Volume11,Number1(ene-jun2017)
ÓrganooficialdelaAsociaciónPeruanadeHelmintologíaeInvertebradosAfines(APHIA)
Lima-Perú
VersiónImpresa:ISSN2218-6425VersiónElectrónica:ISSN1995-1043
Auspiciado por:
ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
Neotropical Helminthology, 2017, 11(1), jan-jun: 167-186.
REVIEW ARTICLE/ ARTÍCULO DE REVISIÓN
COMPARISON OF BIODIVERSITY PARASITIC OF PARALABRAX CLATHRATUS
(GIRARD, 1854) AND P. HUMERALIS (VALENCIENNES, 1828) (PISCES: SERRANIDAE)
FROM THE EASTERN PACIFIC
COMPARACIÓN DE LA BIODIVERSIDAD PARASITARIA DE
PARALABRAX CLATHRATUS (GIRARD, 1854) Y P. HUMERALIS (VALENCIENNES, 1828)
(PISCES: SERRANIDAE) DEL PACÍFICO ORIENTAL
1 Laboratorio de Parasitología, Departamento Académico de Biología Marina, Universidad Autónoma de Baja California Sur.
Ap. P. 19-B. La Paz, B.C.S. 23080, México.
2 Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional.
La Paz, B.C.S. 23096, México.
3 Laboratorio de Ecología y Biodiversidad Animal (LEBA), Facultad de Ciencias Naturales y Matemática (FCNNM),
Universidad Nacional Federico Villarreal (UNFV), El Agustino, Lima, Perú.
4 Facultad de Ciencias Biológicas, Universidad Ricardo Palma (URP), Santiago de Surco, Lima, Perú.
mcgomez@uabcs.mx/joseiannacone@gmail.com
Neotropical Helminthology
167
ABSTRACT
Parasite biodiversity of the groupers Paralabrax clathratus (Girard, 1854) and P. humeralis (Valenciennes,
1828) (Pisces: Serranidae) from the eastern pacific, host specificity of the parasites and the role groupers play in
the life cycle of the parasite is presented. The information is a compilation of records generated by various
authors. It was found that the parasite biodiversity of both fish species is grouped into 22 families (helminths
and crustaceans), two orders and one class. Paralabrax humeralis was infested with a richer diversity of
parasites than P. clathratus (n=40 vs n=27): monogeneans (n=3 vs n=3), digeneans (n=10 vs n=10), tapeworms
(n=6 vs n=1), acanthocephalans (n=2 vs n=1), nematodes (n=9 vs n=4), copepods (n=8 vs n=8), isopods (n=1 vs
n=0) and hirudinea (n=1 vs n=0). Of this parasite richness, it was observed that hosts share ten families:
Diclidophoridae and Capsalidae (Monogenea), Hemiuridae and Opecoelidae (Digenea), Polymorphidae
(Acantocephala), Anisakidae and Cucullanidae (Nematoda), Caligidae, Bomolochidae and Hatschekiidae
(Copepoda). Sörensen qualitative index that was used to compare the biodiversity of parasites at the family
level and at the species level for P. clathratus and P. humeralis which showed a value of 57.14% and 11.94%,
respectively. Despite this difference, a similar proportion of larvae and adult parasites were observed, as well as
in the life cycle types and at the site of infection (ectoparasites and endoparasites) between both species of
Paralabrax. On the other hand, parasites showing some host specificity towards groupers are copepods of
family Hatschekiidae and tapeworms Trypanorhyncha that parasitize elasmobranches fish in adult stage. The
remaining parasites are considered generalists. Tapeworms, acanthocephalans and anisakid are registered in the
larval stages indicating that Paralabrax use paratenic as intermediate hosts in their life cycles. Monogeneans,
copepods and digeneans were adult forms suggesting that P. clathratus and P. humeralis are the definitive hosts.
The observed differences in parasite richness of the hosts may be due to specific environmental conditions, the
presence of different intermediate hosts, the feeding behavior of the host and host specificity.
Keywords: crustaceans – host specicity – helminths – Paralabrax clathratusP. humeralis
1 1,2 3 3,4
María del Carmen Gómez del Prado-Rosas ; Horacio Lozano-Cobo ; Lorena Alvariño & José Iannacone
Neotropical Helminthology, 2017, 11(1), jan-jun
RESUMEN
Se presenta la biodiversidad parasitaria de Paralabrax clathratus (Girard, 1854) y P. humeralis
(Valenciennes, 1828) (Pisces: Serranidae) del Pacífico Oriental, su especificidad hospedatoria y el papel
que desempeñan en el ciclo de vida de los parásitos. La información es una compilación de los registros de
diversos autores durante la revisión de los parásitos de los peces estudiados. Se encontró que la
biodiversidad parasitaria de ambas especies de peces está agrupada en 22 familias (entre helmintos y
crustáceos), dos órdenes y una clase. Paralabrax humeralis presenta mayor riqueza parasitaria que P.
clathratus (n = 40 vs n = 27): monogeneos (n = 3 vs n = 3), digéneos (n = 10 vs n = 10), céstodos (n = 6 vs n
= 1), acantocéfalos (n = 2 vs n = 1), nemátodos (n = 9 vs n = 4), copépodos (n = 8 vs n = 8), isópodos (n = 1
vs n = 0) e hirudineos (n = 1 vs n = 0). De esta riqueza parasitaria, se observó que los hospederos comparten
diez familias: Diclidophoridae y Capsalidae (Monogenea), Opecoelidae y Hemiuridae (Digenea),
Polymorphidae (Acantocephala), Anisakidae y Cucullanidae (Nematoda), Caligidae, Bomolochidae y
Hatschekiidae (Copepoda). El índice de Sörensen cualitativo que sirvió para comparar la biodiversidad
parasitaria a nivel de familia y de especie de P. clathratus y P. humeralis mostró un valor de 57,14% y de
11,94%, respectivamente. A pesar de esta diferencia, se observó una proporción similar de parásitos en los
estadios larval y adulto, así como en los tipos de ciclos de vida y en el sitio de infección (ectoparásitos y
endoparásitos) entre ambas especies de Paralabrax. Por otro lado, los parásitos que muestran cierta
especificidad hospedatoria hacia serránidos son los copépodos de la familia Hatschekiidae y los céstodos
del orden Trypanorhyncha que parasitan a peces elasmobranquios en estado adulto, el resto se consideran
parásitos generalistas. Los céstodos, acantocéfalos y anisákidos registrados son formas larvarias
indicando que utilizan a Paralabrax como hospederos intermediarios o paraténicos en sus ciclos de vida.
