This study aimed to analyze a case of a high level of infection with acanthocephalans in order to
understand if the infection pattern is related to biological characteristics of the hosts. Acanthocephalans of
33 specimens of Rhinella marina (Linnaeus, 1758) from Huanuco, Peru, were collected and identified;
Spearmans' rank test (r) was then used to calculate possible correlations between the host body size and
s
parasite abundance, and between parasite body size and parasite abundance. Helminths were identified as
Pseudoacanthocephalus lutzi (Hamann, 1891). The infection prevalence was 97.1%. A total of 874
helminths was recovered, with a mean abundance of 24.1 ± 4.7 and mean intensity of infection of 24.8 ±
4.8. The host body size and parasite body size were not significantly correlated with parasite abundance.
The present study, apart from contributing to our knowledge of the helminth fauna of amphibians in Peru,
has shown that R. marina has a high rate of helminth infection with P. lutzi in that region.
ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
1UNESP - Univ Estadual Paulista, Campus de Botucatu, Instituto de Biociências, Departamento de Parasitologia, Botucatu,
São Paulo, Brazil.
2UFPI - Universidade Federal do Piauí, Piauí, Brazil.
3URP - Universidad Ricardo Palma, Facultad de Ciencias Biológicas, Lima, Perú.
4UNFV – Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemática, Lima, Perú.
5Wabash College, Lima, Peru.
6UNHEVAL - Universidad Nacional HermilioValdizán, Huanuco, Perú.
*Correspondence author: gisatoledo@hotmail.com
ABSTRACT
Key words: Helminth – Huanuco – Infection pattern – Parasite abundance
Neotropical Helminthology
405
Neotropical Helminthology, 2017, 11( ), j - : 2 ul dic 405-411
1 2 3,4
Gislayne de Melo Toledo *; Mariluce Gonçalves Fonseca ; Jose Iannacone ;
5 6 1
Jorge Manuel Cárdenas Callirgos ; Carlos Pineda Castillo & Reinaldo José da Silva
INFECTION WITH PSEUDOACANTHOCEPHALUS LUTZI (HAMANN, 1891) (ACANTHOCEPHALA:
ECHINORHYNCHIDAE) IN RHINELLA MARINA (LINNAEUS, 1758) (AMPHIBIA: BUFONIDAE) IN
PERU
INFECCIÓN CON PSEUDOACANTHOCEPHALUS LUTZI (HAMANN, 1891) (ACANTHOCEPHALA:
ECHINORHYNCHIDAE) EN RHINELLA MARINA (LINNAEUS, 1758) (AMPHIBIA: BUFONIDAE) EN
PERU
INTRODUCTION
406
RESUMEN
Palabras clave: abundancia de parásitos – helmintos – Huanuco – patrón de infección
Este estudio tuvo como objetivo analizar un caso de alto nivel de infección con acantocéfalos para
comprender si el patrón de infección está relacionado con las características biológicas de los hospederos.
Se recolectaron acantocéfalos de 33 ejemplares de Rhinella marina (Linnaeus, 1758) de Huanuco, Perú, y
luego se utilizó la prueba de rango de Spearmans (r ) para calcular posibles correlaciones entre el tamaño
s
del cuerpo del hospedero y la abundancia de parásitos, y el tamaño del cuerpo del parásito y la abundancia
de parásitos. Los helmintos fueron identificados como Pseudoacanthocephalus lutzi (Hamann, 1891). La
prevalencia de infección fue del 97,1%. Se recuperó un total de 874 helmintos, con una abundancia media
de 24,1 ± 4,7 y una intensidad media de infección de 24,8 ± 4,8. El tamaño del cuerpo del huésped y el
tamaño del cuerpo del parásito no se correlacionaron significativamente con la abundancia del parásito. El
presente estudio, además de contribuir a nuestro conocimiento de la fauna helmíntica de anfibios en Perú,
ha demostrado que R. marina tiene una alta tasa de infección por helmintos con P. lutzi en esa región.
