus
saginatus (Goeze, 1782) and Taenia serrata=
pisiformis (Bloch, 1780) are found, although
some investigators, including the present
author, find only 16 chromosomes in the two
latter species. Among the Nematotaeniidae,
two races of Baerietta desmognathi (Douglas,
1957) have been studied, one race having 2n =
8 and the other 2n = 16 (Table 3). This
difference may be an example of polyploidy
but examination of a greater series of
specimens would be necessary before any
definite statement should be made. It would
appear from the above records that the Cestoda
do not show any completely definite
taxonomic pattern of chromosomal numbers
above the species level. Perhaps such evidence
would be forthcoming following a broader
sampling among the Cestodaria and the
Cestoda. We believe, on other grounds, that the
Cyclophyllidea are probably the most
specialized of the Cestoda, but study of
chromosome numbers, structure, or behavior,
has not as yet seemingly substantiated such a
conclusion.
Karyology represents a conspicuous gap in the
phylogenetic evaluation of the Cestoda and of
other flatworms, despite the fact that
chromosome structure and gene location are of
evolutionary relevance. Cytogenetic features,
alone or in concert with other modern
character-based approaches, might provide
information not only on phylogeny but also on
systematic interrelationships within the target
group. Unfortunately, only nine out of 16
eucestode orders and up to 2% or 115 known
species have been studied karyologically. Most
early cytogenetic studies have been
exclusively focused on the number of
chromosomes; 74 species (63.5%) have been
studied for chromosome morphology.
Table 3. Summary of chromosomes and karyotype data of Cestoda (Tapeworms) (1907–Till Date).
Order/ Family Number
2n [3n] Morphology References
I. SPATHEBOTHRIIDEA
Acrobothriidae
Cyathocephalus truncates (Pallas, 1781)
18
2m+2sm+5a
Petkeviciute (1996a)
II.DIPHYLLOBOTHRIIDEA
Diphyllobothriidae
12-16
Smyth (1946)
Schistocephalus solidus (Muller, 1776)
18
5m+4a
Petkeviciute (1996b)
Diphyllobothrium dendriticum (Nitzsch, 1824)
18 (9–18)
7m+2sm
Wikgren & Gustafsson (1965)
18 (8–22)
7m + 2sm
Wikgren &
Gustafsson(1965)Diphyllobothrium ditremum (Creplin, 1825)
(=Diphyllobothrium osmeri)
18
7m + 2sm
Petkeviciute (1992)
Diphyllobothrium latum (Linnaeus, 1758)
18 (15–28)
7m + 2sm
Wikgren &
Gustafsson (1965)
Diphyllobothrium ursi Rausch, 1954 18 Wolcott (1959)
Ligula intestinalis (Linnaeus, 1758) 18 6m +3sm Petkeviciute (1992)
130
2n [3n]
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Spirometra erinaceieuropaei
(Rudolphi, 1819) (= Diphyllobothrium erinacei)
[27]
Sasada (1978)
Spirometra mansonoides (Muller, 1935) (= S. mansoni)
[27]
Liu & He (1989)
III. CARYOPHYLLIDEA
Balanotaeniidae
Balanotaenia bancrofti Johnston, 1924
14
Grey (1979)
Capingentidae
Capingens singularis Hunter, 1927
14
Grey (1979)
Caryophyllaeidae
14
3m + 1sm +3a
Mackiewicz &
Jones (1969)
Hunterella nodulosa
Mackiewicz et McCrae, 1962
14
3m + 4a
Grey (1979)
Archigetes sp. (=appendiculatus)
18
Motomura (1929)
Biacetabulum biloculoides Mackiewicz et McCrae, 1965
20
Grey (1979)
[30]
Grey (1979)
20 [30]
10m
Petkeviciute &
Kuperman (1992)
Caryophyllaeus laticeps (Pallas, 1781)
20
10m
Bombarova et al. (2009)
Glaridacris laruei Lamont, 1921
16
3m + 1sm + 4a
Grey &Mackiewicz (1974), Grey (1979)
Glaridacris confusus Hunter, 1927
16
Grey (1979)
Glaridacris catostomi Cooper, 1920
20 [30]
8m + 2sm
Grey (1979), Grey & Mackiewicz (1980)
Glaridacris vogei Mackiewicz, 1976
20
8m + 1sm + 1a
Grey (1979)
Monobothrium hunter Mackiewicz, 1963
20
9m + 1a
Grey (1979)
Isoglaridacris folius Fredrickson et Ulmer, 1965
18
1m + 8a
Grey (1979)
Isoglaridacris jonesi
Mackiewicz, 1972
18
2m + 7a
Grey (1979)
Isoglaridacris bulbocirrus Mackiewicz, 1965
18 [27]
Grey (1979)
Archigetes appendiculatus
18
Motomura (1929)
Lytocestidae
[24]
4m + 3a+ 1 minute
Jones & Mackiewicz (1969)
Atractolytocestus huronensis Anthony, 1958
[24] 4m + 3a + 1
minute Kralova-Hromadova et al. (2010)
Caryoaustralus sprenti Mackiewicz et Blair, 1980 6 Grey (1979)
Khawia iowensis Calentine et Ulmer, 1961 16 5m + 3a Grey (1979)
Khawia rossittensis (Szidat, 1937) 16 Grey (1979)
Khawia sinensis Hsu, 1935 16 3m + 5a Petkeviciute (1998)
16
3m + 5a
Mutafova & Nedeva (1999)
Khawia saurogobii Xi et al., 2008
16
3m + 5a
Orosova et al. (2010b)
Lytocestus indicus (Moghe, 1925)
16
Vijayaraghavan & Subramanyam (1977)
20
Bombarova et al. (2009)Caryophyllaeides fennica (Schneider, 1902)
20
10m
Orosova et al. (2010a)
Notolytocestus minor Johnston et Muirhead, 1950
12
6a
Grey (1979)
IV. TRYPANORHYNCHA
Lacistorhynchidae
Lacistorhynchus tenuis (Van Beneden, 1858)
16
8m or sm
Jones (1954)
V. BOTHRIOCEPHALIDEA
Triaenophoridae
Triaenophorus crassus Forel, 1868
18
7m + 1sm + 1a
Petkeviciute &Ieshko (1991)
Triaenophorus nodulosus (Pallas, 1781)
26
5m + 7sm + 1a
Petkeviciute & Ieshko (1991)
Bathybothrium rectangulum (Bloch, 1782)
18
8m + 1sm
Spakulova & Scholz (1999)
Eubothrium crassum (Bloch,
1779) 16 3m + 2sm + 3a Petkeviciute & Bondarenko (2001)
Eubothrium rugosum (Batsch, 1786) 16 3m + 2sm + 3a Petkeviciute & Kuperman (1991)
Eubothrium salvelini (Schrank, 1790) 16 2m + 3sm + 3a Petkeviciute & Bondarenko (2001)
Bothricephalidae
Bothriocephalus gregarious Renaud, Gabrion et Pasteur,
1983 14 4m + 3a Petkeviciute (2003)
Bothriocephalus acheilognathi Yamaguti, 1934 14 6m + 1m-sm Nedeva & Mutafova (1988)
Bothriocephalus claviceps (Goeze, 1782) 14 7m Petkeviciute (2003)
12 Bazitov (1978)Bothriocephalus scorpii Muller, 1776
Order/ Family Number
Morphology References
131
Moniezia expansa (Rudolphi, 1805)
probably
12 or 14
Child (1907)
Oochoristica sp.
10 small
Jones (1945)
Taeniidae
18 Lukashenko et al. (1965)
18 Sakamoto et al. (1967)
18 4sm + 5a Rausch & Rausch (1981)
Echinococcus multilocularis Leuckart, 1863
18 1sm + 8sm-a Mutafova & Svilenov (1985)
18 1sm +8sm-a Smyth (1962)Echinococcus granulosus (Batsch, 1786) Mutafova & Svilenov (1985)
Echinococcus vogeli Rausch et Bernstein, 1972 18 Rausch & Rausch (1981)
Taenia macrocystis (Diesing, 1850) 18 Rausch & Rausch (1981)
Taenia (= Hydatigera) taeniaeformis Batsch, 1786 16 Jones & Ciordia (1956)
Taenia rileyi Loewen, 1929 18 Rausch & Rausch (1981)
Taenia crassiceps (Zeder, 1800) 16 2m + 6a Smith et al. (1972)
T. crassiceps (ORF strain) 14 1m + 6a Smith et al. (1972)
20 Jones & Ciordia (1956)
16 Walton (1959)
Taenia pisiformis (Bloch, 1780)
18 Romanenko & Movsessian (1988)
18 7m + 1sm + 1a Liu & He (1987b)Taenia hydatigena Pallas, 1766
12
5m + 1sm
Petkeviciute (2003)
Tetracampos ciliotheca Wedl, 1861 (=Polyonchobothrium
clarias (Woodland, 1925))
12
4m + 2sm
Badawy and Noor El-Din (1998)
Bothriocephalus acheilognathi Yamaguti, 1934
14
6m + 1m-sm
Sofi & Ahmad (2014)
VI. TETRAPHYLLIDEA
Phyllobothriidae
Pelichnibothrium speciosum Monticelli, 1889
16
1m + 1sm + 6a
Petkeviciute & Regel (1993)
VII. PROTEOCEPHALIDEA
Proteocephalidae
Acanthotaenia sp. (= A. multitesticulata)
14
Vijayaraghavan &
Subramanyam (1980a)
Glanitaenia
(= Proteocephalus) osculate (Goeze, 1782)
18
1m + 3sm + 4a
Petkeviciute (2001a)
Proteocephalus longicollis (Zeder, 1800) (=Proteocephalus
exiguus)
18
4m + 5sm
Hanzelova et al. (1995)
Proteocephalus macrocephalus (Creplin, 1815)
18
7m + 2sm
Scholz et al. (1997)
18
6m + 1sm + 2a
Spakulova & Hanzelova(1992)Proteocephalus percae (Muller, 1780)
18
2m + 7sm
Petkeviciute (1993)
VIII. NIPPOTAENIIDEA
Nippotaeniidae
28
7m + 7sm
Bombarova et al. (2005)
Nippotaenia mogurndae Yamaguti et Miyata, 1940
28
Bombarova et al. (2009)
IX. CYCLOPHYLLIDEA
Mesocestoididae
Mesocestoides vogae Etges, 1991 (=Mesocestoides corti)14 5m + 2sm Raghunathan & Voge (1974)
Nematotaeniidae Cylindrotaenia (= Baerietta)
desmognathi (Douglas, 1957) 8, 16 Douglas (1957)
Cylindrotaenia (= Baerietta) diana (Helfer, 1948) 28 Douglas (1963); diploid number assessed
Distoichometra bufonis Dickey, 1921 (=Distoichometra
kozloffi)16 Douglas (1963); diploid
number assessed
Nematotaenia dispar (Goeze, 1782) 28 Vijayaraghavan & Subramanyam (1980b)
Anoplocephalidae
Avitellina centripunctata (Rivolta, 1874) 8 Walton (1959)
Moniezia benedeni (Moniez, 1879) (=Moniezia planissima) probably
12 or 14 Child (1907)
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Order/ Family Number
Morphology References
132
12 2m + 3sm + 1a Liu & He (1987a)
12 1m-sm + 5a Mutafova & Gergova (1994)
Microsomacanthus spasskii Tolkacheva, 1965 6 3m Petkeviciute & Regel (1994)
Microsomacanthus spiralibursata (Czaplinski, 1956) 6 2m + 1m-sm Petkeviciute & Regel (1994)
Passerilepis crenata (Goeze, 1782) (= Hymenolepis
serpentulus sturni = H. serpentulus turdi)12 4m + 2? Jones (1945)
Protogynella blarinae Jones, 1943 10 Jones (1945)
Pseudodiorchis (= Diorchis) reynoldsi (Jones, 1944) 10 1sm + 4a Jones (1945)
Retinometra giranensis (Sugimoto, 1934) 12 Petkeviciute & Regel (1994)
Rodentolepis erinacei (Gmelin, 1790) 12 6a Mutafova & Gergova (1994)
10 1m + 4a Jones (1945)Rodentolepis fraterna (Stiles, 1906)
12 6a Jones & Ciordia (1955)
12 6a Hossain & Jones (1963)Rodentolepis microstoma (Dujardin, 1845) 12 6a Proffitt & Jones (1969)
Rodentolepis myoxi (Rudolphi, 1819) 12 3m + 3sm Casanova et al. (2000)
18
Rausch & Rausch (1981)
20
Romanenko & Movsessian (1988)
18 (12-22)
Movsessian & Margarian (1991)
16
Walton (1959)
Taenia saginata Goeze, 1782
20
10a
Jones & Wyant (1957)
Paruterinidae
Anonchotaenia sp.
16
1m + 7
Jones (1945)
Anonchotaenia globate (Von Linstow, 1879)
12
2m + 1a + 3
Jones (1945)
Francobona (= Rhabdometra) similis (Ransom, 1909)
12
2m + 1a + 3?
Jones (1945)
Dipylidiidae
10
Jones (1945)
16
4m-sm+ 1a + 3?
Bovt (1973)
16
4m + 1sm + 3a
Liu & He (1988)
Dipylidium caninum
(Linnaeus, 1758)
16
4sm + 6
Margarian (1989)
Davaineidae
Cotugnia meggitti Yamaguti, 1935
20
Gupta & Greval (1971)
Davainea proglottina (Davaine, 1860)
18
probably 9a
Jones (1951)
Raillietina echinobothrida (Megnin, 1880)
18
6m +1sm + 2?
Margarian (1989)
Raillietina tetragona (Molin, 1858)
18
Margarian (1989)
Skrjabinia caucasica Petrochenko et Kireev, 1966
16
4m + 4sm
Margarian (1989)
Dilepididae
Anomotaenia bacilligera (Krabbe, 1869)
16
6m + 2m-sm
Petkeviciute et al. (2006)
Choanotaenia sp. 16 7sm + 1a Jones (1945)
Dilepis undula (Schrank, 1788) 18 4m + 3sm + 2a Petkeviciute et al. (2006)
Liga brasiliensis (Parona, 1901) 14 6sm + 1a Jones (1945)
Molluscotaenia crassiscolex
(von Linstow, 1890) 12 5m + 1sm Petkeviciute et al. (2006)
Hymenolepididae
Anatinella spinulosa (Dubinina, 1953) 12 Petkeviciute & Regel (1994)
Aploparaksis sp. 12 Jones (1945)
Aploparaksis brachyphalos (Krabbe, 1869) 12 Petkeviciute & Regel (1994)
Aploparaksis filiformis Spasskii, 1963 12 Petkeviciute & Regel (1994)
Aploparaksis furcigera (Rudolphi, 1819) 12 Petkeviciute & Regel (1994)
Aploparaksis occidentalis Prudhoe et Manger, 1967 12 Petkeviciute & Regel (1994)
Aploparaksis retroversa Spasskii et Gubanov, 1961 12 Petkeviciute & Regel (1994)
Cryptocotylepis (=Hymenolepis) anthocephalus (van
Gundy, 1935) 12 1sm + 1a + 4? Jones (1945)
Dicranotaenia fallax (Krabbe, 1869) 12 Petkeviciute & Regel (1994)
Diorchis ralli Jones, 1944 10 2m + 1a + 2? Jones (1945)
Fimbriaria sp. 10 Petkeviciute (2002)
Hymenolepis citelli McLeod, 1933 12 6a Ward et al. (1981)
12 Jones (1945)
12 6a Kisner (1957)
Hymenolepis diminuta (Rudolphi, 1819)
12 Douglas (1962)
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Order/ Family Number
Morphology References
133
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
12 1m-sm + 5a Jones & Ciordia (1955)
12 1m + 5a Mutafova & Gergova (1994)
Rodentolepis nana (Siebold, 1852)
12 6a Goldschmidt et al. (2006)
Rodentolepis straminea (Goeze, 1782) 12 2m + 2sm + 2a Spakulova & Casanova (1998)
Sobolevicanthus Mastigopraedita (Polk, 1942) 12 1m + 1a-sm +4a Petkeviciute & Regel (1999)
Sobolevicanthus spasskii Kornyushin, 1969 12 1m + 1a-sm +4a Petkeviciute & Regel (1999)
Wardium fryei Mayhew, 1925 12 6a Bondarenko & Petkeviciute (1998)
Wardium retracta (Von Linstow, 1905) 12 Petkeviciute & Regel (1994)
Dioecocestidae Gyrocoelia pagollae Cable et Meyers, 1956 12 Coil (1972)
8 Coil (1970)Shipleya inermis Fuhrmann, 1908 8 2sm + 2a Rausch & Rausch (1990)
Order/ Family Number
Morphology References
Sm = sub-metacentric; a =acrocentric; m =metacentric.