Los monogéneos, digéneos y copépodos son formas adultas lo que sugiere que P. clathratus y P. humeralis
son sus hospederos definitivos. Las diferencias observadas en la riqueza parasitaria de los hospederos
pueden deberse a condiciones específicas del ambiente, de la presencia de diferentes hospederos
intermediarios, del comportamiento alimentario y de su posible especificidad hospedatoria.
INTRODUCTION
The species of the subfamily Serraninae have
sedentary behavior and are predators that feed on
fish and benthic invertebrates, mainly crustaceans
(Fischer et al., 1995; Pérez-Matus et al., 2012).
Some species are hermaphrodites, because
individuals function as males and females at the
same time. Other species change sex, from females
to males during their lifetime, but several have
separate sexes (Aburto-Oropeza et al., 2008).
Phylogenetically Serraninae is the basal subfamily
of the Serranidae family.
Paralabrax Girard, 1856 is one of the 13 genera of
the subfamily Serraninae (Nelson, 2006); forms a
monophyletic group of American distribution
(Pondella et al., 2003). Composed of nine valid
species divided into two phylogeographic groups:
1) the group of North America, composed of P.
clathratus (Girard, 1854), P. nebulifer (Girard,
The family Serranidae Swainson, 1839 consisting
of 537 species is one of the eight most diverse
families of teleosteos fish (Nelson, 2006; Froese &
Pauly, 2006; Eschmeyer & Fong, 2015). The
Serranid has great commercial importance for
artisanal, recreational and industrial fishery in the
world and several species are highly valued in the
market aquaristik (Aburto-Oropeza et al., 2008).
These predominantly tropical or subtropical fish of
often demersal behavior live on the continental
shelves, from the shore to moderate depths (rarely
greater than 200 m). Most live associated with
coral reefs and rocky bottoms, although some live
in seagrass beds, and muddy and sandy bottoms
(Fischer et al., 1995; Cisternas & Sielfeld, 2008).
168
Gómez del Prado-Rosas et al.
Palabras claves: crustáceos – especificidad hospedatoria – helmintos – Paralabrax clathratusP. humeralis
1854), P. auroguttatus Walford, 1936, and P.
maculatofasciatus (Steindachner, 1868), and 2) the
group of Central and South America, made up of P.
humeralis (Valenciennes, 1828), P. loro Walford,
1936, P. albomaculatus (Jenyns, 1840), P.
callaensis Starks, 1906 and P. dewegeri
(Metzelaar, 1919) (Pondella et al., 2003) (Fig. 1).
This genus is considered the basal taxon in the
subfamily Serraninae (Pondella et al., 2003;
Sadovy & Domeier, 2005; Martínez-Brown et al.,
2012).
The genus Paralabrax includes mesocarnivorous
fish, dominant components of the rocky
environment and marine reef of the Eastern Pacific
and Western Atlantic of the American Continents.
Their dominance has made them commercially and
ecologically important, and therefore they have
been subject to intensive fishing (Pondella et al.,
2003). The basal limbs of the Paralabrax genus, P.
clathratus and P. humeralis, are the most species
representatives of the group (Pondella et al., 2003).
P. clathratus is distributed from the Columbia
River, Washington, USA to Bahía Magdalena,
BCS, Mexico and P. humeralis from Colombia to
southern Chile (Fischer et al., 1995). P. clathratus
according to its conservation status is considered to
be of minor concern and P. humeralis as deficient
data (IUCN, 2015a, b).
In South America, several comparative studies of
eumetazoan parasite communities in congeneric
freshwater and marine fish have been carried out in
recent years. In the erythrinoids Hoplias
malabaricus Bloch, 1794 and H. lacerdae Miranda
Ribeiro, 1908 in Brazil (Rosim et al., 2010). In the
labrisomids Auchenionchus microcirrhis
(Valenciennes, 1836), A. variolosus (Valenciennes,
1836) and A. crinitus (Jenyns, 1842) in Chile
(Muñoz & Castro, 2012). In the blennids
Scartichthys variolatus (Valenciennes, 1836), S.
viridis (Valenciennes, 1836) and S. gigas
(Steindachner, 1876) in Chile (Díaz & Muñoz,
2010), among others. However to date there is no
information on the comparative biodiversity of the
parasitofauna of P. clathratus and P. humeralis
despite being species of high ecological and
economic relevance for each geographic region in
which they are distributed. Therefore, this paper
presents the comparative analysis of the parasitic
biodiversity of P. clathratus and P. humeralis from
the Eastern Pacific.
Neotropical Helminthology, 2017, 11(1), jan-jun
169
Biodiversity parasitic of two species of Paralabrax
The information presented is an exhaustive
compilation of the records generated by several
authors of the parasitic fauna eumetazoa in the two
species of fish studied (P. clathratus and P.
humeralis). Records in scientific articles,
unpublished thesis and cybernetic information
search portals such as "Google Scholar" were taken
into account. The taxonomic classification
followed the Cohen et al. (2013) nomenclature for
the monogeneans, Yamaguti (1971), Gibson et al.
(2002), Jones et al. (2005) and Bray et al. (2008)
for the digeneans. Heinz & Dailey (1974) and
Schmidt (1986) for tapeworms and Moravec
(2006) for nematodes was used. Petrochenko
(1971) and Amin (2013) were used for
acanthocephalans and Luque & Tavares (2007) for
crustaceans. At the level of order the classification
of parasites of Ruggiero et al. (2015) was used.