1995; Gutierrez et al., 2005; Arredondo & Gil de
Pertierra, 2009), Uruguay (Cordero, 1933), Peru
(Naupay, 1973; Tantaleán, 1976; Barrera et al.,
1988; Tantaleán et al., 2005), Paraguay, and Brazil
(Smales, 2007).
During a study on the helminth fauna of
amphibians from Peru, an interesting case was
observed in the municipality of Huanuco, in which
a population of toads R. marina presented a great
amount of acantocephalans in their intestines. The
aim of the present study is to analyze this
acantocephalan infection case in order to
understand if the infection pattern is related to the
biological characteristics of the hosts.
A total of 35 specimens of the toad R. marina were
colleted in April 2014, in Estanque La Pedroza,
Centro Poblado La Esperanza, Amarilis, Huanuco,
Peru (09°58'30" LS and 76°14'25" LW, 1,910
mols).
The amphibians were sampled by active search at
night and transported live to the laboratory where
they were euthanized with sodium thiopental
solution, in accordance with Resolution No. 301
Acanthocephala is a group poorly known in
amphibians and reptiles of the South American
(Campião et al., 2014). Adult acanthocephalans
parasitize the intestine of vertebrates and use
invertebrates as intermediate hosts, where larval
development occurs (Tantaleán et al., 2005; Santos
& Amato, 2010). Acanthocephalans do not have
free-living larval stages, and a paratenic host can be
present in the life cycle of some species (Santos &
Amato, 2010). According to Bush et al. (2001) and
Kennedy (2006), vertebrates are the known
paratenic hosts, which harbor the cystacanth larval
stage in an extra-intestinal locationand usually
differ from known definitive hosts (Al-Jahdali et
al., 2015).
Amin (2013) listed 24 families, 157 genera, and
1,298 species of acanthocephalans. The genera
Pseudoacanthocephalus Petrochenko, 1958
e n c o m p a s s 1 8 d e s c r i b e d s p e c i e s .
Pseudoacanthocephalus lutzi (Hamann, 1891) was
originally described as Echinorhynchus lutzi
Hamann, 1891 from the cane toad Rhinella marina
(Linnaeus, 1758) in Brazil (Hamann, 1891). This
worm was transferred to Acanthocephalus
Koelreuther, 1771 by Mey er (1 932 ).
Pseudoacanthocephalus lutzi has been reported
infecting various amphibians and reptiles in
Argentina (Lajmanovich & Martinez de Ferrato,
Neotropical Helminthology, 2017, 11(2), jul-dic
MATERIALS AND METHODS
Toledo et al.
Description
Pseudoacanthocephalus lutzi (Fig. 1)
Syns.: Echinorhynchus lutzi Hamman, 1891;
Acanthocephalus saopaulensis Smales, 2007.
Based on 10 specimens (5 females and 5 males).
General: Trunk and all shared structures larger in
females than in males; trunk about twice as large in
females. Proboscis cylindrical, with 1416
longitudinal and regularly alternating rows of 5 to 7
hooks each. Hook length increases from apex to
middle part of proboscis. Roots about half as long
as blades, simple, spatulate, directed posteriorly.
Proboscis receptacle cylindrical, double-walled
with cellular elements associated with retractor
muscles just exterior to its posterior tip. Proboscis
retractor muscles inserted at base of proboscis
receptacle and at anterior third of the trunk.
Lemnisci claviform extending shortly past
posterior end of receptacle.
Males (based on five mature specimens): Trunk
8.35–10.00 (9.39) mm long and 1.35–1.85 (1.533)
mm wide. Proboscis, 519–649 (564) long, with
14–18 hook rows, each with 5–7 hooks each.
Proboscis receptacle 838–1,153 (1,021) long.