Chromosomes of Nematoda
Examination of over 87 species of nematodes,
together with later observations by other
workers gives available data on 1 genus and 1
species of the Desmadoridae, 1 genus and 4
species of the Rhabditidae, 2 genus and 8
species of the Rhabdiasidae, 3 genus and 5
species of the Strongyloididae, 9 genera and 24
species or subspecies of the Ascaridae, 1 genus
and 3 species of the Anisakidae, 1 genus and 1
species of the Kathlaniidae, 2 genera and 2
species of the Oxyuridae, 2 genera and 6
species of the Heterakidae, 3 genera and 5
species of the Strongylidae, 1 genus and 1
species of the Heligmosomidae, 2 genera and 2
species of the Trichostrongylidae, 3 genera and
4 species of the Metastrongylidae, 1 genus and
1 species of the Onchocercidae 1 genus and 1
species of the Diplogastridae 1 genus and 1
species of the Camallanidae, 1 genus and 1
species of the Rhabdochonidae, 1 genus and 1
species of the Acuariidae, 2 genera and 2
species of the Spiruridae, 3 genera and 3
species of the Physalopteridae, 1 genus and 1
species of the Setariidae, 1 genus and 1 species
of the Cosmocercidae, 1 genus and 1 species of
the Spirocercidae, 1 genus and 1 species of the
Parasitaphelenchidae, 1 genus and 1 species of
the Gordiidae, 1 genus and 1 species of the
Chordodidae, 1 genus and 4 species of the
Trichinellidae and 1 genus and 1 species of the
Trichosomoididae (Table 4). Over one-half of
these forms show a somatic number of
chromosomes greater than the number present
in the zygote or in the "stem" cells of the
embryo, and supports the postulation that the
germ-cell-number is composed of compound
chromosomes in many instances. Some
authors, however, interpret this phenomenon
as indicative of fragmentation during the
formation of the somatic chromosomes (in
Parascaris equorum (Walton 1924)) the
diploid number may be 2 or 4 or 6 depending
upon the variety being studied, and the somatic
number of chromosomes may amount to rather
high figures). “Diminution” or the loss of
chromatic material is known to occur in at least
9 species of nematodes, as well as occurring in
other phyla such as the Protozoa, the
Arthropoda, and the Chordata. This loss has
been interpreted as an attempt to stabilize the
embryonic environment of the "stem" or
"germ-track" cells during development
(Ubisch, 1943). It is known that DNA is
released from the nucleus at this time and such
more-or-less universal release of nuclear
chemicals may on occasion have a physical
manifestation (particulates). Such a release
may also be associated in some manner with
the so-called "chromosome fragmentation"
noted in some somatic cells. Lin, 1954,
suggests a comparison of this elimination of
chromatic material (heterochromatin is mainly
DNA) from the collective germ-cell
chromosomes to the macronuclear phenomena
noted in so many protozoa. Examination for
the presence or absence of recognizable "sex
chromosomes" (heterochromosome) has
afforded records indicating that 37 species of
nematodes rather definitely show the presence
134
Family Species No. and Morphology of
Chromosomes Reference
COSMOCERCIDAE
Cosmocerca kashmirensis Fotedar, 1959
2n=16
Fotedar et al. (1973)
TRICHINELLIDAE
Trichinella nelsoni
2n=6 (female)
2n=5 (male)
Mutafova & Komandarev (1976)
Trichinella spiralis
2n=6
Thomas (1965)
Trichinella spiralis
2n=6 (female)
2n=5 (male)
Mutafova et al. (1982)
Trichinella pseudospiralis
2n=6 (female)
2n=5 (male)
Mutafova et al. (1982)
Trichinella nativa 2n=6 (female)
2n= 5 (male) Mutafova et al. (1982)
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
of an "X" chromosome-sometimes appearing
as a complex of 2 or more members in certain
species-and in 6 species the presence of a "Y"
chromosome (however in only one species,
Contracaecum incurvum, has subsequent
work substantiated the presence of such a "Y"
element). Jeffrey and Haertl's 1938 objection
to interpreting apparently unpaired and
l a g g i n g c h r o m o s o m e s a s be i n g
heterochromosomes has not held up in the light
of more investigations (Nigon & Robert, 1952;
Lin, 1954). Heterochromosomes may appear
in forms in which the sperm acts only as a
stimulating agent (true fertilization never
taking place) and also in parthenogenetic
species (Nigon & Roman, 1952, in
Strongyloides ratti). From the taxonomic
standpoint, the number and behavior of the
chromatic elements seem to have a great deal
of uniformity within species of a single genus,
and even among species of closely related
genera, and therefore may be of some
significance. In the first place the so-called
"diminution" phenomenon is found only in
members of the Ascaridata (Nematoda),
primarily among the Ascaridae. Secondly, the
number of the so-called "X"-bodies is greater
than 1 only in the Ascari data ("X" may be
composed of 1, 2, 5, 6, or 8 units). The presence
of an undoubted "Y"-body is reported only
from the Ascaridata (Contracaecum incurvum
Good-rich, 1916). Thirdly, there is a certain
consistency of total chromosome numbers in
various groups. The Strongyloididae have the
reduced number of 3; the Rhabdiasidae all
show the haploid number of 6; the Rhabditidae
as a rule have n = 7, although one form has n =
9; 11 of the 12 species of the Strongylata show
n = 6 (one has n = 8); the Heterakidae seem to
group around n = 5, and the Oxyuridae around
n = 4 (occasionally 8). Most of these groups are
quite homogeneous and the similarity of
chromosome numbers could be expected; on
the other hand, the Ascaridata are much more
heterogeneous in composition and the wide
variation in chromosome numbers should
equally be expected. These variations as found
within a closely knit group have been
interpreted as examples of fragmentation or
duplication of one or more chromosomes
(aneuploidy) rather than as cases of
duplication of sets of chromosomes
(polyploidy). The closely related
Nematomorpha show a somewhat similar
situation in that members of the genus Gordius
show n= 2 or n = 4. Paragordius, however, has
n = 7; a situation not in keeping with the
interpretation of close relationships being
indicated by the number of chromosomes
present.
When one turns to the Platyhelminthes, one
finds a somewhat similar picture, although this
phylum is far less homogeneous than the
Nematoda, with such variant groups as the
non-parasitic Turbellaria and the parasitic
Trematoda and Cestoda.
Table 4. Chromosome Number of Nematoda from 1886 Till Date.
135
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Family Species No. and Morphology of
Chromosomes Reference
ASCARIDIDAE
Ascaris lumbricoides (=suis) 2n=48 Homedes (1933)
Neoascaris vitulorum 2n=18 Homedes (1933)
Ophidascaris filaria 2n=14 Walton (1959)
Parascaris equorum, var. 1 2n=18 Li (1937)
Parascaris equorum, var. 2 2n=12 Li (1934)
Parascaris equorum, var. 3 2n=6 Walton (1924)
Parascaris equorum, var. 4 2n=4 Walton (1924)
Parascaris equorum, var. 5 2n=2 Walton (1924)
Toxacara cati
2n=18 Walton (1924)
Toxacara canis 2n=36 Walton (1924)
Toxacara vulpis 2n=24 Walton (1924)
Toxoscaris leonina 2n=40 Mutafova (1995)
Baylisascaris transfuga 2n=36 Mutafova (1995)
Hexametra sp.
2n=22 Mutafova (1995)
Toxocara canis
2n=22 Mutafova (1995)
Toxocara cati
2n=22
Mutafova (1995)
Ascaridia galli
2n=10
Mutafova (1995)
Ascaridia compare
2n=10
Mutafova (1995)
Ascaridia dissimilis
2n=10
Mutafova (1995)
Ascaris suum
2n=48
Mutafova (1975)
Ascaridia galli Schrank, 1788
2n = 10 (Female)
2n=9 (Male)
Mutafova (1976)
Ascaridia dissimilis (Vigueras, 1931)
2n=10 (Female)
2n=9 (Male)
Mutafova (1976)
Ascaris megalocephala
2n=4
Merlin et al. (2003)
Ascaris lumbricoides var. suum
2n=24
Merlin et al. (2003)
SPIROCERCIDAE
Mastophorus muris
2n=8+XX/XO
Spakulova et al. (2000)
STRONGYLOIDIDAE
Strongyloides ratti
2n=5 (Male)
2n=6 (Female)
Harvey & Viney (2001)
Strongyloides ratti
2n=6
Nignon & Roman (1952)
Strongyloides papillosus
2n=6
Chang & Graham (1957)
Strongyloides stercoralis
2n=5 (Male)
2n=6 (Female)
Harvey & Viney (2001)
DIPLOGASTRIDAE
Pristionchus pacificus
2n=12
Mitreva et al. (2005)
ONCHOCERCIDAE
Brugia malayi
2n=10
Mitreva et al. (2005)
PARASITAPHELENCHIDAE
Bursaphelenchus xylophilus
2n=12
Hasengawa et al. (2006)
DESMADORIDAE
Spirina parasitifera
2n=14
Cobb (1928)
RHABDITIDAE
Rhabditis aspera
2n=14
Walton (1940)
Rhabditis monhysterii
2n=14
Nignon (1949)
Rhabditis pellio
2n=14
Walton (1940)
Rhabditis aberrans
2n=18
Kruger (1913); Walton (1940)
Caenorhabditis elagans
2n=12
Mitreva et al. (2005)
Caenorhabditis briggsae
2n=12
Mitreva et al. (2005)
Caenorhabditis remanei
2n=12
Mitreva et al. (2005)
Caenorhabditis japonica 2n=12 Mitreva et al. (2005)
RHABDIASIDAE
Rhabdias briggsiae 2n=12 Nignon & Dougherty (1949)
Rhabdias bufonis 2n=12 Schleip (1911)
Rhabdias elegans 2n=12 Nignon & Dougherty (1949)
Rhabdias filleborni 2n=12 Dreyfus (1937)
Trichinella nelsoni 2n=6 (female)
2n= 5 (male) Mutafova et al. (1982)
136
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
ANISAKIDAE
Contracaecum clavatum
2n=24
Walton (1940)
Contracaecum incurvum
2n=42
Goodrich (1916)
Contracaecum spiculigerum
2n=10
Walton (1924)
KATHLANIIDAE
Cruzia tentaculata
2n=12
Walton (1924)
HETERAKIDAE
Ascaridia galli
2n=10
Walton (1940)
Heterakis dispar
2n=10
Gulick (1911); Walton (1940)
Heterakis gallinae
2n=10
Gulick (1911); Walton (1940)
Heterakis papillosa
2n=10
Gulick (1911); Walton (1940)
Heterakis sp?
2n=10
Walton (1924)
Heterakis spumosa
2n=12
Walton (1924)
Heterakis gallinarum
2n=10
Mutafova (1995)
OXYURIDAE
Passalurus ambiguus
2n=8
Meves (1920)
Syphacia obvelata
2n=16
Walton (1924)
TRICHOSOMOIDIDAE
Trichosomoides crassicauda
2n=8
Walton (1924)
HELIGMOSOMIDAE
Nematospira turgida
2n=12
Walton (1924)
STRONGYLIDAE
Cyclostomum tetracanthum
2n=12
Walton (1940)
Strongylus edentatus
2n=12
Kultz (1913); Walton (1940)
Strongylus equinum
2n=12
Kultz (1913); Walton (1940)
Strongylus vulgaris
2n=12
Kultz (1913); Walton (1940)
Stephanurus dentatus
2n=12
Tromba & Steele (1957)
METASTRONGYLIDAE
Dictyocaulus filaria
2n=12
Struckmann (1905); Walton (1940)
Dictyocaulus viviparous
2n=12
Walton (1940)
Filaroides mustelarum
2n=16
Carnoy (1886); Walton (1940)
Metastrongylus elongatus
2n=12
Gulick (1911); Walton (1940)
TRICHOSTRONGYLIDAE
Haemonchus contortus
2n=12
Bremner (1955)
Trichostrongylus tenuis
2n=12
Gulick (1911); Walton (1940)
Haemonchus contortus
2n=12
Mitreva et al.
(2005)
ACUARIIDAE
Dispharynx spiralis
2n=12
Walton (1924)
CAMALLANIDAE
Camallanus lacustris
2n=12
Walton (1940)
PHYSALOPTERIDAE
Physaloptera turgida
2n=10
Walton (1924)
Proleptus robustus
2n=16
Carnoy (1886); Walton (1940)
Physaloptera clausa
2n=10
Mutafova (1995)
RHABDOCHONIDAE
Cystidicola farionis 2n=12 Mulsow (1912)
SPIRURIDAE
Protospirura muris 2n=10 Walton (1924)
Spirura talpae 2n=16 Carnoy (1886); Walton (1940)
SETARIIDAE
Setaria equina 2n=12 Meves (1915)
GORDIIDAE
Gordius (all spp?) 2n=4, 8 SvAbenik (1909); Meyer (1913);
Muhldorf (1914); Vejdovsky (1912);
Camerano (1890)
CHORDODIDAE
Paragordius varius 2n=14 Montgomery (1904)
Family Species No. and Morphology of
Chromosomes Reference
137
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Chromosomes of Acanthocephala
Turning to the Acanthocephala, we again find
very few records of the examination of the
chromosomal components of the various
species. Apparently only 5 species belonging
to 3 ge nera have been studied :
Macracanthorhynchus hirudinaceous (Noe,
1914); of the Archiacanthocephala, and
Echinorhynchus (acus, haeruca, and
polymorphus) (Hamann, 1891) and
Pomphorhynchus proteus (Von Voss 1910) of
t h e P a l a e a c a n t h o c e p h a l a . I n
Macracanthorynchus the diploid number is 6,
and strong evidence seems to indicate that the
male is heterogametic and that an X-Y pair of
heterochromosomes is present. In the female
the 2X condition seems to be present (Jones &
Ward, 1950). Earlier reports of other than 6
chromosomes being characteristic of this
species may be due to faulty technique or to
mi si de nt if ication of th e wo rms.
Pomphorhynchus seems to have 8 somatic
chromosomes while the 3 Echinorhynchus
species show 16 (Table 5). This definite ratio
relationship between members of the
Echinorhynchidae may or may not be of
phylogenetic importance, but definitely does
support the separation of Pomphorhynchus
from Echinorhynchus, a separation which
some authorities have questioned on purely
morphological grounds. It is interesting to note
that in the only genus in which more than one
species has been studied there is a common
chromosome number. Similar examples may
appear in other genera, with a broader
sampling. Such constancy would not be
surprising in view of the known constancy of
nuclear numbers among certain of the
Acanthocephala. No evidence of the presence
of recognizable heterochromosomes among
the Palaeacanthocephala has been presented as
far as can be determined. It would seem, on the
basis of the evidence at hand, that while
constancy in chromosome numbers may seem
to occur within a genus, far too few records are
available for making any general statement.
The finding of heteromorphic conditions in
one species of the Acanthocephala should
encourage search for similar phenomena in
other members of the phylum. As far as the
actual chromosome numbers are concerned,
one can only say that the low numbers reported
are in accord with the high specialization of the
Phylum, but do not give recognizable clues as
to possible relationships, either within groups
above the species level, or as to possible
derivation from other phyla.
Table 5. Chromosome number of Acanthocephala from 1891 Till Date.