Comparison of beta parasite biodiversity at family
and species level (P. clathratus and P. humeralis)
was measured using the Sörensen (Is) qualitative
similarity index: Is = (2c*100 /a+b), where a =
number of parasite families / species present in P.
clathratus, b = number of parasite families / species
present in P. humeralis, and c = number of parasite
families / species present in both species of
Paralabrax. This index varies between 0 when
there are no families / species of parasites present in
both species of Paralabrax, up to 100% when for
all species of Paralabrax all the families / species
of parasites are the same (Iannacone et al., 2010,
Calderón- Patrón et al., 2012; Bernués-Bañeres &
Jiménez-Peydró, 2013). The Chi-square statistic
was used to determine whether the same proportion
of larvae and adults of metazoan parasites, direct
and indirect biological cycle of parasites, and
metazoan ectoparasites and endoparasites exist
between P. clathratus and P. humeralis at a level of
significance of 0.05 (Preacher, 2001).
Comparative parasite biodiversity of both species
of fish was found to be constituted of helminths and
crustaceans grouped into 22 families, two orders
MATERIAL AND METHODS
RESULTS
0.57). The same proportion of metazoan
ectoparasites in the fish host (44.44% in P.
clathratus and 32.5 % in P. humeralis) (Chi-square
= 0.79, p = 0.37) and metazoan endoparasites in the
fish host (55.56% in P. clathratus and 67.5% in P.
humeralis) (Chi-square = 0.58, p = 0.44).
Of the 22 parasite families, two orders and one
class present in P. clathratus and P. humeralis, 10
of them (40%) are probably shared as a result of
their phylogenetic kinship as clades of the North
American and Central-South American groups
respectively (Pondella et al., 2003; Sadovy &
Domeier, 2005; Martínez-Brown et al., 2012).
However, it turned out that the biodiversity of
metazoan parasites at the family level between
these two species is not shared in 60% of cases.
This maybe due to differences in the composition
of marine invertebrates that serve as intermediate
hosts and habitats that serve as food, recruitment,
larval settlement and reproduction of each species
of fish (Cisternas & Sielfeld, 2008). The
distribution of P. humeralis on the coasts of Peru
and Chile is frequently associated with two
subsystems of kelps, Lessonia trabeculata Villouta
& Santelices and Macrocystis integrifolia Bory de
Saint-Vincent (Cisternas & Sielfeld, 2008; Ortiz,
2010; Henríquez & González, 2012). While P.
clathratus, although it is a species considered to be
close to algae grasslands in southern California and
northern Baja California (Quast, 1968; Miller &
Lea, 1972; Erisman & Allen, 2005, 2006) has been
more frequently associated with rocky-type coral
habitats (Stephens et al., 1984; Gómez del Prado-
Rosas, 2012). Possibly due to this habitat
difference there is a greater parasitic biodiversity in
P. humeralis with respect to P. clathratus.
Monogeneans of the family Diclidophoridae,
Pseudotagia clathratus and Mamaevicotyle
villalobosi have not been registered in other
species of fish, but Hemitagia galapagensis was
found in Paranthias furcifer (Valenciennes, 1828)
and Tagia sp. which has been found in a greater
variety of fish species (Lamothe-Argumedo, 1984;
Gómez del Prado-Rosas, 2012; Cohen et al., 2013).
In all cases, both species of groupers act as final
hosts of monogeneans.
and one class. P. humeralis presented higher
parasite richness at the species level than P.
clathratus (n = 40 vs n = 27): monogeneans (n = 3
vs n = 3), digeneans (n = 10 vs n = 10), tapeworms
(n = 6 vs n = 1), acanthocephalans (n = 2 vs n = 1),
nematodes (n = 9 vs n = 4), copepods (n = 8 vs n =
8), isopods (n = 1 vs n = 0) and hirudinean (n = 1 vs
n = 0) (Table 1). The 27 species of metazoan
parasites of P. clathratus were found in the USA
(14.81%) and in Mexico (88.88%). In contrast, the
40 species of metazoan parasites of P. humeralis
were Galapagos-Ecuador (12.5%), Peru (40%) and
Chile (67.5%) (Table 1).
From this parasite richness, it was observed that
both hosts share ten families: Diclidophoridae and
Capsalidae (Monogenea), Opecoelidae and
Hemiuridae (Digenea), Polymorphidae
(Acanthocephala), Anisakidae and Cucullanidae
(Nematoda), Caligidae, Bomolochidae and
Hatschekiidae (Copepoda). It was also observed
that P. clathratus does not share families:
Monorchiidae and Zoogonidae (Digenea) and
Spiruridae (Nematoda). P. humeralis does not
share the families: Derogenidae (Digenea),
Bothriocephalidea (unidentified family),
Lacistorhynchidae, Tentacularidae and
Diphyllobothriidae (Cestoda), Philometridae and
Cystidicolidae (Nematoda), Lernaeopodidae and
Chondracanthidae (Copepoda), Cymothoidae
(Isopoda) and an unidentified family of Hirudinea
(Table 1). The qualitative Sörensen index was used
to compare parasite biodiversity at the family and
species levels of P. clathratus and P. humeralis, and
showed a value of 11.94% and 57.14%,
respectively. Only four parasitic species: H. nimia,
A n i s a k i s s p . , C o r y n o s o m a s p . a n d
Hysterothylacium sp. were present in both species
of grouper, P. clathratus and P. humeralis.
A similar proportion of larvae relative to total
parasite load was observed in both fish species
(14.81% in P. clathratus and 26.83% in P.
humeralis) (Chi-square = 1.75, p = 0.18) and adults
(85.19% in P. clathratus and 73.17% in P.
humeralis) (Chi-square = 0.46, p = 0.50) for
metazoan parasites. The same proportion of
metazoan parasites with direct biological cycle
(40.74% in P. clathratus and 32.5% in P.
humeralis) (Chi-square = 0.43, p = 0.51) and
indirect biological cycle (59.26% in P. clathratus
and 77.5% in P. humeralis) (Chi-square = 0.32, p =
Neotropical Helminthology, 2017, 11(1), jan-jun
170
Gómez del Prado-Rosas et al.