Lemnisci 870–1,063 (945) long. Testes ovoid, in
tandem, contiguous; anterior testis 657–734 (686)
long, 392–512 (434) wide; posterior testis 626–846
(708) long, 380–564 (446) wide. Cement glands in
compact cluster, in number 4. Reproductive system
completely post-equatorial. Posterior end sigmoid-
shaped. Genital pore nearly terminal (Figs. 1A-C).
Female (based on five mature specimens): Trunk
12.58–14.99 (13.68) mm long and 1.54-1.68 (1.60)
mm wide. Proboscis, 442–647 (535) long, with
14–18 hook rows, each with 5–7 hooks each.
Proboscis receptacle 958–1,073 (1,015) long.
Lemnisci 816–1,211 (998) long. Genital pore
ventral, sub-terminal (Figs. 1D-E).
The prevalence of infection was 97.1% for 35 frogs
examined. A total of de 842 helminths were
recovered, with a mean abundance of 24.1 ± 4.7
and a mean intensity of infection of 24.8 ± 4.8. The
acanthocephalans were found in the small intestine
and large intestine.
and Ordinance No 148/2012 of the Conselho
Federal de Biologia CFBio. The snout–vent
length (SVL) in mm and body mass in g were
recorded. Then they were necropsied and the
gastrointestinal tract was examined for the
presence of helminths. The collection was
authorized by Director's Resolution N°024-2014-
SERFOR-DGGSPFFS.
Acanthocephalans found in the intestine were
collected and placed plates containing distilled
water, and kept in the refrigerator until the
proboscis evertion for 24 h of exposure. After they
were fixed 100% ethyl alcohol and then preserved
in 70% ethyl alcohol. Some specimens were
stained with carmine and cleared in creosote for
identification procedure.
For parasite identification, morphological and
morphometric were performed in a computerized
system for image analysis LAS V3 (Leica
Application Suite) adapted in microscope
DM5000B with differential interference contrast
(DIC). All measurement of parasites is in u at less
was indicated otherwise.
Helminth specimens will be deposited at the
Coleção Helmintológica do Instituto de
Biociências de Botucatu (CHIBB) at the
Universidade Estadual Paulista, São Paulo state,
Brazil, and at the Colección Helmintológica y de
Invertebrados Relacionados del Museo de Historia
Natural (UNMSM) at the Universidad Nacional
Mayor de San Marcos, Lima, Peru.
Prevalence, mean intensity of infection, and mean
abundance were calculated according to Bush et al.
(1997). All values corresponding to the mean of
any variable are accompanied by the respective
standard error.
Spearmans' rank test (r) was used to calculate
s
posssible correlations between the host body sizes
and parasite abundances, and between parasite
body sizes and parasite abundances. For this
analysis, the body measurements of 33 specimens
of R. marina were used. Regarding the parasites,
875 specimens of acanthocephalans were
measured for length and width; and the means were
obtained for each host specimen. The Mann-
Whitney U test was used to test for possible
differences between abundance and host sex.
407
Neotropical Helminthology, 2017, 11(2), jul-dic
RESULTS
Pseudoacanthocephalus lutzi in Rhinella marina
The total lengths of toad ranged 60-100 (86.5 ± 8.6)
mm, and their weights ranged 33-76 (50.2 ± 11.9)
g, including 14 females and 19 males. The host
body size was not significantly correlated with the
parasites abundance (lengths: r= 0.16, n=33, p=
s
0.35; weights: r= 0.14, n = 33, p= 0.43), as well as
s
the parasite body size showed no correlation with
parasite abundance (lengths: r= 0.15, n = 32, p=
s
0.41; width: r= 0.18, n = 32, p= 0.31). The parasite
s
abundance did not show difference between the
sexes of hosts (U = 119; p = 0.61).
408
Neotropical Helminthology, 2017, 11(2), jul-dic
A
B
C
D E
Figure 1. Pseudoacanthocephaluslutzistained with carmine from Rhinella marina:(A) Male overview; (B) Anterior end
ofmale; (C) Posterior end of male; (D) Anterior end of female; (E) Posterior end of female.