Family Species No. and Morphology of
Chromosomes Reference
OLIGACANTHORHYNCHIDAE
Macracanthorhynchus hirudinaceus 2n=12 Noe (1914); Jones & Ward (1950)
Macracanthorhynchus hirudinaceus 2n=6 Robinson (1964)
ECHINORHYNCHIDAE
Pomphorhynchus proteus 2n=16 Von Voss (1910)
Echinorhynchus acus 2n=32 Hamann (1891)
Echinorhynchus haeruca 2n=32 Hamann (1891)
Echinorhynchus polymorphus 2n=32 Hamann (1891)
Echinorhynchus gadi Mueller, 1776 2n=16 Robinson (1965)
Echinorhynchus gadi 2n=16 Walton (1959)
Echinorhynchus truttae 2n=7/8 Parenti et al. (1965)
Acanthocephalus ranae (Schrank, 1788) 2n=16 Robinson (1965)
2n=8 John (1957)
Acanthocephalus ranae 2n=16 Walton (1959)
Acanthocephalus lucii 2n=6 (2sm-m+1sm) 1st (X)
1m (Supernumerary B) Spakulova et al. (2002)
138
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
MONILIFORMIDAE
Moniliformis dubius
2n=8 (female)
2n=7 (male)
Robinson (1965)
POLYMORPHIDAE
Polymorphus minutes (Goeze, 1782)
2n=16
Robinson (1965)
Polymorphus minutes
2n=16
Walton (1959)
POMPHORHYNCHIDAE
Pomphorhynchus laevis Mueller, 1776
2n=8
Robinson (1965)
Pomphorhynchus laevis
2n=7/8
Mutafova &Nedeva (1988); Fontana et
al.
(1993)
Pomphorhynchus laevis
2n=6+X
Bambarova et al. (2007)
Pomphorhynchus tereticollis
2n=6+X
Bambarova et al. (2007)
RHADINORHYNCHIDAE
Leptorhyncoides plagicephalus (Westrumb, 1821) 2n=14 Fontana et al. (1993)
Leptorhyncoides thecatus 2n=5/6 Bone (1974)
Family Species No. and Morphology of
Chromosomes Reference
CONCLUSION
Although the turbellarians are not parasitic
except for a few possible exceptions, they have
been introduced into this paper because they
do show the gradual reduction of the basic
number of chromosomes from a large number
of small chromosomes to a smaller number of
larger units, not only within the group as a
whole, but in some cases within races of the
same species, and may possibly give hints as to
the derivation of the Trematoda which do show
a much greater conformity between the
chromosome number and the taxonomic
position as based on other criteria.
Studies of trematode material have been
relatively numerous, and the results point
definitely toward the desirability of continued
efforts in this field of research. The discovery
of the presence of heterochromosomes,
particularly of the fact that some forms show
the female as the heterogamic sex, is of
especial interest and importance. Some
definite taxonomic relationships are
recognizable, but since in some cases they
substantiate other types of evidence used in
establishing phylogenetic position and in other
cases the results seem to be contradictory,
further observations are in order. Perhaps some
of the apparent contradictions may be
eliminated as our knowledge increases. Such
definitely has been the case among the
Turbellaria, as mentioned in the body of this
paper. In the digenetic trematodes studied till
to date, most variations in the chromosome
numbers within a genus are seldom greater
than + 1 or 2 bivalents. Thus the mechanism for
an addition or deletion of the chromosome
must operate at a low level or inefficient level
in this group. This suggest that the differences
in the have come about by a doubling of the
whole sets of chromosome but by a gradual
addition or losses. Each change which
represents aneuploid condition becomes
stabilized. When variation in the chromosome
number exceeds 1 or 2 bivalents, it probably
represents successive aneuploid conditions,
each change followed by a period of stability in
the new chromosome number.
Study of cestode material has been quite
limited, and such few records as have been
noted do not give any appreciable taxonomic
clues, except perhaps to indicate that some
present taxa are too heterogeneous to be of real
validity. Many questions on the systematics of
basal cestode groups still remain controversial
and phylogenetic interrelationships of the
a c b
TCL, total complement length.; ?, uncertain value.; m, metacentric chromosome; sm, submetacentric chromosome; a, acrocentric chromosome (i.e. telocentric and
subtelocentric of Levan et al. (1964).
139
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
groups remain only partially resolved
(Kodedova et al., 2000; Mackiewicz, 1981,
1982, 1994, 2003; Olson et al., 2001, 2008;
Waeschenbach et al., 2007). Unfortunately, no
cytogenetic information is available on the two
most basal cestodarian lineages Gyrocotylidea
and Amphilinidea, as well as for
Haplobothriidea and Diphyllidea.
Study of the parasitic nematodes has given a
considerable amount of valuable taxonomic
information, and here again; the field is by no
means exhausted. The cytologist has a broad
field of endeavor in the study of parasitic
forms. With the newer techniques and the
newer optical equipment now available, new
knowledge of the physiology, morphology and
phylogenetic relationships of such parasitic
forms as those discussed is just at the threshold
of a whole vista of new concepts and new
interpretations.
Study of the Acanthocephala gives clues as to
relationships only at the species level, but such
work as has been done promises interesting
results.
The authors are highly thankful to the
Department of Zoology for providing the
Laboratory and Library facility, the first author
is also thankful to Prof. Fayaz Ahmad for
compiling the paper.
Parasitology, vol. 91, pp. 489-497.
Taxonomic analysis of Pegosomum
asperum and Pegosomum saginatum
(Trematoda: Echinostomatidae).
Parazitologiia, vol. 12, pp. 413-417.
Comparative karyotype analysis in
diploid and triploid Dolichoplana
carvalhoi (Tricladida, Terricola,
Rhynchodemidae) from Brazil. Genetics
and Molecular Biology, vol. 30, pp. 375-
379. Gametogenesis in the
primary generation of a digenetic
trematode, Proterometra macrostoma
Horsfall, 1933. Transactions American
Microscopy society, vol. 54, pp. 271-
297. Chromosome analysis of
Schistosoma rodhaini (Trematoda:
Schistosomatidae). Candian Journal of
Genetics and Cytology, vol. 22, pp. 143-
147. On
the morphology and chromosome
number of Polyonchobothrium clarias
(Cestoda: Pseudophyllidea) and
Paracamallanus cyathopharynx
(Nematoda: Spirurida); common
parasites of Clarias lazera in Egypt.
Egyptian Journal of Aquatic Biology of
Fishes, vol. 2, pp. 407-424. Classe des
M o n o g e n e s , M o n o g e n o i d e a
Bychowsky. In: Grasse PP (ed) Traite de
Zoologie. Anatomie, Systématique,
Biologie. IV. Plathelminthes,
Mesozoaires, Acanthocephales,
Nemertiens. Masson et Cie Editeurs,
Paris, pp 243-325.
From morphological
and karyology to moleculer. New
methods for taxomomical identification
of asexual populations of freshwater
Aleksandrova, OV & Podgornova, GP. 1978.
Alvarez, L & Almeida, EJC. 2007.
Anderson, МG. 1935.
Atkinson, KH. 1980.
Badavy, EB & Noor El-Din, SNA. 1998.
Baer, JG, Euzet, L. 1961.
Baguna, J, Carranza, S, Pala, M, Ribera, C,
Giribet, G, Arnedo, MA, Ribas, M &
Riutort, M. 1999.
ACKNOWLEDGEMENT
Aeppli, E. 1951.
Agatsuma, T & Habe, S. 1985.
Die Chromosome
nverhaltnisse bei Dendrocoelum
infernale (Steinmann). Ein Beitrage zur
Polyploidie in Tierreich. Revueue Suisse
zoologie, vol. 58, pp. 511-518.
Electrophoretic
studies on enzymes of diploid and
triploid Paragonimus westermani.
BIBLIOGRAPHIC REFERENCES
140
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
planarians. A tribute to Professor Mario
Benazzi. Italian Journal of Zoology, vol.
66, pp. 207-214. Karyotype
evolution in bats: evidence of extensive
and conservative chromosomal
evolution in closely related taxa.
Systematics Zoology, vol. 29, pp.
239–253. Les caryotypes de trois
planaires marines nord-americaines:
contribution a la phylogenie et a la
c l a s s i f i c a t i o n d u g r o u p e
(Platyhelminthes, Turbellaria,
Tricladida). Canadian Journal of
Zoology, vol. 54, pp. 644-651.
The karyotypes of two Dugesia
s pec i e s f ro m C o r f f, Gre ece
(Platyhelminthes, Turbellaria). Bijdr
Dierkd, vol. 48, pp. 187-190. The
Morphology, Karyology and Taxonomy
of a New Freshwater Planarian of the
Genus Phagocafa from California
(Platyhelminthes: Turbellaria). Life
Sciences Contributions Royal Ontario
Museum, vol. 105, pp. 1-19.
The development of Paravortex
gemellipara (Graffilla gemellipara
Linton). Journal of Morphology, vol. 27,
pp. 453-558.
Karyotypes of Trichobilharzia szidati
and B i l h a r z i e h a p o l v n i c u
(Schistosomatidae, Trematoda).
Parazitologiya, vol. 27, pp. 41-47.
Chromosome sets of
t re m a t o d e s P ara f a s cio l o p sis
fasciolaemorpha (Ejsmont, 1932) and
Cathemasia hians (Rudolphi, 1809)
Looss, 1899. Helminthologia, vol. 27,
pp. 145-152. Karyological studies of
t r e m a t o d e s w i t h i n g e n u s
Echinoparyphium (Echinostomatidae).
Ekologija, vol. 2. Karyotypes of
Baker, RJ & Bickham, JW. 1980.
Ball, IR. 1976.
Ball, IR. 1979.
Ball, IR & Gourbault, N. 1975.
Ball, SC. 1916.
Barsiene JV & Stanyavichyute, GJ. 1993.
Barsiene, J. 1990.
Barsiene, J. 1991a.
Barsiene, J. 1991b.
Paramphistomum sp., Cathaemasia
hians (Rudolphi, 1809) Looss, 1899,
Sphaeridiotrema globulus (Rudolphi,
1819) and Azygia lucii (Szidat, 1932).
Ekologija, vol. 2, pp. 21-27.
Chromosome sets of
Tylodelphys clavata, Tylodelphys
excavata and Posthodiplostomum
cuticola (Diplostomatidae, Trematoda)
from freshwater snails Angewandte
Parasitology, vol. 32, pp. 87-92.
The chromosome set of
Apatemon minor and Apatemon sp.
(Trematoda) with description of
tetraploid embryos. Angewandte
Parasitologie, vol. 32, pp. 87-92.
The karyotypes of
trematodes. 370 pp. Vilnius, Academia
(in Russian). A
comparative study on chromosomes in
plagiorchiid trematodes. I. Karyotypes
of Opisthioglyphe ranae (Frolich, 1791),
Haplometra cylindracea (Zeder, 1800)
and Leptophallus nigrovenosus
(Belingham, 1844). Acta Parasitol
Polonica, vol. 33, pp. 249-257. A
comparative study on chromosomes in
plagiorchiid trematodes. II. Karyotypes
of Plagriorchis sp., Haematoloechus
s i m i l i s L o o s s , 1 8 9 9 , a n d
Haematoloechus asper Looss, 1899.
Acta Parasitologica Polonica, vol. 33,
pp. 259-265. A
comparative study on chromosomes in
plagiorchiid trematodes. III. Karyotypes
of Paralepoderma progeneticum
(Buttner, 1951) and Omphalometra
flexuosum (Rudolphi, 1809). Acta
Parasitologica Polonica, vol. 36, pp. 19-
21.
Chromosome sets of Diplodiscus
subclavatus (Pallas, 1760) and
Notocotylus noyeri Joyeux, 1922
Barsiene, J. 1991c.
Barsiene, J. 1992.
Barsiene, J. 1993.
Barsiene, J & Grabda-Kazubska, B. 1988a.
Barsiene, J & Grabda-Kazubska, B. 1988b.
Barsiene, J & Grabda-Kazubska, B. 1991a.
Barsiene, J & Grabda-Kazubska, B. 1991b.
141
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
(Trematoda). Acta Parasitologica
Polonica, vol. 36, pp. 1-3.
Karyotypes of Pleurogenes claviger
(Rudolphi, 1819) and Pleurogenoides
medians (Olsson, 1876) (Trematoda,
Pleurogenidae). Acta Parasitologica
Polonica, vol. 36, pp. 13-15.
K a r y o l o g i c a l s t u d i e s o f
Echinoparyphium aconiatum (Dietz,
1909), Hypoderaeum conoideum
(Blanch, 1782) Dietz, 1909 and
Neoacanthoparyphium echinatoides
(Filippi, 1854) Odening, 1962
(Trematoda: Echinostomatidae). Acta
Parasitologica Polonica, vol. 35, pp.
271-276.
Karyological studies of trematodes
within the families Psilostomidae and
Echinochasmidae. Helminthologia, vol.
27, pp. 99-108. Karyological
studies of trematodes within the genus
Echinostoma. Acta Parasitol Polonica,
vol. 36, pp. 23-29. A
comparative karyological study of
trematodes within the genus
Diplostomum. Helminthologia, vol. 28,
pp. 31-36.
Karyological
investigations on trematodes of the
family Schistosomatidae in North-West
Chukotka. Parazitologiya, vol. 23, pp.
496-503.
Karyotypes of Isthmiophora
melis (Schrank, 1788) and Moliniella
anceps (Molin, 1858) (Trematoda:
Echinostomatidae). Acta Parasitologica
Polonica, vol. 35, pp. 265-269.
Chromosome Analysis of Two
Digenean Species of the Families
Barsiene, J & Grabda-Kazubska, B. 1991c.
Barsiene, J & Kise1iene, V. 1990b.
Barsiene, J & Kiseliene, V. 1990a.
Barsiene, J & Kiseliene, V. 1991.
Barsiene, J & Staneviciute, G. 1991.
Barsiene, JV, Stanyavichyute, GJ &
Oriovskaya, OM. 1989.
Barsiene, J, Kiseliene, V & Grabda-Kazubska,
B. 1990b.
Barsiene, J, Roca, V, Tapia, G & Martin, JE.
1995.
Heterophyidae and Monorchiidae
(Trematoda). Research and Reviews in
Parasilology, vol. 55, pp. 149-154.
Chromosome sets
of Diplostomum paracaudum (Lies,
1959) Shigin 1977 and Diplostomum
b a eri ( Dub o i s , 1 9 3 7 ) . A c t a
Parasitologica Polonica, vol. 35, pp.
107-112. Spermatogenesis of the
tapeworm Bothriocephalus scorpii. Ekol
Moria, vol. 2, pp. 87-91. (in Russian).
Karyological studies on three strigeid
digeneans: Ichthyocotylurus erraticus
(Rudolphi, 1809), I. variegatus (Creplin,
1825) and Apatemon gracilis (Rudolphi,
1819). Systematic Parasitology, vol. 41,
pp. 169-178. Cariologia di Dugesia
lugubris (O. Schmidt) (Tricladida,
Paludicola). Caryologia, vol. 10, pp.
276-303. A remarkable
cave planarian: Opisthobursa mexicana
Benazzi 1972. Quad Accad Naz Lincei,
vol. 171, pp. 47-54.
Platyhelminthes. Animal cytogenetics.
Ed. B. John. Berlin, Stuttgart: Gerzuder
Borntraeger, vol. 1. 182 p. Su alcune
caratteristiche cariologiche di stirpi di
Dugesia della Sardegna. Caryologia,
vol. 1, pp. 321-326. La
spermatogenesi in due biotipi di
Dugesia benazzii della Sardegna.
Caryologia (Firenze), vol. 3, pp. 181-
199. First contribution to
karyology of two acoels (Turbellaria)
and a dinophilid (Annelida).
Biologisches Zentralblatt, vol. 109, pp.
169-174. On the
Barsiene, J, Staneviciute, G, Niewiadomska, K
& Kiseliene, V. 1990a.
Bazitov, AA. 1978.
Bell, AS, Sommerville, C & Gibson, DI. 1998.
Benazzi, M. 1957.
Benazzi, M & Giannini, E. 1973.
Benazzi, M & Benazzi-Lentati, G. 1976.
Benazzi-Lentati, G. 1949.
Benazzi-Lentati, G & Nardi, O. 1950.
Birstein, VJ. 1990.