DISCUSSION
Neotropical Helminthology, 2017, 11(1), jan-jun
171
Biodiversity parasitic of two species of Paralabrax
Shared Locality Reference
Order Family families Genus/Species
Host (Country)
Monogenea
Mazocraeidea
Diclidophoridae
Yes
Pseudotagia clathratus Crane, 1972 A, D Pc USA Crane (1972)
Mamaevicotyle villalobosi Lamothe, 1984
A, D Pc Mexico
Gómez del Prado-Rosas
(2012)
Tagia sp.
A, D Ph Peru Armas (1977)
Chile
Henríquez
&
González
(2012)
Hemitagia galapagensis (Meserve, 1938)
Sproston, 1946
A, D
Ph
Galápagos
Kohn & Cohen (2003)
Peru
Iannacone & Alvariño
(2009)
Capsaloidea
Capsalidae
Yes
Bajacaliornia universitaria
Gómez del Prado & Lamothe, 2009
A, D
Pc
Mexico
Gómez del Prado-Rosas
(2012)
Neobenedenia
sp.
A, D
Ph
Chile
Henríquez
& González
(2012)
Digenea
Plagiorchiida
Opecoelidae
Yes
Helicometrina nimia
Linton, 1910
A, I
Pc
Mexico
Arai (1962)
Ph
Chile
Oliva & Muñoz (1985);
Muñoz & Olmos (2008);
Henríquez
& González
(2012);
González et al.
(2013);
Oliva et al. (2015)
Table 1. Biodiversity of shared and non-shared metazoan parasite families among Serranids Paralabrax clathratus (Pc) and P. humeralis (Ph). A = Adult stage. L
= larvae stage. D = Direct biological cycle. I = Indirect biological cycle. NI = Not indicated.
Neotropical Helminthology, 2017, 11(1), jan-jun
172
Gómez del Prado-Rosas et al.
Shared Locality
Order Family families Genus/Species Host (Country)
Odhner, 1902
A, I
Ph
Chile
Oliva & Muñoz (1985);
Kohn et al. (2007);
Muñoz & Olmos (2008);
Henríquez
& González
(2012); González et al.
(2013)
Peru
Iannacone & Alvariño
(2009)
Helicometra pulchella (Rudolphi, 1819)
Odhner, 1902
A, I
Ph
Peru
Tantaleán et al. (1975)
Plagioporus isaitschikowi
(Layman, 1930) Price, 1934
A, I
Pc
USA
Manter & Van Cleave
(1951)
Mexico
Druk-González (1983)
Opecoelus mexicanus Manter, 1940
A, I
Pc
Mexico
Gómez del Prado-Rosas
(2012)
Opecoelus lutiani (Bravo Hollis & Manter,
1957) Aken´Ova, 2007
A, I
Pc
Mexico
Gómez del Prado-Rosas
(2012)
Pseudopecoelus
sp.
A, I
Ph
Chile
Henríquez
& González
(2012)
Macvicaria
sp.
A, I
Ph
Chile
Henríquez
& González
(2012)
Macvicaria calotomi (Yamaguti, 1934)
Gibson & Bray, 1982 A, I Pc Mexico Gómez del Prado-Rosas
(2012)
Macvicaria issaitschikowi (Layman, 1930)
Bray, 1985 A, I Pc Mexico Gómez del Prado-Rosas
(2012)
Reference
Helicometra fasciata (Rudolphi, 1819)
Neotropical Helminthology, 2017, 11(1), jan-jun
173
Biodiversity parasitic of two species of Paralabrax
et al.
et al.
Opecoelidae gen. sp.1
A,I
Ph
Chile
Henríquez & González
(2012)
Opecoelidae gen. sp.2
A,I
Ph
Chile
Henríquez & González
(2012)
Plagiorchiida
Hemiuridae
Yes
Parahemiurus merus (Linton, 1910)
Vaz &
Pereira, 1930
A, I
Pc
Mexico
Gómez del Prado-Rosas
(2012)
Ellytrophallus mexicanus Manter, 1940
A, I
Pc
Mexico
Manter & Van Cleave
(1951)
Lecithochirium microstomum
Chandler, 1935
A, I
Ph
Galápagos
Manter (1940)
Lecithiochirium magnaporum Manter, 1940
A, I
Ph
Galápagos
Manter (1940); Kohn
(2007);
Iannacone & Alvariño
(2009)
Plagiorchiida
Derogenidae
Yes
Derogenes varicus (O.F. Müller, 1784)
Looss, 1901
A, I
Ph
Galápagos
Manter (1940); Kohn
(2007);
Iannacone & Alvariño
(2009)
Plagiorchiida
Monorchiidae
No
Monorcheides alexanderi Arai, 1962
A, I
Pc
Mexico
Arai (1962); Gómez del
Prado (2012)
Plagiorchiida Zoogonidae No
Deretrema (Deretrema) pacicum
Yamaguti, 1942 A, I Pc Mexico Gómez del Prado-Rosas
(2012)
Cestoda
Bothriocephalidea NI No Bothriocephalidea gen. sp. A, I Ph Chile Henríquez & González
(2012)
Trypanorhyncha NI No Trypanorhyncha sp. L, I Pc Mexico Gómez del Prado-Rosas
(2012)
Shared Locality
Order Family families Genus/Species Host (Country)
Reference
Neotropical Helminthology, 2017, 11(1), jan-jun Gómez del Prado-Rosas et al.
Trypanorhyncha
Lacistorhynchidae
No
Grillotia
sp.
L, I
Ph
Peru
Armas (1977); Tantaleán &
Huiza (1994);
Iannacone & Alvariño
(2009)
Callitetrarhynchus
sp.
L, I
Ph
Peru
Armas (1977)
Callitetrarhynchus
gracilis (Rudolphi, 1819)
L, I
Ph
Peru
Tantaleán & Huiza (1994);
Iannacone & Alvariño
(2009)
Tentaculariidae
No
Nybelinia sp.