Toledo et al.
obtain food from the few permanent water bodies
(Evans & Lampo, 1996). This suggests that
aquatic insects may act as intermediate hosts for P.
lutzi (Arredondo & Pertierra, 2009).
The present study, apart from contributing to our
knowledge of the helminth fauna ofamphibians in
Peru, has shown that R. marina has a high rate of
helminth infection for P. lutziin that region. Our
results also show that there is no influence of host
body size and sex on the parasite abundance for this
parasite species of R. marina.
G. M. Toledo thanks the Conselho Nacional de
DesenvolvimentoCientífico e Tecnológico (CNPq)
by thePhD.doctoral scholarship (140301/2013-5).
R. J. Silva is grateful to Pro-Reitoria de Pós-
graduação da UNESP (PROPG-UNESP), CNPq
(3 07808 /20 14- 9) an d CNPq -PR OTA X
(440496/2015-2) / FAPESP 2016/50377-1.
409
Neotropical Helminthology, 2017, 11(2), jul-dic
Helminths found in the intestine were identified as
P. lutzi, according to Smales (2007) and Amin &
Heckmann (2014). Specimens of P. lutzi show
marked intraspecific morphological variations
inrows number (12–18) and hooks number per row
(5–7), size and extension of lemnisci, number of
cement glands (4–6), and size of eggs in various
host species and geographical locations (Amin &
Heckmann, 2014).
The abundance and community structure of
amphibian parasites is influenced mainly by the
probability of individual hosts acquiring the
species of parasites, which in turn is influenced by
the ecological requirements of host species
(Janovy et al., 1992). It has been suggested that the
size of the body of amphibians influences the
number of helminth species and the abundance of
parasites (Muzzal, 1991; McAlpine, 1997; Bolek
& Coggins, 2000; Yoder & Coggins, 2007;
Hamann et al., 2010, 2012, 2013; Toledo et al.,
2015). However, in the present study, the size
(length and weight) of R. marina was not a
determinant factor for the abundance of P. lutzi
parasites, not corroborating with the hypothesis
that the larger size can harbour higher infections,
leading to higher parasitism index values.
Acanthocephalan adult sizes correlated positively
with host mass, but also this correlation depends of
cystacanth size and egg size (Poulin et al., 2003).
In the current study, parasite body size showed no
correlation with parasite abundance of P. lutzi.
Relationships between sex and helminth infection
show no clear patterns in amphibians. In some
cases, the levels of parasitism by sex depended on
the studied species (Comas et al., 2014). In this
research, parasite abundance of P. lutzi did not
show differences between sexes of R. marina.
The type host of P. lutzi is R. marina, a native toad
of Central and South America. It lives in a wide
variety of habitats including savannah woodlands,
forests, scrub lands, and arid and semiarid areas.
This species mainly feeds on terrestrial insects
such as ants and beetles (Weber, 1938), but it also is
an opportunist with a highly diversified diet (Zug &
Zug, 1979). The aquatic odonata larvae are prey
items in arid areas, indicating that R. marina may
DISCUSSION
ACKNOWLEDGMENTS
BIBLIOGRAPHIC REFERENCE
Al-Jahdali, M., Hassanine, R. & Touliabah, H.
2015. The life cycle of Sclerocollum saudii
Al-Jahdali, 2010 (Acanthocephala:
P a l a e a c a n t h o c e p h a l a :
Rhadinorhynchidae) in amphipod and fish
hosts from the Red Sea. Journal of
Helminthology, vol. 89, pp. 277-287.
Amin, OM. 2013. Classification of the
Acanthocephala. Folia Parasitologica, vol.
60, pp. 273-305.
Amin, OM & Heckmann, RA. 2014. First
description of Pseudoacanthocephalus
lutzi from Peru using SEM.Scientia
Parasitologica, vol. 15, pp. 19-26.