Birstein, VJ & Mikhailova, NA. 1990.
142
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Karyology of trematodes of the Genus
Microphallus and their intermediate
gastropod host II. Karyological study of
Littorina saxatilis (Gastropoda:
Prosobranchia).Genetica, vol. 80, pp.
167-170. Genomes of Paragonimus
westermani and related species: current
state of knowledge. International Journal
for Parasitology, vol. 30, pp. 421-426.
Zur spermiogenese der
Triclade Procerodes gerlachei n. sp.
Archiv biologie, vol. 23, pp. 1-12.
Divergent location
of ribosomal genes in chromosomes of
f i s h t h o r n y - h e a d e d w o r m s ,
Pom pho rhy nc h us la ev i s and
Po mphorhynchus teretico ll is
(Acanthocephala). Genetica, vol. 131,
pp. 141-149.
A karyotype of Nippotaenia
mogurndae: the first cytogenetic data
within the order Nippotaeniidea
(Cestoda). Helminthologia, vol. 42, pp.
27-30.
Telomere analysis
of platyhelminths and acanthocephalans
by FISH and Southern hybridization.
Genome, vol. 52, pp. 897-903. On
the type species of the genus Wardium-
Wa r d i u m f r y e i ( C e s t o d a :
Hymenolepididae: Aploparaksinae).
Parazitologiya, vol. 32, pp. 221-235. (In
Russian). The chromosomes of
L e p t o r h y n c h o i d e s t h e c a t u s
(Acanthocephala). Journal of
Parasitology, vol. 60, pp. 818.
Contribution a la morphologie
et a la biologie de Diplozoon paradoxum
v. Nordmann, 1832. Bulletin Society of
Neuchatel Science, vol. 3, pp. 64-159.
Karyological peculiarities of
Blair, D. 2000.
Bohmig, L. 1908.
Bombarova, M, Marec, F, Nguyen, P &
Spakulova, M. 2007.
Bombarova, M, Spakulova, M & Oros, M.
2005.
Bombarova, M, Vitkova, M, Spakulova, M &
Koubkova, B. 2009.
Bondarenko, SK & Petkeviciute, R. 1998.
Bone, LW. 1974.
Bovet, J. 1967.
Bovt, VD. 1973.
the tapeworm Dipylidium caninum
(Cestoda, Dipylididae). Zoologich zh,
vol. 52, pp. 1607-1610 (in Russian).
Cytological studies on the
specific distinctness of the ovine and
bovine strains of the nematode
Haemonchus contortus Rudolphi Cobb
Nematoda: Trichostrongylidae.
Australian Journal of Zoology, vol. 3, pp.
312-323. Chromosomes of digenetic
Trematodes. American Naturalist, vol.
81, pp. 276-296. Gametogenesis and
fertilization in the frog lung fluke,
Haematoloechus medioplexus Stafford
(Trematoda: Plagiorchiidae). Journal of
Morphology, vol. 107, pp. 93-122.
Studies on the germ-cell
cycle of Cryptocotyle linqua Creplin. I.
Gametogenesis in the adult. Quarterly
Journal of Microscopic Science, vol. 74,
pp. 563-589. Intorno ad una specie di
Gordius (G. aeneus Villot) raccolta dal
Sig. G.B. Anselmo in Venezuela e
intornoalle specie di questo genere fino
ad ora descritte dell America
meridionale. Ann Mus Civic Stor Nat
Genove, vol. 10, pp. 121-127.
The life cycles of
Bunodera sacculata and Bunodera
luciopercae (Trematoda: Allocreadidae)
in Algonquin Park, Ontario. Candian
Journal of Zoology, vol. 49, pp. 1417-
1429. La cellule, recueil de
cytologie et d'histologie generale. H. 1,
1886, H. 2, 1887.
The Life-History of
Diplodiscus temporatus Stafford with
especial Reference to the Development
of Parthenogenetic Eggs. Zoologische
Jahrbücher. Abteilung für Anatomie und
Ontogenie der Tiere, pp. 28.
A cytogenetic study on the rodent
Bremner, KC. 1955.
Britt, HG. 1947.
Burton, PR. 1960.
Cable, RM. 1931.
Camerano, L. 1890.
Cannon, LRG. 1971.
Carnoy, JB. 1886.
Cary, LR. 1909.
Casanova, JC, Spakulova, M & Laplana, N.
2000.
143
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
tapeworm Rodentolepis myoxi. Journal
of Helminthology, vol. 74, pp. 109-112.
Parasitism, parthenogenesis and
polyploidy: the life cycle of
Strongyloides papillosus. Journal of
Parasitology, vol. 43, pp. 13.
Chromosome study of fsoparorchis
hypselobagri Billet, 1898 (Digenea:
Hemiuridae). Journal of Helminthology,
vol. 61, pp. 346-347.
The germ cell cycle in the
trematode, Paragonimus kellicotti Ward.
Transactions of American Microscopy
and Society, vol. 56, pp. 208-236.
Studies on the relation
between amitosis and mitosis. I.
Development of the ovaries and
oogenesis in Moniezia. Biology Bullitin,
vol. 12, pp. 89-114.
Germ cell cycle of
Echinostoma revolutum (Froelich,
1802). Journal of Parasitology, vol. 36,
pp. 15-20. Cytological study of
Rhopalias macracanthus Chandler,
1932, a trematode from the opossum,
Didelphys virginiana. Journal of
Parasitology,vol. 35, pp. 417-422.
The chromosomes of
Notocotylus filamentis Barker, 1915, a
monostome from the muskrat (Fiber
zibethicus). Transactions of American
Microscopy and Society, vol. 69, pp. 64-
65. Cytological studies on the
germ cell cycle of the trematode family
Bucephalidae. Transactions of
American Microscopy and Society, vol.
75, pp. 103-116.
Nemic spermatogenesis with
a suggested discussion of simple
organisms,-Litobionts. Journal of the
Washington Academy of Sciences, vol.
18, pp. 37-50.
Studies on the biology of the
Chang, PCH & Graham, GL. 1957.
Chattopadhyay, I & Manna, B. 1987.
Chen, PD. 1937.
Child, CM. 1907.
Churchill, HM. 1950.
Ciordia, H. 1949.
Ciordia, H. 1950.
Ciordia, H. 1956.
Cobb, NA. 1928.
Coil, WH. 1970.
tapeworm Shipleya inermis Fuhrmann,
1908. Zeitschrift für Parasitenkunde,
vol. 35, pp. 40-54.
Studies on the dioecious
tapeworm Gyrocoelia pagollae with
emphasis on bionomics, oogenesis and
embryogenesis. Zeitschrift für
Parasitenkunde, vol. 39, pp. 183-194.
Identical linear order of
chromosomes in both gametes of the
acoel turbellarian Polychoerus
carmelensis: a preliminary note.
Procedings of National Academic
Sciences of U. S. A. vol. 67, pp.
1951–1958. Karyotype analysis of
Fasciolopsis buski. J. Chongquin Med.
Univ., Vol. 4, pp. 11.
A karyological study
on populations of Dugesia gonocephala
s.I. (Turbellaria, Tricladida). Italian
Journal of Zoology, vol. 66, pp. 245-253.
Behaviour of
chromosomes during gametogenesis
and fertilization in Paradistomoides
orientalis (Digenea: Trematoda).
Caryologia, vol. 37, pp. 207-218.
Taxonomic values of
chromosomes and cytoplasmic
inclusions in a digenetic trematode-
Phyllodistomum spatula. Research
Bullitin Panjab University Zool., Vol.
51, pp. 101-109. Gametogenesis and
fe rt iliza ti on in Is op arorchi s
eurytremum. Research Bullitin Panjab
University, vol. 44, pp. 21-24.
Spermatogenesis of a
digenetic trematode Gastrothylax
cruminifer. Research Bullitin Panjab
University, vol. 65, pp. 11-17.
Spermatogenesis of a
digenetic trematode Cotylophoron
elongatum. Research Bullitin Panjab
University, vol. 64, pp. 1-10.
Uber die Spermatogeneso
Coil, WH. 1972.
Costello, DP. 1970.
Dai, X. 1990.
Deri, P, Colognato, R, Rossi, L, Salvetti, A &
Batistoni, R. 1999.
Dhaг, VN & Sharma, GP. 1984.
Dhingra, OP. 1954a.
Dhingra, OP. 1954b.
Dhingra, OP. 1955a.
Dhingra, OP. 1955b.
Dingler, M. 1910.
144
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
des Dicrocoelium lanceolatum. Archiv
for Zellf, vol. 4, pp. 672-712.
Fertilization, maturation
and early cleavage in Barietta
d e s m o g n a t h i s p . n o v .
(Nematotaeniidae). Journal of
Parasitology, vol. 44, pp. 261-273.
Experimental studies on
morphological variation in the cestode
genus Hymenolepis. VI. Somatic pairing
of chromosomes in normal and mutant
strains of H. diminuta. Experimental
Parasitology, vol. 12, pp. 134-154.
The development of organ
systems in Nematotaeniid cestodes. III.
Gametogenesis and embryonic
development in Baerietta diana and
Distoichometra kozloffi. Journal of
Parasitology, vol. 49, pp. 530-558.
Contribuicao para o estudo
do cyclo chromosomico e da
determinaçào do sexo de Rhabdias
fuelleborni Trav. 1926. Boletins da
Faculdade de Philosophia, Sciencias e
Letras, b Universidade de Sao Paulo.
Biologia General, vol. 1, pp. 144.
A monograph of the genus
Macrostomum O. Schmidt 1848. 8 parts.
Zoologischer Anzeiger - A Journal of
Comparative Zoology, vol. 126, pp. 7-
20; vol. 127, pp. 131-144; vol. 128, pp.
49-68; pp. 188-205, pp. 274-291; vol.
129, pp. 21-48, pp. 120-146, pp. 244-
266. The
c h r o m o s o m e n u m b e r o f
Leucochloridiomorpha constantiae
(Trematoda). Journal of Parasitology,
vol. 60, pp. 929.
Molecular cytogenetics in
planarians. I. Fluorescence in situ
hybridization (FISH) of ribosomal DNA
to mitotic chromosomes of Dugesia
sicula Lepori (Turbellaria: Tricladida).
Caryologia, vol. 51, pp. 61-64.
Douglas, LT. 1957.
Douglas, LT. 1962.
Douglas, LT. 1963.
Dreyfus, A. 1937.
Ferguson, FF. 1940.
Fi1ippоne, EJ & Fried, B. 1974.
Filippi, C, Salvetti, A, Batistoni, R & Deri, P.
1998.
Fontana, F, Dezfuli, BS & Benvenuti, M. 1993.
Somatic and meiotic chromosomes in
male and female of Pomphorhynchus
laevis Muller, 1776 (Acanthocephala,
Pomphorhynchidae). Caryologia, vol.
46, pp. 329-334.
The chromosomes of Cosmocerca
k a s h m i r e n s i s F o t e d a r 1 9 5 9
(Oxyuroidea: Cosmocercidae).
Chromosome Information Service, vol.
14, pp. 16-18. Recherches sur la
maturation, la fecondation et la
segmentation chez les Polyclades. Mem
cour Mem Sav etr Academic research
Science Bel, vol. 55, pp. 5–65.
Recherches sur la
maturation, la fécundation et la
segmentation chez les Polyclades.
Archiv Zool exper, vol. 6, pp. 189-298.
The chromosome number of
Philophthalmus hegeneri Penner, Fried,
1963 (Trematoda). Procedings of
Helminthology Society of Washington,
vol. 42, pp. 197. Cariologia di
alcuni Turbellari marini. Bollettino di
Zoologia, vol. 42, pp. 459-460.
The karyology
of the geneus Procerodes (Tricladida:
Maricola) in British waters. Journal of
Mar Biology Association UK, vol. 59,
pp. 961-967. The
Chromosome Complement of Cercyra
hastata (Turbellaria: Tricladida) from
the Adriatic Sea. Transactions of
American Microscopy and Society, vol.
101, pp. 347-352. Karyology of
Yungia aurantiaca (Turbellaria:
Polycladida). Transactions of American
Microscopy and Society, vol. 104, pp.
122-128.
Characterization of
Turbellarian Chromosomes. II. C
Fotedar, D. N.; Duda, P. L. and Raina, M. K.
1973.
Francotte, P. 1897.
Francotte, P. 1898.
Fried, B. 1975.
Galleni, L & Puccinelli, I. 1975.
Galleni, L & Puccinelli, I. 1979.
Galleni, L & Puccinelli, I. 1982.
Galleni, L & Puccinelli, I. 1985.
Galleni, L, Canovai, R, Esposito, A & Stanyon,
R. 1989. -
145
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
banding in Dugesia lugubris
(Tricladida: Paludicola). Transactions
of American Microscopy and Society,
vol. 108, pp. 304-308.
Observation of meiosis of
Fasciolopsis buski. Hereditas (Beijing),
vol. 7, pp. 22-23.
Studies on the karyotype of
Schistosoma japonicum. Journal of
Parasitology and Parasitic Diseases, vol.
3, pp. 29-31. The growth of the ovum,
formation of the polar bodies, and the
fertilization in Polychoerus caudatus.
Journal of Morphology, vol. 15, pp. 73-
110. L'ovocyte de premier ordre
du Prostheceraeus vittatus avec quelques
observations relative à la maturation de
trois autres Polyclades. Cellule, vol. 18,
pp. 138-248.Chromosomal change and
rectangular evolution in North America
cyprinid fishes. Genet. Res., vol. 35,
pp.157–164.
The chromosomes of Rodentolepis
nana (Siebold, 1852) Spasskii, 1954
obtained from naturally infected mice
conventionally maintained in a
Brazilian laboratory animal house.
Parasite, vol. 13, pp. 75-77.
Eireifung und
B e f r u c h t u n g u n d
Embryonalentwicklung des Zoogonus
minis Lss., Zoologische Jahrbücher.
Abteilung für Anatomie und Ontogenie
der Tiere, pp. 21. Uber das Verhalten des
Chromatins bei der Eireifung und
Befruchtung des Dicrocoelium
lanceolatum. Archiv for Zellf, pp. 1.
The germ cells in Ascaris
incurva. Journal of Experimental
Zoology, vol. 21, pp. 61-99.
Une nouvelle planaire
Gao, L. 1985.
Gao, L, You, S, Chen, S, Yu, H, Xiao, J & Wu,
M. 1985.
Gardiner, EG. 1898.
Gerard, O. 1901.
Gold, JR. 1980.
Goldschmidt, B, Menezes, RC & Alves, LC.
2006.
Goldschmidt, R. 1905.
Goldschmidt, R. 1908.
Goodrich, HB. 1916.
Gourbalt, N. 1978.
primitive d'origine marine, Turbellarie
Triclade de Polynesie. Cah. Biol. Mar.,
Vol. 19, pp. 23-36.
La reduction dans le
Zoogonus mirus Lss. ct la Primartypus.
La Cellule, vol. 25, pp. 85-99.
The gametogenesis of
the digenetic trematode, Sphaerostoma
bramae (Muller) Luhe. Parasitology, vol.
48, pp. 293-302.
A Comparative study of the
chromosomes of twenty species of
Caryophyllidean Tapeworms. In:
Dissertation, College of Arts and
Sciences, Department of Biology, State
University of New York at Albany, USA.
214pp. (Data used with written
permission of Anthony, J. Grey).
Chromosomes of the caryophyllidean
tapeworm Glaridacris laruei.
Experimental Parasitolology, vol. 36,
pp.159-166.
Chromosomes of caryophyllidean
cestodes: diploidy, triploidy, and
parthenogenesis in Glaridacris
catostomi. International Journal of
Parasitology, vol. 10, pp. 397-407.
Karyotypes
and chromosome morphologies of
Megalodiscus temperatus and
Philophthalmus gralli. Journal of
Helminthology, vol. 55, pp. 71-78.
Sex chromatin in Schistosoma mansoni.
Journal of Parasitology, vol. 66, pp. 368-
370.
Karyotype evolution and sex
chromosome differentiation in
S c h i s t o s o m e s ( Tr e m a t o d a ,
Schistosomatidae). Chromosoma, vol.