L, I
Ph
Chile
Henríquez
&
González
(2012)
Diphyllobothriidea
Diphyllobothriidae
No
Adenocephalus pacicus Nybelin, 1931
L, I
Ph
Peru
Iannacone & Alvariño
(2009)
Acanthocephala
Polymorphida
Polymorphidae
Yes
Corynosoma
sp.
L, I
Pc
Mexico
Gómez del Prado-Rosas
(2012)
Ph
Chile
Muñoz & Olmos (2008);
Henríquez & González
(2012)
Peru Armas (1977); Tantaleán et
al. (2005)
Corynosoma obtuscens Lincicome, 1943 L, I Ph Chile Muñoz & Olmos (2008)
Peru Tantaleán et al. (2005)
Nematoda
Ascaridida Anisakidae Yes
Anisakis sp. L, I Pc Mexico Gómez del Prado-Rosas
(2012)
Ph Chile Henríquez & González
(2012)
Shared Locality
Order Family families Genus/Species Host (Country)
Reference
174
Neotropical Helminthology, 2017, 11(1), jan-jun
175
Biodiversity parasitic of two species of Paralabrax
Shared Locality
Order Family families Genus/Species Host (Country)
Reference
Anisakis simplex
(Rudolphi, 1809)
L, I
Ph
Chile
Jofré et al. (2008);
Iannacone & Alvariño
(2009)
Hysterothylacium
sp.
L, I
Pc
Mexico
Gómez del Prado-Rosas
(2012)
L, A, I
Ph
Chile
Henríquez
& González
(2012)
Ascaridida
Cucullanidae
Yes
Cucullanus
sp.
A, I
Pc
Mexico
Gómez del Prado-Rosas
(2012)
Cucullanellus
sp.
A, I
Ph
Peru
Armas (1977)
Dichelyne (Cucullanellus) sp.
A, I
Ph
Peru
Sarmiento et al. (1999);
Iannacone & Alvariño
(2009)
Camallanida
Philometridae
No
Philometra sp.
A, I
Ph
Chile
Oliva et al. (1992);
Henríquez
& González
(2012)
Peru Muñoz & Olmos (2008);
Sarmiento et al.
(1999); Iannacone &
Alvariño (2009)
Rhabditia Cystidicolidae No
Cystidicolidae gen. sp.1 A, I Ph Chile Henríquez & González
(2012)
Ascarophis sp. A, I Ph Chile Henríquez & González
(2012)
Pseudoascarophis sp. ? A, I Ph Chile Henríquez & González
(2012)
Spiruroidea Spiruridae No
Dollfusnema piscícola
Caballero-Rodríguez, 1974 A, I Pc Mexico Caballero-Rodríguez
(1974)
Neotropical Helminthology, 2017, 11(1), jan-jun
176
Gómez del Prado-Rosas et al.
Copepoda
Siphonostomatoida
Caligidae
Yes
Caligus mutabilis Wilson, 1905
A, D
Pc
Mexico
Causey (1960);
Gómez del Prado-Rosas
(2012)
Caligus productus
Dana, 1853
A, D
Pc
Mexico
Causey (1960)
Caligus elongatus
von Nordmann, 1832
A, D
Pc
Mexico
Gómez del Prado-Rosas
(2012)
Caligus quadratus
(Shiino, 1954)
A, D
Ph
Chile
Muñoz & Olmos (2007);
Henríquez
& González
(2012);
Peru Iannacone & Alvariño
(2009)
Lepeophtheirus dissimulatus Wilson, 1905 A, D Ph Galápagos Wilson (1937)
Lepeophtheirus longipes Wilson, 1905 A, D Pc USA Wilson (1921)
Lepeophtheirus frecuens
Castro-Romero & Baeza-Kuroki, 1984 A, D Ph Chile Henríquez & González
(2012)
Siphonostomatoida Lernaeopodidae No
Clavella sp. A, D Ph Chile Henríquez & González
(2012)
Cyclopoidea Bomolochidae Yes
Bomolochidae gen. sp. A, D Ph Chile Henríquez & González
(2012)
Acantholochus paralabracis
Luque & Bruno, 1990 A, D Ph Peru Luque & Bruno (1990);
Iannacone & Alvariño
(2009)
Shared Locality
Order Family families Genus/Species Host (Country)
Reference
Neotropical Helminthology, 2017, 11(1), jan-jun
177
Biodiversity parasitic of two species of Paralabrax
Shared Locality
Order Family families Genus/Species Host (Country)
Reference
Siphonostomatoida
Hatschekiidae
Poecilostomatoida Chondracanthidae
Isopoda
Cymothoida Cymothoidae
Hirudinea
NI
Bomolochus longicaudus Cressey, 1969
Bomolochus soleae Claus, 1864
Yes
Hatschekia albirubra Wilson, 1913
Hatschekia amphiprocessa
Castro & Baeza, 1986
Hatschekia pacica Cressey, 1970
No
Juanettia cornifera Wilson, 1921
No
Meinertia sp.
No Hirudinea gen. sp.
A, D
Pc
USA
A, D
Pc
Mexico
A, D
Pc
Mexico
A, D Ph Chile
Peru
A, D Pc Mexico
A, D Ph Chile
L, D Ph Chile
A, D Ph Chile
Cressey (1969)
Causey (1960)
Causey (1960)
Castro & Baeza-Kuroki
(1986);
Muñoz & Olmos (2007);
Henríquez & González
(2012)
Luque et al. (1991);
Iannacone & Alvariño
(2009)
Gómez del Prado-Rosas
(2012)
Stuardo & Fagetti (1961);
Muñoz & Olmos (2007)
Henríquez & González
(2012)
Henríquez & González
(2012)
Opecoelidae is a family well represented in marine
fish, with species that can be used to assess the
health of the aquatic ecosystem.