Arredondo, NJ & Gil de Pertierra, A. 2009.
Pseudoacanthocephalus lutzi (Hamann,
1891) comb. n. (Acanthocephala:
Echinorhynchidae) for Acanthocephalus
lutzi (Hamann, 1891), parasite of South
American amphibians. Folia Parasitologica,
vol. 56, pp. 295-304.
Barrera, J, Maldonado, M & Solis, MI. 1988.
Pseudoacanthocephalus lutzi in Rhinella marina
of Leptodactylus bufonius (Anura:
Leptodactylidae) from Northeastern
Argentina. Zoological Studies, vol. 51,
pp.1454-1463.
Hamann, MI, Kehr, AI & González, CE. 2013.
Helminth community in the burrowing toad,
Rhinella fernandezae from Northeastern
Argentina. Biologia, vol. 68, pp. 1155-1162.
Ham ann, O. 18 91 . M o n og r a ph ie d e r
Acanthocephalen (Equinorhynchen).
J e n a i s c h e n Z e i t s c h r i f t f u r
Naturwissenschaft, vol. 25, pp. 113-231.
Janovy, J, Clopton, RE & Percival, TJ. 1992. The
roles of ecological and evolutionary
influences in providing structure to parasite
species assemblages. The Journal of
Parasitology, vol. 78, pp. 630-640.
Ken ne dy, CR. 20 06 . E co lo gy o f t he
A c a n t h o c e p h a l a . C a m b r i d g e
UniversityPress, Cambridge.
Lajmanovich, RC & Martinez de Ferrato, A. 1995.
Acanthocephalus lutzi (Hamann, 1891)
parasite de Bufo arenarum en El Rio
Parana, Argentina. Revista de la
Asociación de Ciencias Naturales de
Litoral, vol. 26, pp. 19-23.
McAlpine, DF. 1997. Helminth communities in
bullfrogs (Rana catesbeiana), green frogs
(Rana clamitans), and leopard frogs (Rana
pipiens) from New Brunswick, Canada.
Canadian Journal of Zoology, vol.75, pp.
1883-1890.
Meyer, A. 1932. Acanthocephala. In: Dr. H. G.
Bronn's Klassen und Ordnungen des Tier-
Reichs, vol. 4, Leipzig: Akad. Verlag. MBH,
pp. 1-332.
Muzzall, PM. 1991. Helminth infracommunities of
the frogs Rana catesbeiana and Rana
c l a m i t a n s f ro m Tu r k e y M a r s h ,
Michigan.The Journal of Parasitology, vol.
77, pp. 366-371.
Naupay, IA. 1973. Helmintos paràsitos de Bufo
spinulosus trifolium (Tschudi) de
lalo cali dad de Huánuco. Con la
descripción de dos nuevas especies y una
nueva combinación. Tesis Bachiller
Biologia. Universidad Particular “Ricardo
Palma”, Lima.
Poulin, R, Wiseb, M & Moore, J. 2003. A
comparative analysis of adult body size and
its correlates in acanthocephalan parasites.
International Journal for Parasitology, vol.
410
Neotropical Helminthology, 2017, 11(2), jul-dic
Helmintos parásitos de Bufo spinulosus
limensis del department de Ica. Libro de
Resúmenes del IX Congreso Nacional de
Biología y IV SimposioNacional de
Educación enCiencias Biológicas Piura.
Resumen 179.
Bolek, MG & Coggins, JR. 2000. Seasonal
occurrence and community structure of
helminth parasites from the Eastern
American toad Bu f o a mer i c a n u s
americanus, from Southeastern Wisconsin,
U.S.A. Comparative Parasitology, vol. 67,
pp. 202-209.
Bush, AO, Lafferty, KD, Lotz, JM, & Shostak, AW.
1997. Parasitology meets ecology on its
own terms: Margolis et al. revisited. The
journal of parasitology, vol. 83, pp. 575-
583.