84, pp. 413-430.
Somatic chromosomes of Schistosoma
rodhaini, Schistosoma matthei and
Gregoire, V. 1909.
Gressоn, RAR. 1958.
Grey, A. J. 1979.
Grey, AJ & Mackiewicz, JS. 1974.
Grey, AJ & Mackiewicz, JS. 1980.
Grossman, AI & Cain, GD. 1981.
Grossman, AI, Mckenzie, R & Cain, GD. 1980.
Grossman, AI, Short, RB & Cain, GD. 1981a.
Grossman, AI, Short, RB & Kuntz, RE. 1981b.
146
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Schistosoma intercalatum. Journal of
Parasitology, vol. 67, pp. 41-44.
Gametogenesis in
Heronimus chelydrae. Transactions of
American Microscopy and Society, vol.
74, pp. 182-190. Gametogenesis, egg-
capsule formation, and early miracidial
development in the digenetic trematode
Halipegus eccentricus Thomas. Journal
of Parasitology, vol. 47, pp. 757-764.
Geschlechtschromosomen
bei Nematoden, Archiv Zellfovscli, vol.
6, pp. 339. Morphology,
anatomy, histology and chromosome
number of Cotugnia megitti Yamaguti,
1935, a cestode from Columba livia
intermedia. Research Bullitin Panjab
University, vol. 22, pp. 221-228.
Biologie d'un Rhabdocoele
parasite du Cardium edule (L.) Comptes
Rendus des Seances de 1'. Academie des
Sciences, vol. 156, pp. 1047-1049.
Monographie der
Acanthocephalen. Ztschr Naturwiss,
vol. 25, pp. 113-231.
A
comparative study of the fish parasites
Proteocephalus exiguus and P. percae
(Cestoda: Proteocephalidae):
morphology, isoenzymes, and karyotype.
Candian Journal of Zoology vol. 73, pp.
1191-1198. Sex
determination in the parasitic nematode
Strongyloides ratti. Genetics, vol. 158,
pp. 1527-1533.
Chromosome structure and
behaviour in Bursaphelenchus
x y l o p h i l u s (N e m a t o d a :
Parasitaphelenchidae) germ cells and
early embryo. Nematology, vol. 8, pp.
425-434.
Guilford, HG. 1955.
Guilford, HG. 1961.
Gulick, A. 1911.
Gupta, NK & Grewal, SS. 1971.
Hallez, P. 1908.
Hamann, O. 1891.
Hanzelova, V, Snabel, V, Spakulova, M,
Kralova, I & Fagerholm, HP. 1995.
Harvey, SC & Viney, ME. 2001.
Hasegawa, K, Mota, MM, Futai, K & Miwa, J.
2006.
He, LY, Zhong HL, Gao, PZ, LLi, H & Xu, Z.
1982.
Henneguy, LF. 1902.
Hirai, H, Sakakuchi, Y, Habe, S & Imai, HT.
1985.
Homedes De Ranquini, J. 1933.
Hossain, MM & Jones, AW. 1963.
Husted, L, Fergusan, FF & Strirewalt, MA.
1939.
Ieyma, H & Оzаki, F. 1987.
Iha, AG. 1975.
Jeffrey, EC & Haertl, EJ. 1938.
John, B. 1957.
Preliminary studies on
chromosomes of 9 species and
subspecies of lung fluke in China.
Chinese Medical Journal, vol. 95, pp.
404-408. Sur la Formation de
l'CEuf, la Maturation et la Fecondation
de l'Oocyte chez lo Distomum
hepaticum, Paris, C. R. Academic
Science, pp. 134.
C banding analysis of six species
of lung flukes, Paragonimus spp.
(Trematoda: Platyhelminthes), from
Japan and Korea. Zeitschrift fur
Parasitenkunde, vol. 71, pp. 617-629.
Estudio del
aparato cromosomico de los Ascris
suilla y Ascaris vitulorum Goeze.
Trabajos del Institute de Biologia
Animal, vol. 1, pp. 17-24. The
chromosomes of Hymenolepis
microstoma (Dujardin, 1845). Journal of
Parasitology, vol. 49, pp. 305-307.
Chromosome association in
Mesostoma ehrenbergi (Focke) Schmidt.
Amererican National, vol. 73, pp. 180-
185. Chromosomes of
two species in Cercaria parasitized on
the clam, Ruditapes philippinarum.
Chromosome Inform. Service, vol. 43,
pp. 27-28. Cytogenetics, evolution and
systematics of Digenea (Trematoda:
Platyhelminthes). Egyptian Journal
Genetics and Cytology, vol. 4, pp. 201-
233. The nature of
certain so-called sex chromosomes in
Ascaris. Cellule, vol. 47, pp. 237-244.
The chromosomes of
zooparasites I. Acanthocephalus ranae
(Acanthocephala: Echinorhynchidae).
Chromosoma, vol. 8, pp. 730-738.
147
Jones, AW Ciordia, H. 1956.
Jones, AW & Ward, HL. 1950.
Jones, AW & Wyant, KD. 1957.
Jones, AW. 1943.
Jones, AW. 1944.
Jones, AW. 1945.
Jones, AW. 1951.
Jones, AW. 1954.
Jones, AW. 1956.
Jones, AW & Ciordia, H. 1955.
Jones, AW & Mackiewicz, JS. 1969.
The chromosomes
of Hydatigera taeniaeformis and Taenia
pisiformis. Journal of Parasitology, vol.
42, pp. 207. The
chromosomes of Macracanthorhynchus
hirudinaceous (Pallas). Journal of
Parasitology, vol. 36, pp. 86. The
chromosomes of Taeniarhynchus
saginatus (=Taenia saginata) Goeze,
1782. Journal of Parasitology, vol. 43,
pp. 115-116.
Pseudostomum caecum (von
Graff 1883) n.comb. for Enterostomum
c a e c u m von G r a f f 1 8 8 3 ; a
morphological and cytological study of
an alloeocoele-turbellarian (Cumulata,
Pseudostom id ae). Journ al of
Morphology, vol. 73, pp. 313-325.
Macrostomum hustedi, n.
sp., a morphological and cytological
study of a rhabdocoel turbellarian.
Journal of Morphology, vol. 75, pp. 347-
358. Studies in Cestode cytology.
Journal of Parasitology, vol. 31, pp.
213-235. The chromosomes of
Davainea proglottina. Transactions of
American Microscopy and Society, vol.
70, pp. 272-273. Chromosomes of a
t r y p a n o r h y n c h i d c e s t o d e ,
Lacistorhynchus tenuis Beneden, 1858.
Journal of Tennessee Academic
Sciences, vol. 29, pp. 182.
The chromosomes of a
species of Halipegus Looss, 1899
(Digenea: Hemiuridae). Journal of
Tennessee Academic Sciences, vol. 31,
pp. 186-187. A cytological
race of Hymenolepis nana. The Bulletin
of the Association of Southeastern
Biologists, vol. 2, pp. 8. Naturally
occurring triploidy and parthenogenesis
in Atractolytocestus huronensis Anthony
(Cestoidea: Caryophyllidea) from
Cyprinus carpio L. in North America.
Journal of Parasitology, vol. 55, pp.
1105-1118. The
chromosomes of Spirorchis magnitestis
Byrd, 1939 (Trematoda, Digenea).
Journal of Tennessee Academic
Sciences, vol. 28, pp. 125-134.
Macravestibulum kepneri n. sp.; a
morphological and cytological study of
a pronocephalid trematode. Journal of
Morphology, vol. 77, pp. 285-297.
Genome size estimation of liver
fluke Opisthorchis viverrini by real-time
polymerase chain reaction based
method. Parasitology International, vol.
61(1), pp. 77-80. Germinal
development in Philophthalmus
megalurus (Cort, 1914) (Trematoda:
Digenea). Zoologie Parasitenkd, vol. 31,
pp. 211-231.
th
A dictionary of genetics. 7 Ed.
Oxford University Press, p. 242, Oxford
and New York. The chromosomes of
Hymenolepis diminuta. Journal of
Parasitology, vol. 43, pp. 494-495.
On the
phylogenetic positions of the
Caryophyllidea, Pseudophyllidea and
Proteocephalidea (Eucestoda) inferred
from 18S rRNA. International Journal of
Parasitology, vol. 30, pp. 1109-1113.
Chromosomes and
Chromosome Breakage in the Lung
Fluke, Paragonimus heterotremus.
Journal of Tropical and Medical
Parasitology, vol. 28, pp. 69-72.
Jones, AW & Mayer, ТC. 1953.
Jones, AW, Mounts, BW & Wо1соtt, GВ.
1945.
Kaewkong, W, Imtawil, K, Maleewong, W,
Intapan, PM, Sri-aroon, P & Wongkham,
S. 2012.
Kahlil, GM & Cable, RM. 1968.
King, RC, Stansfield, WD & Mulligan, PK.
2006.
Kisner, RL. 1957.
Kodedova, I, Dolezel, D, Brouckova, M, Jirku,
M, Hypsa, V & Lukes, J. 2000.
Komalamisra, C. 2005.
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
148
Koroleva, YI. 1968a.
Koroleva, YI. 1968b.
Koroleva, YI. 1969.
Koskova, E, Spakulova, M, Koubkova, B,
Reblanova M & Orosova, M. 2011.
Kralova-Hromadova, I, Stefka, J, Spakulova,
M, Bombarova, M, Orosova, M &
Hanzelova, V. 2010.
Kruger, E. 1913.
Kultz, K. 1913.
Lamatsch, DK, Sharbel, TF, Martin, R & Bock,
C. 1998.
Lei, C, Wang P & Song, C. 1985.
Karyological study on
several species of Monogenea of the
genus Diplozoon. Dokl Akad Nauk
USSR, Zoologia, vol. 179, pp. 739-741.
New data on karyology
of some species of the genus Diplozoon.
Parazitologiya, vol. 2, pp. 294-296.
Karyology of some
species of Diplozoon. Parazitologiya,
Vol. 3, pp. 411-414.
Comparative karyological analysis of
four diplozoid species (Monogenea,
Diplozoidae), gill parasites of cyprinid
fishes. Parasitology Research, vol. 108,
pp. 935-941.
Intra-individual
internal transcribed spacer 1 (ITS1) and
ITS2 ribosomal sequence variation
linked with multiple rDNA loci: a case of
triploid Atractolytocestus huronensis,
the monozoic cestode of common carp.
International Journal of Parasitology,
vol. 40, pp. 175-181.
Fortpflanzung und
keimzellenbildung von Rhabditis
aberrans. Zeit Wiss Zool, vol. 105, pp.
87-124. Uber die Spermiound
Oogenese der Sclerostomum-Arten des
P f e r d e s u n t e r b e s o n d e r e r
B e r u c k s i c h t i g u n g d e r
Heterochromosomenforschung. Archiv
for mikroskop Anatomie, vol. 83, pp.
191–266.
A drop technique for flatworm
chromosome preparation for light
microscopy and high-resolution
scanning electron microscopy.
Chromosome Research, vol. 6, pp. 654-
656. Preliminary
studie s on the karyotype of
Euparagonimus cenocopiosus Chen,
1962.
Lepori, NG. 1953a.
Lepori, NG. 1953b.
Leroux, PL. 1958.
Levan, A, Fredga, K & Sandberg, A. 1964.
Li, GO, Jin, JS & Wang, P. Y.
Li, S & Zheng, ZC. 1988.
Li, GO, Jin, JS & Wang, PY. 1988.
Li, JC. 1934.
Li, JC. 1937.
Lin, TP. 1954.
Liu, G & He, L. 1987a.
Journal of Parasitology and
Parasitic Diseases, vol. 3, pp. 32-34.
Nuova mutazione
genomica in Polycelis nigra Ehrenberg.
Caryologia, vol. 6, pp. 90-102.
Prime richerche
cariologiche su alcune populazioni
Europee de Polycelis tenuis Iijima.
Caryologia, vol. 6, pp. 103-115.
The validity of Schistosoma
capense (Harley, 1864) amended as a
species. Transactions Royal Society of
Tropical Medicine and Hygyne, vol. 52,
pp. 12-14.
Nomenclature for centromere position
on chromosomes. Hereditas, vol. 52, pp.
201-220. A study on the
chromosomes of Fasciola hepatica.
Chinese Journal of Veterinary Science
and Technology, vol. 6, pp. 11-16.
Karyotype analysis
of the lungfluke Paragonimus skrjabini
Chen, 1959. Acta Zoologie Sinica, vol.
29, pp. 310-318. A study on
the chromosomes of Fasciola hepatica.
Chinese Journal of Veterinary Science
and Technology, 6: 11-16.
A six-chromosome Ascaris found
in Chinese horses. Peking Natural
History Bulletin, vol. 9, pp. 131-132.
Studies of the chromosomes of
Ascaris megalocephala trivalens. 1. The
occurrence and possible origin of nine-
chromosome forms. Peking Natural
History Bulletin, vol. 11, pp. 373-379.
The chromosomal cycle in
Parascaris equorum: oogenesis and
diminution. Chromosoma, vol. 6, pp.
175-198. Studies on the
cytogenetics of Cestoda. I. The
karyotype of Hymenolepis diminuta.
Hereditas (Beijing), vol. 9, pp. 26-27 (in
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
149
Chinese). Studies on the
cytogenetics of Cestoda. III. The
karyotype of Taenia hydatigena.
Zoology of Research, vol. 8, pp. 353-356
(in Chinese). Studies on the
cytogenetics of Cestoda. II. Karyotype
analysis of Dipylidium caninum.
Hereditas (Beijing), vol. 10, pp. 24-25
(in Chinese). G-banding of
chromosomes and G-bands quantitative
analysis of Spirometra mansoni with
microscope photometer. Hereditas
(Beijing), vol. 11, pp. 12-15.
Chromosomes in the
evolution of Platyhelminthes. Genetics
of parasitic helminths: recent progress
and future directions. 53rd Annual
Meeting, American Society of
Parasitologist. Chicago, Illinois.
Chromosomes of two
species of Paragonimus. Transactions of
American Microscopy and Society, vol.
98, pp. 280-5. Chromosomes of two
species of Paragonimus. Transactions of
American Microscopy and Society, vol.
98, pp. 280-285. The
Chromosomes of Cotylogaster
occidentalis and Cotylaspis insignis
(Trematoda: Aspidogastrea) with
Evolutionary Considerations.
Proceedings of the Helminthological
Society, vol. 45, pp. 158-161.
Chromosome
numbers of some Schistosomes. Journal
of Parasitology, vol. 67, pp. 726.
I nv e s ti g a ti o n o f
chromosomes of Alveococcus
multilocularis (Echinococcus
multilocularis) Leuckart, 1863.
Meditsin. Parazitol Parazit Bol, vol. 34,
pp. 351-352 (in Russian).
Liu, G. and He, L. 1987b.
Liu, G & He, L. 1988.
Liu, G & He, L. 1989.
LoVerde, PT. 1978.
LoVerde, PT. 1979.
LoVerde, PT. 1979.
Loverde, PT & Frederickse, DW. 1978.
LoVerde, PT & Kuntz, RE. 1981.
Lukashenko, NP, Brzheskij, VV & Smirnova,
Z M. 19 6 5.
Mackiewicz, JS. 1981.
Mackiewicz, JS. 1982.
Mackiewicz, JS. 1994.
Mackiewicz, JS. 2003.
Mackiewicz, JS & Jones, AW. 1969.
Madhavi, R & Ramanjaneulu, JV. 1986.
Madhavi, R & Ramanjaneyulu, JV. 1988.
Margarian, LG. 1989.
Markell, EK. 1943.
Matthieson, E. 1904.
Caryophyllidea
( C e s t o i d e a ) : e v o l u t i o n a n d
classification. Advanced Parasitology,
vol. 19, pp. 139-206. Caryophyllidea
(Cestoidea): perspectives. Parasitology,
vol. 84, pp. 397-417.
Order Caryophyllidea
van Beneden in Carus, 1863. In: Khalil,
A.; Jones, A. and Bray, R. A. (Eds.),
Keys to the Cestode Parasites of
Vertebrates. CAB International,
Wallingford, UK, pp. 21-43.