Helicometrina nimia is a digenean trematode with
wide distribution in the world (Roumbedakis et al.,
2014) that is located in the intestine and stomach of
fish. It has been registered to date in more than 60
fish species, mainly of the families Serranidae,
Haemulidae Gill, 1885 (Syn = Pomadasyidae),
Scorpaenidae Risso, 1827 and Clinidae Swainson,
1839 in 13 countries: United States of America,
Regarding the digeneans, although they are
generalists, only the families Opecoelidae and
Hemiuridae were found in both fish species
probably reflecting the fact that groupers are their
definitive hosts when these helminths are found in
adult stage (Gibson & Bray, 1982; Bray, 1985;
Aken'Ova, 2007; Iannacone et al., 2011).
Opecoelidae was the family that presented the
greatest diversity of species (n = 12) in the genus
Paralabrax. Bray et al. (2016) notes that this is the
largest family of digenea with 90 genera and about
900 species. Derbel et al. (2012) notes that
Neotropical Helminthology, 2017, 11(1), jan-jun
178
Gómez del Prado-Rosas et al.
Figure 1. Geographical distribution of Paralabrax spp. of the phylogeographic group of North America (P. clathratus, P.
auroguttatus, P. nebulifer and P. maculatofasciatus) and of the phylogeographic group of Central and South America (P.
humeralis, P. loro, P. albomaculatus, P. callaensis and P. dewegeri).
parasites of the second family are generalist
(Cressey, 1969). The copepods Caligidae are
among the ectoparasites with the most species
richness in Paralabrax. Regarding to Juanettia
cornifera there are only one record of this species
in P. humeralis (Stuardo & Fagetti, 1961;
Yamaguti, 1963b). In all cases, the groupers are
their definitive hosts (Muñoz & Olmos, 2007).
The monogenean Bajacalifornia universitaria is a
capsalid that was found in adult stage in P.
clathratus and could be occurs in other two species
of Paralabrax (P. nebulifer and P. auroguttatus) in
the Pacific ocean of the Peninsula of Baja
California and Gulf of California, Mexico
respectively. For this monogenean the Paralabrax
groupers are the definitive hosts (Gómez del
Prado-Rosas, 2012)..
The digenean Monorcheides alexanderi of the
family Monorchiidae, seems so far, preference for
fish of the genus Paralabrax. Because it had
previously been recorded in P. clathratus from Isla
Guadalupe, Mexico (Arai, 1962), in P. nebulifer
from Ensenada, Baja California, Mexico (Druk-
González, 1983) and in P. maculatofasciatus from
El Pardito, Bahía de La Paz, Baja California Sur,
Mexico (Gómez del Prado-Rosas, 2012). While
Deretrema (Deretrema) pacificum of the family
Zoogonidae is considered as generalist (although
part of a genus with nine species) because it has
been found in fish of the families Labridae,
Monocentridae, Pempheridae, Triglidae and the
order Scorpaeniformes. However, D. (D.)
pacificum has been described in fish belonging to
the following orders: Scorpaeniformes,
Perciformes and Beryciformes (Linton, 1910;
Gómez del Prado-Rosas, 2012). Derogenes varicus
of the family Derogenidae is a parasite of little host
specificity because it has been found in a great
variety of fishes (Yamaguti, 1971), so due to its
attributed a wide geographical distribution.
The records of tapeworms belong to the orders
Trypanorhyncha and Diphyllobothriidea were in
larval stage (plerocercoid), while the order
Bothriocephalidea was in adult stage. Khalil et al.
(1994) mentioned that adult of these parasites are in
elasmobranch fish and marine mammals. The
presence in larval stage indicating that the
Paralabrax spp. are only an intermediate or
paratenic host in the cycle of these parasites
Bahamas, Jamaica, Puerto Rico, Mexico, Panama,
Colombia, Peru, Brazil, Chile, the Arabian Gulf,
Pakistan and India (Vélez, 1987; Pérez-Ponce de
León et al., 2007; Iannacone & Alvariño, 2011;
Roumbedakis et al., 2014; Oliva et al., 2015;
Ramos-Ascherl et al., 2015; Sowjanya et al., 2015;
Merlo-Serna & García-Prieto, 2016). H. nimia has
been recorded in both species of grouper studied
here, P. clathratus and P. humeralis (Table 1).
On the other hand, the acanthocephalans registered
in both species of groupers belong to the genus
Corynosoma in larval stage. Aznar et al. (2006)
point out that in the marine ecosystem the
cystacanths of Corynosoma species are most
frequently in fishes, which act as paratenic hosts
and serve as a link between intermediate hosts
(mainly crustacean-amphipods) and definitive
hosts (marine mammals) (Yamaguti, 1963a; Aznar
et al., 2006). Although recently Lozano-Cobo et al.
(2017) propose the chaetognaths as a new
intermediate host in the life cycle of the
Corynosoma species due to the presence of 12
cystacanths in three species of chaetognaths in a
monthly zooplankton time series of three years
(1996 to 1998). Tantaleán et al. (2005) and Chero et
al. (2014) mentioned that Paralabrax spp. are only
an intermediate or paratenic host in the life cycle of
these acanthocephalans and we consider the same.
Regarding nematodes, the species recorded in the
family Anisakidae (Anisakis sp., A. simplex and
Hysterothylacium sp.) are cosmopolitan (Gómez
del Prado-Rosas, 2012; Luque et al., 2016). All
correspond to larval forms and indicate the role of
Paralabrax spp. in the Anisakidae life cycle as
intermediate or paratenic hosts, because of
Anisakis spp. have marine mammal as definitive
hosts and Hysterothylacium spp. have fish as
definitive hosts (Anderson, 2000). Nematodes of
the family Cucullanidae [Cucullanus sp. and
Dichelyne (Cuculanellus) sp.] are generalists
(Yamaguti, 1961) and in the Paralabrax spp. were
found in the adult stage, so that the groupers are
definitive hosts for these nematodes (Luque et al.,
2016).