Bush, AO, Fernandez, JC, Esch, GW & Seed, JR.
2001. Parasitism, the diversity and ecology
of animal parasites. Cambridge University
Press, Cambridge.
Campião, KM, Morais, DH, Dias, OT, Aguiar, A,
Toledo, GM, Tavares, LER & Silva, RJ.
2014. Checklist of Helminth parasites of
Amphibians from South America. Zootaxa,
vol. 3843, pp.1-93.
Comas, M, Ribas, A, Milazzo, C, Sperone, E &
Tripepi, S. 2014. High levels of prevalence
related to age and body condition: host-
parasite interactions in a water frog
Pelophylax kl. hispanicus. Acta
Herpetologica, vol. 9, pp. 25-31.
C o r d e r o , E . - H . 1 9 3 3 . S u r q u e l q u e s
a c a n t h o c é p h a l e s d e l ' A m e r i q u e
Méridionale. I. Annales de Parasitologie
Humaine et Comparee, vol. 11, pp. 271-279.
Evans, M & Lampo, M. 1996. Diet of Bufo marinus
in Venezuela. Journal of Herpetology, vol.
30, pp. 73-76.
Gutierrez, C, Attademo, A, Guerrero, S, Peltzer, P
& Lajmanovich R. 2005. Physalaemus
bi li go ni ge ru s ( F a l s e - e y e d f ro g )
endoparasites. Herpetology Reviews, vol.
36, pp.161-162.
Hamann, I, Kehr, AI & González, CE. 2010.
Helminth community structure of Scinax
nasicus (Anura: Hylidae) from South
American subtropical area. Diseases of
Aquatic Organisms, vol. 93, pp. 71-82.
Hamann, MI, Kehr, AI & González, CE. 2012.
Community structure of helminth parasite
Toledo et al.
rainforest, South-Eastern Brazil. Journal of
Helminthology, vol. 89, pp. 250-254.
Weber, NH. 1938. The food of giant toad, Bufo
marinus (L.), in Trinidad and British
Guiana with special reference to the ants.
Annales of Entomological Society of
America, vol. 31, pp. 499-503.
Yoder, HR & Coggins, JR. 2007. Helminth
communities in five species of sympatric
amphibians from three adjacent ephemeral
ponds in southeastern Wisconsin. The
Journal of Parasitology, vol. 93, pp. 755-
761.
Zug, GR & Zug, PB. 1979. The marine toad, Bufo
marinus: a natural history resume of native
populations. Smithsonian Contribution to
Zoology, vol. 28, pp. 1–58.
411
Neotropical Helminthology, 2017, 11(2), jul-dic
33, pp. 799-805.
Santos, VGT & Amato, SB. 2010. Rhinella
fernandezae (Anura, Bufonidae) a
paratenic host of Centrorhynchus sp.
(Acanthocephala, Centrorhynchidae) in
Brazil. Revista Mexicana de Biodiversidad,
vol. 81, pp. 53- 56.
Smales, LR. 2007. Acanthocephala in amphibians
(Anura) and reptiles (Squamata) from
Brazil and Paraguay with description of a
new species. The Journal of Parasitology,
vol. 93, pp. 392-398.
Tantaleán, M. 1976. Contribución al conocimiento
de los helmintos de vertebrados del Perú.
Biota, vol. 10, pp. 437-443.
Tantaleán, M, Sánchez, L, Gómez, L & Huiza, A.
2005. Acanthocephalan from Peru. Revista
Peruana de Biología, vol. 12, pp. 83-92.
Toledo, GM, Morais, DH, Silva, RJ & Anjos, LA.
20 15 . H e l m i nt h c o m m u n i t ie s o f
L e p t o d a c t y l u s l a t r a n s ( A n u r a :
Leptodactylidae) from the Atlantic
Received September 19, 2017.
Accepted November 17, 2017.
Pseudoacanthocephalus lutzi in Rhinella marina