Caryophyllidea
(Cestoidea): molecules, morphology
and evolution. Acta Parasitology, vol.
48, pp. 143-154. The
chromosomes of Hunterella nodulosa
Mackiewicz and McCrae, 1962
(Cestoidea: Caryophyllidea).
Proceedings of Helminthology Society
of Washington, vol. 36, pp. 126-131.
Observation on chromosomes and
gametogenesis of Transversotrema
patialense (Trematoda). Parasitology,
vol. 12, pp. 245-252.
Chromosomes of Atrophecaecum
burminis (Bhalerao, 1926) (Trematoda:
Acanthostomidae). Caryologia, vol. 41,
pp. 341-346. Chromosomes of
cestode species Skrjabinia (S.)
c a u c a s i c a , R a i l l i e t i n a ( R . )
echinobothrida and Dipylidium
caninum (Cestoidea, Cyclophyllidea
Braun, 1900). Biol Zhurn Armeniy, vol.
42, pp. 749-752. (in Russian).
Gametogenesis and egg-
shell formation in Probolitrema
californiense Stunkard, 1935
( Tre ma t oda : G o rg ode r ida e ).
Transactions of American Microscopy
and Society, vol. 62, pp. 27–56.
Ein Beitrag zur
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
150
E m b r y o l o g i e d e r
Susswasserdendrocoelen. Zwiss Zool,
vol. 77, pp. 274–361.
Accessory chromosomes in
animals, especially in Polycelis tenuis.
Hereditas, vol. 36, pp. 19-38.
Meiotic Structures in the Animal-
Par asi tic N e ma tod e Asc ari s
megalocephala: Synaptonemal
Complexes, Recombination Nodules,
and Centrioles.Journal of Nematology,
vol. 35(2), pp. 223-227.
Ueber Samenbildung und
Befruchtung bei Oxyuris ambigucr.
A r c h . M i k r o s k . A n a t .
Entwicklungsmech. vol. 94, pp. 135-
184. Uber Mitwirkung der
Plastosomen bei der Befruchtung des
Eies von Filaria papillosa. Archiv fof
mikroskop Anatomie, vol. 87, pp. 12–46.
Zellulare Untersuchungen an
Nematodeneiern. Jenenser Zeitschrift,
Bd. pp. 29.
Comparative
genomics of nematodes. Trends in
Genetics, vol. 21, pp. 573-581.
Two types of the lung fluke
which has been called Paragonimus
westermani (Kerbert, 1878). Medical
Bull of Fukuoka University, vol. 5, pp.
251-269. On the chromosomes of
Bdellocephala brunnea. Kromosomo,
pp. 3-574. The development
and structure of the larva of Paragordius.
Proceedings of the Academy of Natural
Sciences of Philadelphia, vol. 56, pp.
738-755. Karyological studies of
bovine pancreatic flukes (Eurytrema sp.)
and their phenotypes. Journal of
Parasitology, vol. 68, pp. 898-904.
Taxonomical studies of
Melander, Y. 1950.
Merlin, J.; Goldstein, A. and Goldstein, P.
2003.
Meves, F. 1920.
Meves, F. 1915.
Meyer, O. 1913.
Mitreva, M, Blaxter, ML, Bird, DM &
McCarter, JP. 2005.
Miyazaki, I. 1978.
Momma, E. 1953.
Montgomery, T. H. 1904.
Moriyama, N. 1982a.
Moriyama, N. 1982b.
Japanese bovine pancreatic flukes
(Eurytrema sp.). Jap. Journal of
Parasitology, vol. 31, pp. 67-79.
Three karyotypes and their phenotypes
of Japanese liver flukes (Fasciola sp).
Jpn. Journal of Parasitology, vol. 28, pp.
23-33. On the early development
of monozoic cestode, Archigetes
appendicularis, including the oogenesis
and fertilisation. Vol Annot Zool
Japonenses, vol. 12, pp. 109-129. The
study of chromosomes of the cestode
Taenia hydatigena Pallas, 1766
(Cyclophyllidea Beneden in Braun,
1900). Helminthologia, vol. 28, pp.
193–195. Beitrage zur
Entwicklungsgeschichte und zu den
phylogenetischen Bezichungender
Gordius larvae. Z Wiss Zool, vol. 3, pp.
1-75. Der Chromosomencyklus
bei Ancyracanthus cystidicola. Archiv
for Zellforsch, Bd. pp. 9. Studies on the
karyotype of the echinostome
Echinostoma barbosai Lie et Basch,
1966 (Trematoda: Echinostomatidae)
from Bulgaria. Helminthology, vol. 16,
pp. 42-46. Studies on the
karyotype of Echinoparyphium
aconiatum Diez, 1909 (Trematoda:
Echinostomatidae). Helminthology, vol.
17, pp. 37-40. Studies on the
karyotype of Echinostoma revolutum
(Frolich, 1802) and Echinostoma
echinatum (Zeder, 1803) (Trematoda:
Echinostomatidae). Helminthology, vol.
22, pp. 37-41. Morphology and
Behaviour of Sex Chromosomes during
Meiosis in Ascaris suum. Zoologie
Moriyama, N.; Tsuji, M. and Seto, T. 1979.
Motomura, I. 1929.
Movsessian, S & Margarian, L. G. 1991.
Muhdorf, A. 1914.
Mulsow, K. 1912.
Mutafova, T & Kanev, I. 1983.
Mutafova, T & Kanev, I. 1984.
Mutafova, T & Kanev, I. 1986.
Mutafova, T. 1975.
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
151
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Parasitenk, vol. 46, pp. 291-295.
Comparative Cytological
Studies of Mitotic and Male Meiotic
Karyotype of Ascaridia dissimilis
(Vigueras, 1931) and Ascaridia galli
(Schrank, 1788). Zoologie Parasitenk,
vol. 48, pp. 239-245.
Studies on the karyotype
of Paramphistomum microbothrium
Fischoeder, 1901. Helminthology, vol.
16, pp. 37-41. Morphology and
be havio r of the a cro cent ri c
chromosomes in the karyotype of
Philophthalmus sp. during mitosis.
Helminthology, vol. 15, pp. 57-62.
Meiosis and Some Aspects
of Cytological Mechanisms of
Chromosomal Sex Determination in
Nematode Species. International Journal
for Parasitology, vol. 25, pp. 453-462.
Cytological
studies on three hymenolepidid species.
Journal of Helminthology, vol. 68, pp.
323-325. Cytological
study of Rubenstrema exasperatum
(Trematoda: Omphalometridae).
International Journal of Parasitology,
vol. 26, pp. 1405-1406. On the
Karyotype of a Laboratory Trichinella
Strain from Bulgaria. Zoologie
Parasitenk, vol. 48, pp. 247-250.
Oogenesis and
spermatogenesis of Pomphorhynchus
laevis (Muller, 1776) (Acanthocephala:
P o m p h o r h y n c h i d a e ) .
Khelminthologyia, vol. 25, pp. 23-28.
Karyological
study of Khavia sinensis Hsu, 1935
(Cestoda, Lytocestidae). Acta
Parasitology, vol. 44, pp. 206-208. The
morphology of chromosomes of
Diplostomum pseudospathaceum
Niewiadomska, 1984 (Diplostomidae)
Mutafova, T. 1976.
Mutafova, T. 1983a.
Mutafova, T. 1983b.
Mutafova, T. 1995.
Mutafova, T & Gergova, S. 1994.
Mutafova, T & Kanev, I. 1996.
Mutafova, T & Komandarev, S. 1976.
Mutafova, T 6 Nedeva, I. 1988.
Mutafova, T & Nedeva, I. 1999.
Mutafova, T & Niewiadomska, K. 1988.
karyotype. Acta Parasitologica Polonica,
vol. 33, pp. 83-88.
Comparative karyological studies of
Echinococcus granulosus and
Echinococcus multilocularis.
Khelminthologiya, vol. 20, pp. 60-65 (In
Bulgarian).
The Karyotype of Four
Trichinella Species. Zoologie
Parasitenkd, vol. 67, pp. 115-120.
Comparative karyological investigation
of Echinoparyphium aconiatum Dietz,
1909 and Echinoparyphium recuriatum
(Linstow. 1873) Dietz, 1909
(Trematoda: Echinosomatidae).
Helminthology, vol. 24, pp. 32-36.
Effect of
diethylnitrosamin on the chromosome
structure of rats infected with Fasciola
hepatica and on that of the liver fluke.
Khelmithologiya (Sofia), vol. 22, pp. 42-
50. The
morphology of chromosomes of
Diplostomum pseudospathaceum
Niewiadomska, 1984 (Digenea,
Diplostomatidae) karyotype. Acta
Parasitology Polonica, vol. 33, pp. 83-
88. Three
karyotypes and their phenotypes of
Japanese liver flukes (Fasciola sp.).
Japanese Journal of Parasitology, vol.
28, pp. 23-33. To the
morphology of Bothriocephalus
acheilognathi Yamaguti, 1934 (fam.
Bothriocephalidae). Khelminthologiya,
vol. 26, pp. 39-46 (in Bulgarian).
Modalites de la reproduction
et determinisme du sexe chez quelques
nematodes libres. Annales des Sciences
Naturelles/ Zoologie, vol. 11, pp. 1-132.
Mutafova, T & Svilenov, D. 1985.
Mutafova, T.; Dimitrova, Y. and Komandarev,
S. 1982.
Mutafova, T.; Kanev, I. and Vassilev, I. 1987.
Mutafova, T, Tsocheva, N, Polyakova-
Krsteva, O & Krstev, L. 1986.
Mutafova, Т & Niewiadomska, K. 1988.
Mоriуama, N, Tsuji, M 6 Setо, Т. 1979.
Nedeva, I & Mutafova, T. 1988.
Nigon, V. 1949.
152
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Nigon, V & Dougherty, E. C.1949.
Nigon, V & Robert, M. 1952.
Nigon, V & Roman, E. 1952.
Niyamasena, SG. 1940.
Olson, PD, Poddubnaya, LG, Littlewood, DTJ
& Scholz, T. 2008.
Olson, PD, Littlewood, DTJ, Bray, RA &
Mariaux, J. 2001.
Orosova, M, Kralova-Hromadova, I,
Bazsalovicsova, E & Spakulova, M.
2010a.
Orosova, M, Marec, F, Oros, M, Xi, BW &
Scholz, T. 2010b.
Papi, F. 1950.
Reproductive patterns and attempts at
reciprocal crossing of Rhabditis elegans
Maupas, 1900, and Rhabditis briggsae
Dougherty and Nigon, 1949 (Nematoda:
Rhabditidae). Journal of Experimental
Zoology, vol. 112, pp. 485–503.
Contribution
Al'et ude de la gametogenese chez
Parascaris equorum Goeze. I. La
formation destet rades durant
l'ovogenese de la variete univalens.
Bulletin Biology France Belgique, vol.
86, pp. 101-104. Le determinisme
du sexe et le development cyclique de
Strongyloides ratti. Bulletin Biology
France Belgique, vol. 86, pp. 404-448.
Chromosomen und
Geschlecht bei Bilharzia mansoni.
Ztschr Parasitenk, vol. 11, pp. 690-701.
On the position of
Archigetes and its bearing on the early
evolution of the tapeworms. Journal of
Parasitology, vol. 94, pp. 898-904.
Interrelationships and
evo lu t io n o f th e t ap ewo rm s
(Platyhelminthes: Cestoda). Molecular
Phylogenetetics Evolution, vol. 19, pp.
443-467.
Karyotype, chromosomal
characteristics of multiple rDNA
clusters and intragenomic variability of
ribosomal ITS2 in Caryophyllaeides
fennica (Cestoda). Parasitology
International, vol. 59, pp. 351-357.
A chromosome study
and localization of 18 S rDNA in Khawia
saurogobii (Cestoda: Caryophyllidea).
Parasitology Research, vol. 106, pp.
587-593. Richerch cariologiche sui
Rabdocoeli. I. Caryologia, vol. 2, pp.
113-126.
Note faunistiche sui Turbellari
dell'Italia centrale. Monitore Zoologico
italiano, vol. 60, pp. 1-13.
Beitrage zur Kenntnis der
Macrostomiden (Tllrbellarien). Acta
Zoal Enn, vol. 78, pp. 1-32.
Uber einige Typhloplaninen
Turbellaria Neorhabdocoela. Acta
Zoologica Fennica, vol. 64, pp. 1-20.
Sex ratio and sex digamety in
Echinorhynchus truttae. Experientia,
vol. 21, pp. 657-658.
Chromosomes of the liver fluke,
Clonorchis sinensis. Korean Journal of
Parasitology, vol. 38, pp. 201-206.
Karyotype analysis of Neodiplostomum
seoulense. Korean Journal of
Parasitology, vol. 36, pp. 277-279.
Effects of gamma-
irradiation on the infectivity and
chromosome aberration of Clonorchis
sinensis. The Korean Journal of
Parasitology, vol. 41, pp. 41-45. The
Uterine Spindle of the Polyclad
Planocera inquilina. Biology Bulletin,
vol. 23, pp. 271-292.
Ka ryotype s tu di es o n
Paragonimus westermani from Shaoxing
County, Zhejiang. Jounal of
Parasitology and Parasitic Diseses, vol.
4, pp. 203-205. The chromosomes in
the maturation of the germ cells of the
frog lung fluke, Pneumonoeces
medioplexus., Archiv Biol Paris, vol. 47,
pp. 309-317. The chromosomes in
the maturation of the germ cells of two
species of triclad turbellarians. Journal
of Morphology, vol. 63, pp. 421- 436.
Papi, F. 1952.
Papi, F. 1953.
Papi, F. 1950.
Parenti, U, Antoniotti, L & Beccio, C. 1965.
Park, GM, Im, K, Huh, S & Yong, TS. 2000.
Park, G. M, Lee, SU, Park, HY & Huh, S. 1998.
Park, M & Yong, S. 2003.
Patterson, JT & Wieman. HL. 1912.
Pengpeng, W, Changqui, L & Changeun, S.
19 86.
Pennypacker, MI. 1936.
Pennypacker, MI. 1938.
153
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Pennypacker, MI. 1940.
Pennypacker, MI. 1954.
Perkins, KW. 1956.
Petkeviciute, R. 1992.
Petkeviciute, R. 1993.
Petkeviciute, R. 1996a.
Petkeviciute, R. 1996b.
Petkeviciute, R. 1998.
Petkeviciute, R. 2001a.
Petkeviciute, R. 2001b.
Petkeviciute, R. 2002.
The
chromosomes and extranuclear material
in the maturing germ cells of a frog lung-
fluke, Pneumonoeces similiplexus
Stafford. Journal of Morphology, vol. 66,
pp. 481-495. Some aspects of the
meiotic chromosomes of Hydrolimax
grisea. Transactions of American
Microscopy and Society, vol. 73, pp.
311-321. Studies on morphology
and biology of Acetodextra amiuri
(Stafford) (Trematoda: Heterophyidae).
Amerecan Miditerrian Naturalist, vol.
55, pp. 139-161. Comparative
cytogenetics of Diphyllobothrium
ditremum (Creplin, 1925) and Ligula
intestinalis (Linnaeus, 1758) (Cestoda:
Pseudophyllidea). Systematics
Parasitology, vol. 23, pp. 167-173.
Karyotype of
Proteocephalus percae (Muller, 1780)
(Cestoda: Proteocephalidea). Biologia
(Vilnius), vol. 1, pp. 47-48.
A chromosome study in
the progenetic cestode Cyathocephalus
truncates (Cestoda: Spathebothriidea).
International Journal of Parasitology,
vol. 26, pp. 1211-1216.
A chromosome study of
Schistocephalus solidus (Muller, 1776)
(Cest od a: Ps eu dophy ll id ea ).
Systematics Parasitology, vol. 33, pp.
183-186. A chromosome study of
Khavia sinensis. Acta Zoologie Lithuan,
vol. 8, pp. 35-39. Chromosome analysis
of Proteocephalus osculatus (Cestoda:
Proteocephalidea). Folia Parasitology,
vol. 48, pp. 159-161. Chromosomes of
Aspidogaster conchicola. Journal of
Helminthology, vol. 75, pp. 295-297.