The coincidence of copepods corresponding to the
families Hatschekiidae, Caligidae and
Bomolochidae is an indicator of the preference
that shown the first family by serranid fish (Jones,
1985; Castro & Baeza-Kuroki, 1986). While the
Neotropical Helminthology, 2017, 11(1), jan-jun
179
Biodiversity parasitic of two species of Paralabrax
study. P. clathratus may have a maximum length of
72 cm while P. humeralis can measure a maximum
length of 55 cm. In this sense we would be expected
to have higher parasite richness in P. clathratus
than P. humeralis. Contrary to this, the diversity
was higher in P. humeralis (n = 40) than in P.
clathratus (n = 27), so that differences in size
between the two hosts were not a factor in
determining their parasitic biodiversity.
Although both species are carnivorous, P.
clathratus has a greater spectrum of prey (benthic
and planktonic invertebrates, cephalopods and
fish) (Roberts et al., 1984; Henríquez & González,
2012). In contrast, the diet of P. humeralis is
dominated mainly by decapod crustaceans and to a
lesser extent by invertebrates and fish (Love et al.,
1996; Pérez-Matus et al., 2012). Although, P.
clathratus has a greater spectrum of prey, this host
did not have a greater richness of parasites that
could be transmitted trophically (digeneans,
tapeworms and nematodes) in comparison to P.
humeralis. Lowe et al. (2003) and Pérez-Matus et
al. (2012) indicated that P. clathratus and P.
humeralis have greater residence to their
geographic distribution and have little variation in
diet. Lira-Guerrero et al. (2008) indicate that
differences in the diet of host carnivorous fish
species could cause differences in the interactions
with their prey that are their possible intermediate
hosts. It is likely that the differences in the parasitic
richness of endoparasites in P. clathratus and P.
humeralis can be attributed to the general behavior
of hosts that can modulate the loss and acquisition
of new parasites (Henríquez & González, 2012).
Luque & Oliva (1999) and Rosim et al. (2010)
indicate that the unstable environmental conditions
in the aquatic environment would cause a
disturbance in the population dynamics of the
endoparasites transmitted trophically in
Paralabrax. As can be seen with the outcrop
systems in the Peruvian cold current and in the
California current where both species of grouper in
this study (P. humeralis and P. clathratus) are
distributed respectively. Also being periodically
affected by the El Niño event which may represent
a direct influence on the distribution of parasites
(Marcogliese, 2008). Henríquez & González
(2012) point out that the differences in the
composition of ectoparasites (monogeneans,
copepods, isopods and hirudineans) in P. humeralis
(Iannacone & Alvariño, 2009; Gómez del Prado-
Rosas, 2012; Luque et al., 2016). Adenocephalus
pacificus in plerocercoid larvae was found only in
P. humeralis. Kutcha et al. (2015) mentioned that
marine fish such P. humeralis act as a second
intermediate host and these fish would be part of
the marine mammal diet (Iannacone & Alvariño,
2009; Chero et al., 2014).
The nematode Dollfusnema piscicola of the family
Spiruridae, apparently, has not been registered in
another host in Mexico. P. clathratus is the type
host (Gibbons, 2010). While the nematode
Philometra sp. of the family Philometridae,
generally parasitizes a great diversity of fishes
(Yamaguti, 1961).
Respect to copepods, the members of the family
Chondracanthidae are recorded parasitizing a wide
variety of marine fish, but in particular the copepod
Juanettia cornifera has been found only in P.
humeralis of Isla Juan Fernández, Chile (Stuardo &
Fagetti, 1961; Yamaguti, 1963b; Muñoz & Olmos,
2007).
As regards the presence of families of parasites
non-shared between the two species of groupers (P.
clathratus and P. humeralis) could be indicate: 1)
particular conditions of the environment in the
geographical distribution; 2) presence of different
intermediary hosts; 3) more specific food behavior
and 4) a certain degree of host specificity of each
parasite (Manter, 1967; Díaz & Muñoz, 2010). It is
also considered that the absence of overlap in the
distribution of host fish could reduce the similarity
of species and families of parasites among
congeneric hosts (Díaz & Muñoz, 2010). P.
clathratus is a subtropical species that is
distributed from Columbia River, Washington,
USA to Bahía Magdalena, BCS, Mexico and P.
humeralis is a tropical species from Colombia to
southern Chile (Fischer et al., 1995). There are
families of parasites that do not coincide between
both species of Paralabrax despite being
congeneric species.
Henríquez & González (2012) and Muñoz &
Castro (2012) indicated that the variation in the
community of parasites among species of fish of
the same family would be to the sizes of the hosts,
observing a greater diversity in the larger fish.
However, this condition was not observed in this
Neotropical Helminthology, 2017, 11(1), jan-jun
180
Gómez del Prado-Rosas et al.
of four localities from Chile could be attributed to
different circulation models of water bodies. that
would affect the dispersal ability of the infective
larval stages of these ectoparasites. The richness of
ectoparasites in P. humeralis and P. clathratus can
be explained by this factor.
The results of this comparative study of helminth
and crustacean parasites between P. clathratus and
P. humeralis reflect possible differences in the
parasite richness of two congeneric hosts. Even
though they are species that come from the same
monophyletic group, the evidence of the
phylogeographic importance of these two hosts is
clear and reflected in the families of parasites that
were not shared. Probably the parasitic fauna in the
species of the genus Paralabrax has greater
similarity between those species of the same
phylogeographic group than between species of
different distribution. This would mean that the
parasitic biodiversity of P. clathratus would be
similar to that of P. maculatofasciatus, P. nebulifer
and P. auroguttatus because they belong to the
North American group (Fig. 1). While P. humeralis
would be more similar to the parasites of P. loro, P.
albomaculatus, P. callaensis and P. dewegeri
belonging to the Central and South American
group (Pondella et al., 2003) (Fig. 1). However it
would be necessary to analyze if there are
differences in the parasitic biodiversity among the
species of each phylogeographic group. This
review represents one of the first comparative
studies of parasitic richness among congenital
basal species of a monophyletic group of marine
environment in any Teleosteos fish family.
Therefore it is advisable to continue efforts to
better understand the factors that determine the
differences in parasitic biodiversity of host species
of monophyletic origin.