Knowledge of the
chromosome sets of cestodes. In: Galkin,
AK & Dubinina, HV. (Eds.). The
Problems of Cestodology. II. Zoological
Institute, Russian Academy of Sciences,
St. Petersburg, Russia, pp. 206-220. (in
Russian). Comparative
karyological analysis of three species of
Bothriocephalus Rudolphi 1808
(Cest od a: P se udoph yl li de a) .
Parasitology Research, vol. 89, pp. 358-
363. The
comparative karyological analysis of
three species of trematodes of genus
Notocotylus. Parazitologiya, vol. 22, pp.
21-28.
Comparative karyological studies on the
species of Eubothrium Nybelin, 1922
(Cest od a: P se udoph yl li de a) .
Systematics Parasitology, vol. 50, pp.
127-134. The
karyotype of Eubothrium rugosum
(Cest od a: P se udoph yl li de a) .
International Journal of Parasitology,
vol. 21, pp. 125-127.
Karyological investigation of
Caryophyllaeus laticeps (Pallas, 1781)
(Cestoda: Caryophyllidea). Folia
Parasitology, vol. 39, pp. 115-121. The
karyotypes of Triaenophorus nodulosus
and T. c r a s s u s ( C e s t o d a :
Pseudophyllidea). International Journal
of Parasitology, vol. 21, pp. 11-15.
Chromosomes of Pelichnibothrium
speciosum (Cestoda: Tetraphyllidea).
International Journal of Parasitology,
vol. 23, pp. 17-20.
K a r y o m e t r i c a l a n a l y s i s o f
Microsomacanthus spasski and M.
s p i r a l i b u r s a t a . J o u r n a l o f
Petkeviciute, R. 2003.
Petkeviciute, R & Barsiene, J. 1988.
Petkeviciute, R & Bondarenko, SK. 2001.
Petkeviciute, R & Kuperman, BI. 1991.
Petkeviciute, R & Kuperman, BI. 1992.
Petkeviciute, R & Leshko, EP. 1991.
Petkeviciute, R & Regel, KV. 1993.
Petkeviciute, R & Regel, KV. 1994.
154
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Helminthology, vol. 68, pp. 53-55.
Karyological observations on
Sobolevicanthus mastigopraedita and S.
spasski (Cestoda; Hymenolepididae).
Helminthologia, vol. 36, pp. (Suppl.), 7.
Karyotypic characterization of
Apatemon gracilis. Journal of
Helminthology, vol. 73, pp. 73-77.
Comparative karyological analysis of
three members of Allocreadiidae
(Digenea): taxonomic and phylogenetic
implications. Parasitology Research,
vol. 103, pp. 1105-1110.
Structure of the karyotypes of
Opisthioglyphe ranae, Paralepoderma
brumpti and Skrjabinoeces sp.
(Trematoda: Plagiorchiidae) (in
Russian). Parazitologya, vol. 24, pp.128-
134.
Clarification of the systematic
position of Cercariaeum crassum
Wesenberg-Lund, 1934 (Digenea),
based on karyological analysis and DNA
sequences. Journal of Helminthology,
vol. 86, pp. 293-301.
Cytogenetic characteristics of
Notocotylus noyeri Joyeux, 1922
(Trematoda, Notocotylidae). Acta
Parasitologica Lituanica, vol. 23, pp. 93-
98 (in Russian).
Diversity of Dilepididae
(Cestoda: Cyclophyllidea) revealed by
cytogenetic analysis. Journal of
Helminthology, vol. 80, pp. 59-63.
Cytogenetic analysis of two
populations of Diplodiscus subclavatus
(Tre mat oda , D ip l od i sc i da e ).
Parazitologiya, vol. 23, pp. 489–495 (in
Russian).
Petkeviciute, R & Regel, KV. 1999.
Petkeviciute, R & Staneviciute, G. 1999.
Petkeviciute, R & Staneviciute, G. 2008.
Petkeviciute, RB, Stanevieiute, GJ & Stenko,
RP. 1990.
Petkeviciute, R, Stunzenas, V & Staneviciute,
G. 2011.
Petkeviciute, R, Barsiene, J & Mazeika, V.
1989a.
Petkeviciute, R, Binkiene, R & Komisarovas,
J. 2006.
Petkeviciute, R, Kiseliene, V & Stenko, RP.
1989b.
Petkeviciute, R, Staneviciute, G & Molloy,
DP. 2003.
Pickel, V. M. and Jones, A. W. 1967.
Polyakov, AV, Katokhin, AV, Bocharova, TA,
Romanov, KV, Lvova, MN & Bonina,
OM. 2010.
Proffitt, MR & Jones, AW. 1969.
Puente, HS & Short, RB. 1985.
Raghunathan, L & Voge, M. 1974.
Ramanjaneyulu, JV & Madhavi, R. 1983.
Ramanjaneyulu, J. V. and Madhavi, R. 1984.
Rao, KJ & Venkat Reddy, P. 1982.
Chromosome analysis of
Phyllodistomum folium (Trematoda,
Gorgoderidae) infecting three European
populations of zebra mussels.
Parasitology Research, vol. 90, pp. 377-
382.
Chromosomes of a Monogenetic
Trematode, Diclybothriumha mulatum
(Simer, 1929) Price, 1942. Transactions
of the American Microscopical Society,
vol. 86, pp. 212-214.
Comparative analysis of
karyotypes of Opisthorchis felineus from
West Siberia. Contemporary Problems
of Ecology, vol. 3, pp. 1-3. Chromosome
analysis of Hymenolepis microstoma.
Experimental Parasitology, vol. 25, pp.
72-84. Redescription
of chromosomes of Schbtomatium
d o u t h i t t i ( T r e m a t o d a :
Schistosomatidae). Journal of
Parasitology, vol.71, pp. 345-348.
Chromosome analysis of Mesocestoides
corti (Cestoda). Journal of Parasitology,
vol.60, pp. 558-560.
Occurrence of triploidy and
parthenogenesis in the allocreadiid
trematode, Allocreadium fasciatusi
Kakaji, 1969. Current Science, vol.52,
pp. 502-503.
Cytological investigations on two
species of allocreadiid trematodes with
special references to the occurrence of
triploidy and parthenogenesis in
Allocreadium fasciatusi. International
Journal of Parasitology, vol.14, pp. 309-
316.
155
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Karyological study in the digenetic
trematode Notocotylus attenuates.
Current Science, vol.51, pp. 309-310.
Zur Spermatogenese der
Suswasser-Tricladen. Arch. Zellforsch.,
pp. 14. The
k a r y o t y p e o f E c h i n o c o c c u s
multilocularis (Cestoda: Taenidae).
Candian Journal of Genetics and
Cytology, vol.23, pp. 151-154.
R e p r o d u c t i v e a n a t o m y a n d
gametogenesis in Shipleya inermis
(Cestoda: Dioecocestidae). Annales de
Parasitologie Humaine et Comparee,
vol. 65, pp. 229-237.
A description of karyotype of the giant
liver fluke Fascioloides magna
(Trematoda, Platyhelminthes) and a
review of Fasciolidae cytogenetics.
Helminthologia, vol.47, pp. 2: 69-75.
A comparative
study of karyotypes and chromosomal
location of rDNA genes in important
liver flukes Fasciola hepatica and
Fascioloides magna (Trematoda:
Fasciolidae). Parasitology Research,
DOI 10.1007/s00436-011-2339-y.
Studies on the germ cell cycle
of the digenetic trematode Parorchis
acanthus Nicoll. Part. 1. Anatomy of the
genitalia and gametogenesis in the
adult. Parasitology, vol.31, pp. 417-433.
Karyotype of Fasciola sp. obtained from
Korean cattle. Korean Journal of
Parasitology, vol. 25, pp. 37-44.
Karyotype of Fasciola sp. obtained from
Korean cattle. Korean Journal of
Parasitology, vol. 25, pp. 37-44. The
Rappeport, T. 1915.
Rausch, RL & Rausch, VR. 1981.
Rausch, RL & Rausch, VR. 1990.
Reblanova, M.; Spakulova, M.; Orosova, M.;
Bazsalovicsova, E. and Rajsky, D. 2010.
Reblanova, M, Spakulova, M, Orosova, M,
Kralova-Hromadova, I, Bazsalovicsova,
E & Rajsky, D. 2011.
Reese, G. 1939.
Rhee, JK, Eun, GS & Lee, SB. 1987.
Rhee, JK, Eun, GS & Lee, SB. 1987b.
Rhee, JK, Youn, RH & Lee, HI. 1988.
karyotype of Fischoederius cobboldi
Richard, I & Vоllz, A. 1987.
Robinson, ES. 1964.
Robinson, ES. 1965.
Romanenko, L & Movsessian, S. 1988.
Romanenko, LN. 1973.
Romanenko, LN. 1974.
Romanenko, LN. 1979.
Romanenko, LN & Pleshanova, NM. 1975.
Romanenko, LN & Shigin, AA. 1977.
(Poirier, 1883) from Korean cattle.
Korean Journal of Parasitology, vol.26,
pp. 107-111. Preliminary data
on the chromosomes of Echinostoma
caproni Richard, 1964 (Trematoda:
Echinostomatidae). Systematic
Parasitology, vol.9, pp. 169-172.
Chromosome
morphology and behavior in
Macracanthorhynchus hirudinaceus.
Journal of Parasitology, vol.50, pp. 694-
697. The Chromosomes of
Moniliformis dubius (Acanthocephala).
The Journal of Parasitology, vol.51, pp.
430-432.
Embryonal development of Taenia
pisiformis and T. hydatigena (Cestoda,
Cyclophyllidea). Parazitologiya
(Leningrad), vol.22, pp. 216-223 (in
Russian). In Proc. Scientific
Conference of the All-Russian Society
of Helminthologists (Nauka, Moscow,
1973), vol.25, pp. 183-188.Studies of
chromosome sets of some trematode
s p e c i e s o f t h e s u b o r d e r
Paramphistomata. Materials Science
Conference All-Union Society
Helminthology (Moscow), vol.26, pp.
226-238 (in Russia).Significance of the
studies of chromosome sets for the
t r e m a t o d e s y s t e m a t i c s . I n :
Karyolsystematics of Invertebrate
Animals. Leningrad, Nauka Publishing
House, pp. 108-110 (in Russia).
Chromosome sets of Fasciola hepatica
and Fasciola gigantica. Tr. VIGIS
(Teoreticheskie problemy veterinarnoy
geľmintologii), vol.22, pp. 137-142.
156
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Chromosomal apparatus of trematodes
of the general Diplostomum and
Ty l o d e l p h y s ( S t r i g e i d i d a ,
Diplostomatidae) and its taxonomic
significance. Parazitologiia, vol.11, pp.
530-536. A comparative study of the
turbellarian chromosomes. Zoolgie
Anz, vol.122, pp. 321-329.
Karyotype and
gametogenesis of the common liver
fluke, Fasciola sp., in Japan. Japanease
Journal of Parasitology, vol.29, pp. 507-
513. A note on
the chromosomes of the common liver
fluke (Fasciola sp.) from Japan.
Chromosome Information Service,
vol.19, pp. 20-21. Chromosomes
of two species of the lung fluke,
Paragonimus ohirai and Paragonimus
miyazakii. Chromosome Information
Service, vol.19, pp. 21-23.Chromosomes
of a lung fluke, Paragonimus
westermani. Chromosome Information
Service, vol.20, pp. 23-24.A comparative
karyotype study of lung flukes,
Paragonimus ohiria and Paragonimus
miyazakii. Japanease Journal of
Parasitology, vol.25, pp. 5-7. A further
chromosome study of the common liver
fluke (Fasciola sp.) in Japan.
Chromosome Information Service,
vol.20, pp. 25-26. Karyotypic
studies of lung flukes, Paragonimus
iloktsuenensis, Paragonimus sadoensis
and Paragonimus westermani.
Japanease Journal of Parasitology,
vol.29, pp. 251-257. A further
chromosome study of the common liver
fluke (Fasciola sp.) in Japan.
Ruebush, TK. 1938.
Sakaguchi, Y. 1980.
Sakaguchi, Y & Nakagawa, C. 1975.
Sakaguchi, Y & Tada, I. 1975.
Sakaguchi, Y & Tada, I. 1976a.
Sakaguchi, Y & Tada, I. 1976b.
Sakaguchi, Y & Wakako, Y. 1976.
Sakaguchi, Y & Tada, I. 1980.
Sakaguchi, Y & Yoneda, W. 1976.
Chromosome Information Service,
vol.20, pp. 25-26.
Studies on echinococcosis XVIII.
Observations on tissue cultured
germinal cells of larval Echinococcus
multilocularis. Japanease Journal of
Veterinary Research, vol.15, pp. 75-89.
Chromosome studies in the
digenetic trematodes of the family
Paramphistomatidae. Procedings of
National Academic Science, India,
vol.32, pp. 177-184.
Chromosome studies of
fifteen species of Indian digenetic
trematodes. Procedings of National
Academic Science, India, vol.39, pp.
81-110. Maturation and
fertilization in two digenetic trematodes,
Haplometra cylindracea (Zeder, 1800)
and Fasciola hepatica (L.). Procedings of
Royal Society Edinburg, vol.67, pp. 83-
98. Maturation and
probable gynogenesis in the liver fluke
Fasciola hepatica L. Nature, London, pp.
110-112. Studies on the chromosomes
of parasitic helminths. II. Triploidy and
c y t o l o g i c a l m e c h a n i s m o f
parthenogenesis in Diphyllobothrium
erinacei (Cestoda: Diphyllobothriidae).
Japanease Journal of Parasitology,
vol.27, pp. 547-560. Studies on
the chromosomes of three species of the
Indian digenetic trematodes of three
species of the Indian digenetic
trematodes. Procedings of 3rd
International Congress Parasitology
Munch, August 25-31. vol.1, pp. 378.
Oogenese, Eireifung
und Befruchtung von Fasciola hepatica
L., Archiv for Zellf, vol.6, pp. 443-484.
Die Samenreifung bei den
Planarien. Zool. Jb. Anatomie Ontog
Sakamoto, T, Yamashita, J & Ohbayashi, M.
1967.
Saksena, JN. 1962.
Saksena, JN. 1969.
Sanderson, AR. 1959.
Sanderson, AR. 1972.
Sasada, K. 1978.
Scharma, GP & Nakahasi, V. 1974.
Schellenberg, A. 1911.
Schleip, W. 1907.
157
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Tiere, vol.24, pp. 129-174.
Das Verhalten des
Chromatins bei Angiostomum
(Rhabdonema) nigrovenosum. Ein
Beitrag zur Kenntnis der Beziehungen
zwischen Chromatin und Gesch-
lechtsbestimmung. Archiv for
Zellforsch, vol.7, pp. 87-138.
La Fecondation et la
Segmentation chez le Thysanozoon
brocchii. Cellule, Vol.22, pp. 7-37.
A
multidisciplinary approach to the
systematics of Proteocephalus
macrocephalus (Creplin, 1825)
( C e s t o d a : P ro t e o c e p h a l i d a e ) .
Systematics Parasitology, vol.37, pp. 1-
12. JVidenskabs. Selskabets
Schrifter. I. Math-Naturw, vol.8, pp. 1-
28. Uber die Eibildung und
Embryonalentwicklung von Fasciola
hepatica L.", Zoologische Jahrbücher.
Abteilung für Anatomie und Ontogenie
der Tiere, vol.21, pp. 571-606.
Gametogenesis in
Paramphistomum microbothrium
Faschoeder, 1901. Acta Veterinary
Hungray, vol.21, pp. 93-106.
Oogenesis and
the chromosomes of Paramphistomum
explanatum (Digenea: Trematoda).
Chromosome information service,
vol.36, pp. 14-15. Studies on the
chromosomes of three species of the
Indian Digenetic trematodes. 3rd
International Congress of Parasitology
M i u n c h e n , A u g u s t 2 5 3 1 .
Proceedings, pp. 376.
Chromosome studies in the family
Paramphist om idae (Digene a-
Trematoda). Procedings of 55th Indian
Science Congress, Part II, Abstracts. pp.
Schleip, W. 1911.
Schockaert, R. 1905.
Scholz, T, Spakulova, M, Snabel, V, Kralova, I
& H a n z e l o v a , V. 1 9 9 7 .
Schreiner, A. 1908.
Schubmann, W. 1905.
Sey, O. 1971.
Sharma, AK & Lal, SS. 1984.
Sharma, GP & Nаkhasi, V. 1974.
Sharma, GP, Mittal, OP & Nadhubala, P. 1968.
472-473.
Chromosomes of Schistosoma mansoni
and Ornithobilharzia canaliculata
(Trematoda: Schistosomatidae).
Association of South Biology Bulletin,
vol. 4, pp. 15.Chromosomes and sex in
Schistosomatium douthitti (Trematoda:
Schistosomatidae). J.ournal of Heredity,
vol.48, pp. 2-6.
Presidential address. Journal
of Parasitology, vol.69, pp. 3-22.
Conventional Giemsa and C-banded
karyotypes of Schistosoma rnonsoni and
Schistosoma rodhaini. Journal of
Parasitology, vol.67, pp. 66l-671.
Chromosomes of Heterobilharzia
americana (Digenea: Schistosomatidae)
from Texas. Journal of Parasitology,
vol.72, pp. 807-809.
Chromosomes of nine species of
Schistosomes. Journal of Parasitology,
vol.4, pp. 213-287.
Somatic chromosomes of Schistosoma
mansoni. Journal of Parasitology,
vol.65, pp. 471-473.
Chromosomes of Heterobilharzia
americana (Digenea: Schgaria), with
ZWA sex determination, from Louisiana.
Journal of Parasitology, vol.73, pp. 941-
946.
Chromosomes in parthenogenetic
miracidia and embryonic cercariae of
S c h i s t o s o m a t i u m d o u t h i t t i .
Experimental Parasitology, vol.8, pp.
249-264. Chromosomes and sex in
Schistosomatium douthitti. Journal of
Hereditary, vol.48, pp. 2-6.
Short, RB & Menzel, MY. 1957.
Short, RB. 1957.
Short, RB. 1983.
Short, RB & Grossman, AI. 1981.
Short, RB & Grossman, AI. 1986.
Short, RB & Menzel, MY. 1960.
Short, RB, Menzel, MV & Pathak, S. 1979.
Short, RB, Teehan, WH & Liberatos, JD. 1987.
Short, RВ & Menzel, MY. 1959.
Shоrt, RB. 1957.
Smith, JK, Esch, GW & Kuhn, RE. 1972.
158
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Growth and development of larval
Taenia crassiceps (Cestoda). I.
Aneuploidy in the anomalous ORF
strain. Journal of Parasitology, vol.2, pp.
261-263. Studies on tapeworm
physiology: I. Cultivation of
Schistocephalus solidus in vitro. Journal
of Experimental Biology, vol.23, pp. 47-
70. The chromosome number of
Echinococcus multilocularis. Journal of
Parasitology, vol.48, pp. 544.
Comparative
karyological analysis of three species of
Bothriocephalus Rudolphi 1808
(Cestoda: Pseudophyllidea) from
Schizothorax species of Kashmir valley.
Journal of Parasitic Diseases, vol. 38, pp.
16-21.
Chromosome analysis of Rodentolepis
straminea (Cestoda: Hymenolepididae)
parasitizing wood mice (Apodemus
spp.) in Spain. Helminthologia, vol. 35,
pp. 185-188. The
karyotype of Proteocephalus percae
(Cestoda: Proteocephalidae). Folia
Parasitology, vol. 39, pp. 324-326.
Chromosomes of Fasciola hepatica
(Digenea: Fasciolidae) from western
Bohemia (CSFR). Helminthologia, vol.
28, pp. 197-200. A
chromosome study of the tapeworm
Bathybothrium rectangulum (Bloch,
1782) (Cestoda: Pseudophyllidea).
Parasitology Research, vol. 85, pp. 270-
273.
A karyological study of
the spirurid nematode Mastophorus
muris (Nematoda: Spirocercidae).
Parasite, vol. 7, pp.173-177.
Smyth, JD. 1946.
Smyth, JD. 1962.
Sofi, TA & Ahmad, F. 2014.
Spakulova, M. and Casanova, J. C. 1998.
Spakulova, M & Hanzelova, V. 1992.
Spakulova, M & Kraova, I. 1991.
Spakulova, M & Scholz, T. 1999.
Spakulova, M, Casanova, JC, Guillen, NL &
Kralova, I. 2000.
Spakulova, M, Horak, P & Dvorak, J. 2001.
The karyotype of Trichobilharzia regent
Horak, Kolarova et Dvorak, 1998
(Digenea: Schistosomatidae), a nasal
avian Schistome in Central Europe.
Parasitology Research, vol. 87, pp. 479-
483.
Karyotype of an avian Schistosome
Trichobilharzia szidati (Digenea:
Schistosomatidae). International Journal
for Pararasitology, vol.26, pp. 783-785.
Karyotype of Acanthocephalus lucii: the
first record of supernumerary
chromosomes in thorny-headed worms.
Parasitology Research, vol.88, pp. 778-
780.
Comparative
morphometry, morphology of egg and
adult surface topography under light
and scanning electron microscopies, and
metaphase karyotype among three size-
races of Fasciola gigantica in Thailand.
Southeast Asian Journal of Tropical
Medicine Public Health, vol.31, pp. 366-
373. Structure
and behaviour of the chromosomes of
Paramphistomum crassum Stiles and
Goldberger (Trematoda, Digenea).
Procedings of National Academic
Science India Annual, No. 126. Structure
and behaviour of the chromosomes of
Isoparorchis hypselobargi Billet,
(Trematoda, Digenea, Hemiuridae).
Procedings of National Academic
Science India Annual, No. 126.
Variation and evolution in
plants. Chap. XII. The Karyotype.
Columbia University Press, New York.
Ei- und Samenbildung
Spakulova, M, Horak, P & Kralova, I. 1996.
Spakulova, M, Kralova-Hromadova, I,
Dudinak, V & Reddy, P. V. 2002.
Srimuzipo, P, Komalamisra, C, Choochote, W,
Jipakdi, A, Vanichthanakom, P, Keha, P,
R i yon g , D, S ukon t a s o n , K ,
Komalamisra, N, Sukontason, K &
Tippawangkosol, P. 2000.
Srivastava, MDL & Iha, AG. 1964a.
Srivastava, MDL & Iha, AG. 1964b.
Stebbins, GL. 1950.
Struckmann, Chr. 1905.
159
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
und Befruchtung von Strongylus filaria.
Zoologische Jahrbücher. Abteilung für
Anatomie und Ontogenie der Tiere, Bd.
22.
The role of chromosomes in the
taxonomy of some digenetic trematodes.
The Nucleus, vol.20, pp. 128-138.
Karyotypic findings of the lung
fluke, Paragonimus westermani
(Kerbert, 1878), in the Uda Area of Nara
Prefecture, Japan. Japanease Journal of
Veterinary Science, vol. 47, pp. 889-893.
Beitrage zur Anatomie und
Histologie der dom uniting Priapulida,
Kinorhyncha, Gordiacea, and a system
Nematomorpha (Czech with German
summary). Sitzungsber of Aschelminthes
worms [in Russian with English
summary]. Ges Wiss Prag, Math Nat
Classe., pp. 1–64.
Chromosomes of Cyclocoelum oculeum
Trematoda Cyclocoelidae. Journal of
Parasitology, vol.65, pp. 666-667.
Mitotic
chromosomes of a species of Spirorchis
(Trematoda: Spirorchiidae). Journal of
Parasitology, vol.73, pp. 474-476.
Studies on chromosomes of
the lung fluke in Japan. Japanease
Journal of Parasitology, vol.26, pp. 222-
229. Chromosome analysis on a
South American lung fluke, Paragonimus
peruvianus. Japanease Journal of
Parasitology, vol.27, pp. 51-55.
Comparative studies on the
karyotypes of Paragonimus westermani
and Paragonimus pulmonalis Japan.
Journal of Parasitology, vol.29, pp. 239-
243. Karyotype of lung fluke,
Paragonimus westermani filipinus
Miyazaki. Japanese Journal of
Subramanyam, S. & Venkat-Reddy, P. 1977.
Sugiyama, H, Okuda, M, Matsumoto, M,
Kikuchi, T, Odagiri, Y & Tomimura, T.
1985.
Svabenik, J. 1909.
Taft, SJ & LeGrande, WH. 1979.
Teehan, WH & Short, RB. 1989.
Terasaki, K. 1977.
Terasaki, K. 1978.
Terasaki, K. 1980.
Terasaki, K. 1983.
Vetererinary Science, vol.45, pp. 9-14.
Comparative studies on the
karyotypes of Echinostoma cinetorchis
and hortense (Echinostomatidae:
Trematoda). Japanese Journal of
Parasitology, vol.31, pp. 569-574.
Beitrage zur Biologic und
mikroskopischen Anatomie von
Trichindla spiralis (Owen, 1835).
Zooligie Tropenmed Parasit, vol.16, pp.
148-180. The
chromosomes of Stephanurus dentatus
(Nematoda: strongyloidea). Journal of
Parasitology, vol. 43, pp. 590.
Dber die Bedeutung der
Diminution von Ascaris megalocephala.
Acta Biotheoretica, vol. 7, pp. 163-182.
Cytologische
U n t e r s u c h u n g e n u b e r d i e
Rhabdocoelen. Jb Univiversity of Sofia,
Physico-Math. Fak. vol. 34, pp. 321-
402. The maturation,
fertilization and early development of
the planarians. Transactions Conn
academics, vol.10, pp. 263-300.
Germ cell cycle of
Megalodiscus temperatus (Stafford,
1 9 0 5 ) H a r w o o d , 1 9 3 2 .
(Paramphistomidae: Trematoda).
American Midland.Naturalist, vol.51,
pp. 172-202. Zum Problem der
Vererbungstrager KgI. Bohm Ges.
Wiss.,Prag.
Some observation in the digenetic
trematode Philophthalmus sp. from
eagle. Current Science, vol. 40, pp. 578-
580.
Chromosome studies in the liver fluke,
Fasciola gigantica Cobbold, 1856, from
Andhra Pradesh. Current Science, vol.
42, pp. 288-291.
Terasaki, K, Mоriуama, N, Tani, S & Ishida, K.
1982.
Thomas, H. 1965.
Tromba, FG & Steele, AE. 1957.
Ubisch, L Von 1943.
Valkanov, A. 1938.
Van Name, WG. 1899.
VanDer Woude, A. 1954.
Vejdovsky, F. 1912.
Venkat Reddy, P. and Subramanyam, S. 1971.
Venkat Reddy, P. and Subramanyam, S. 1973.
160
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Chromosomes and cytogenetics of helminths
Venkat Reddy, P. and Subramanyam, S. 1975.
Venkat Reddy, P & Subramanyam, S. 1975b.
Vijayaraghavan, S & Subramanyam, S. 1977.
Vijayaraghavan, S & Subramanyam, S. 1980a.
Vijayaraghavan, S & Subramanyam, S. 1980b.
Vila-Farre, M, Romero, R, Sluys, J, Fernandez,
J, Sancho-Prat, M & Ferrer, X. 2008.
Von Kemnitz, GA. 1913.
Von-Voss, H. 1910.
Waeschenbach, A, Webster, BL, Bray, RA &
Littlewood, DTJ. 2007.
C h r o m o s o m e s s t u d i e s i n
Paramphistomum cervi Zeder 1970
( T r e m a t o d a : D i g e n e a
Paramphistomatidae). Caryologia,
vol.28, pp. 181-186.
C hro m os o me num b er of th e
paramphistome Gigantocotyle
explanatum Nasmark, 1937. Curent
Science, (India). vol. 44, pp. 400-401.
Chromosome number of the cestode
Lytocestus indicus. Current Science, vol.
46, pp. 312-313.
Some aspects of chromosome cytology in
t h e c e s t o d e A c a n t h o t a e n i a
multitesticulata. Zeitschr Parasitenk,
vol. 63, pp. 65-70.
The chromosomes of Nematotaenia
dispar. Rivista di parassitologia, vol. 41,
pp. 371-375.
Ecology, karyology and anatomy of the
planarian Pentacoelium hispaniense
Sluys, 1989 (Platyhelminthes,
Tricladida). 2008. Graellsia, vol. 64, pp.
45-54. Eibildung, Eireifung,
Samenreifung und Befruchtung von
Brachyocoe lium salam andrae
(Brachyocoelium crassicolle Rud).
Archiv for Zellf, vol.10, pp. 470-506.
Beitrag zur Kenntnis der
Eireifung bei den Acanthocephalen.
Archiv Zellforsch, vol. 5, pp. 430-448.
Added
resolution among ordinal level
re l a t i o n s h i p s of t a p e w o r m s
(Platyhelminthes: Cestoda) with
complete small and large subunit
nuclear ribosomal RNA genes.
Molecular Phylogenetics Evolution,
vol.45, pp. 311-325.
Studies on nematodes
gamatogensis. Zeitschrift jur Zellen-u
Gewebelehre. Berlin, vol.1, pp. 167-
239. "Gametogenesis" in
Chitwood and Chitwood's "An
Introduction to Nematology." Section II,
Part 1: 205-215.
Some parasites and their
chromosomes. Journal of Parasitology,
vol.45, pp. 1-20.
Karyotype of Hymenolepis citelli
(Cestoda: Cyclophyllidea). Candian
Journal of Genetetics and Cytology, vol.
23, pp. 449-452. Die Oogenese des
Zoogonus minis Lss. Archiv fof Mik
Anatomie, vol. 83, pp. 1-140. th
The chromosomes. 6 ed.
Chapman and Hall, London.
Modes of speciation. W. H.
Freeman & Co., San Francisco. The
chromosomes of somatic cells of three
Diphyllobothrium species, with notes on
the mode of cell division. Acta Academic
Aboen Ser B, vol. 25, pp. 1-12.
Gametogenesis, fertilization and
cleavage in the trematoda Zygocotyle
lunata (Paramphistomidae). Journal of
Parasitology, vol. 37, pp. 283-296.
Development
of germ cells in the adult stage of the
digenetic trematode Gorgoderina
attenuata Stafford, 1902. Journal of
Parasitology, vol. 36, pp. 67-79.
Gametogenesis and early
development in Gigantocotyle
bathycotyle (Fischoeder, 1901)
N a s m a r k , 1 9 3 7 . Jo u r n a l o f
Helminthology, vol. 24, pp. 1-14.
The chromosomes of
Diphyllobothrium ursi. Journal of
Parasitology, vol.45, pp. 378.
Walton, AC. 1924.
Walton, AC. 1940.
Walton, AC. 1959.
Ward, EJ, Evans, WS & Novak, M. 1981.
Wassermann, F. 1913.
White, MJD. 1973.
White, MJD. 1978.
Wikgren, BJ & Gustafsson, MKS. 1965.
Willey, СH & Godman, GC. 1951.
Willey, СH & Koulish, S. 1950.
Willmott, S. 1950.
Wolcott, GB. 1959.
161
Neotropical Helminthology. Vol. 9, Nº1, jan-jun 2015 Sofi et al.
Woodhead, AE. 1931.
Woodhead, AE. 1957.
Yin, HZ & Ye, BY. 1990.
The germ cell cycle in
the trematode family Bucephalidae.
Transactions of American Microscopy
and Society, vol.50, pp. 169-188.
Germ-cell development
in the first and second generations of
Schistosomatium douthitti (Cort, 1914)
Price, 1931. Transactions of American
Microscopy and Society, vol.76, pp.
173-176. Studies on the
karyotypes of Fasciola spp. J. Parasitol.
Parasitic. Diseases (Shanghai), vol.8, pp.
124-126.
Comparative
cytogenetics of Opisthorchid species
(Trematoda, Opisthorchiidae).
Parasitology International, vol.61, pp.
81-83.
Zadesenets, KS, Katokhin, AV, Mordvinov, VA
& Rubtsov, NB. 2012.
Received July 5, 2014.
Accepted January 3, 2015.
162