Neotropical Helminthology, 2017, 11(1), jan-jun
181
Biodiversity parasitic of two species of Paralabrax
Aburto-Oropeza, O, Erisman, B, Valdez-Ornelas,
C & Danemann, G. 2008. Serránidos de
importancia comercial del Golfo de
California: Ecología, Pesquerías y
Conservación. Ciencia y Conservación,
vol.1, pp.1-23.
BIBLIOGRAPHIC REFERENCES
Aken'Ova, T. 2007. The taxonomic status of
Opegaster Ozaki, 1928 and the description
of four new species of Opecoelus Ozaki,
1925 (Digenea: Opecoelidae) from marine
teleosts in Australian waters. Systematic
Parasitology, vol. 67, pp. 25-42.
Amin, O. 2 0 1 3 . C l a s s i f i c a t i o n o f t h e
Acanthocephala. Folia Parasitologica, vol.
60, pp. 273–305.
Anderson, RC. 2000. Nematode parasites of
vertebrates. Their development and
nd
transmission. 2 . Ed. Cabi Publishing. UK.
pp. 269-283, pp. 288-290.
Arai, HP. 1962. Tremátodos digéneos de peces
marinos de Baja California, México. Anales
del Instituto de Biología. Universidad
Nacional Autónoma de México, vol. 28, pp.
113-130.
Armas, FGM. 1977. Helmintos en Paralabrax
humeralis Cuvier-Valenciennes, 1828
(Cabrilla), pez de consumo humano del
litoral peruano. Tesis. Universidad
Nacional de Trujillo. Perú. 67 p.
Aznar, FJ, Pérez-Ponce de León, G & Raga, JA.
2 0 0 6 . S t a t u s o f C o r y n o s o m a
(Acanthocephala: Polymorphidae) based
o n a n a t o m i c a l , e c o l o g i c a l , a n d
phylogenetic evidence, with the erection of
Pseudocorynosoma n. gen. Journal of
Parasitology, vol. 92, pp. 548-564.
Bernués-Bañeres, A & Jiménez-Peydró, R. 2013.
Diversity of mosquitoes (Diptera Culicidae)
in protected natural parks from Valencian
Autonomous Region (Eastern Spain).
Biodiversity Journal, vol. 4, pp. 335-342.
Bray, RA. 1985. Macvicaria taksengi n. sp.
(Digenea: Opecoelidae) in marine teleosts
from Pinang, Malaysia. Systematic
Parasitology, vol. 7, pp. 75-80.
Bray, RA, Gibson, DI & Jones, A. 2008. Keys to the
Trematoda. Volume 3. CABI Publishing
and the Natural History Museum, London.
848 p.
Bray, RA, Cribb, TH, Littlewood, DTJ &
Waeschenbach, A. 2016. The molecular
phy l o g e n y o f t h e d i g e n e a n family
Opecoelidae Ozaki, 1925 and the value of
morphological characters, with the erection
of a new subfamily. Folia Parasitologica,
vol. 63, pp. 013.
Caballero-Rodríguez, G. 1974. Contribución al
conocimiento de los nemátodos de peces de
Díaz, PE & Muñoz, G. 2010. Diet and parasites of
the insular fish Scartichthys variolatus
(Blenniidae) from Robinson Crusoe Island,
Chile: How different is this from two
continental congeneric species?. Revista de
Biología Marina y Oceanografía, vol. 45,
pp. 293-301.
Druk-González, J. 1983. Digenetic trematodes of
marine fishes of Ensenada, Baja California,
Mexico . Master of Science thesis.
University of the Pacific, Stockton,
California, USA. 108 p.
Erisman, BE & Allen, LG. 2005. Color patterns
and associations behaviors in the kelp bass,
Pa r ala b rax cla t hra t us ( Te l e o s t e i :
Serranidae). Bulletin of the Southern
California Academy of Sciences, vol. 104,
pp. 45-62.
Erisman, BE & Allen, LG. 2006. Reproductive
behavior of a temperate serranid fish,
Paralabrax clathratus (Girard), from Santa
Catalina Island, California, U.S.A. Journal
of Fish Biology, vol. 68, pp. 157-184.
Eschmeyer, WN & Fong, JD. 2015. Species by
family/subfamily in the Catalog of Fishes.
California Academy of Sciences. Online
v e r s i o n , u p d a te d 6 A p ri l , 2 0 1 5 .
(http://researcharchive.calacademy.org/res
earch/ichthyology/catalog/SpeciesByFamil
y.asp. última consulta: 10 de abril de 2015).
Fischer, W, Krupp, F, Schneider, W, Sommer, C,
Carpenter, KE & Niem, VH. 1995. Guía
FAO para la identificación de especies para
los fines de la pesca. Pacífico centro-
oriental. Roma, FAO III: 1201-1813 p.
Froese, R & Pauly, D. 2006. "Serranidae" in
FishBase. January 2006 version.
Gibbons, LM. 2010. Keys to the nematode
parasites of vertebrates. Supplementary
Volume. CAB International. United
Kingdom. 416 p.
Gibson, DI & Bray, RA. 1982. A study and
reorganization of Plagioporus Stafford,
1904 (Digenea: Opecoelidae and related
genera, with special reference to forms from
European and Atlantic waters. Journal of
Natural History, vol. 16, pp. 529-559.
Gibson DJ, Jones A, Bray RA. 2002. Keys to the
Tr e m a t o d a . Vol 1 . L ondo n: C AB
International and the Natural History
Museum. 521 p.
Gómez del Prado-Rosas, MC. 2012. Parasitofauna
los litorales de México. III. Dos nuevas
formas. Publicaciones Biológicas. Instituto
de Investigaciones Científicas. UANL, vol.
1, pp. 33-40.
Calderón-Patrón, JM, Moreno, CE & Zuriam, I.
2012. Beta diversity: half a century of
a d v a n c e s . R e v i s t a M e x i c a n a d e
Biodiversidad, vol. 83, pp. 879-891.
Castro, RR & Baeza-Kuroki, H. 1986. Two new
species of Hatschekia Poche, 1902
(Copepoda: Hatschekiidae) parasitic on
two inshore fishes from Antofagasta, Chile.
Journal of Natural History, vol. 20, pp. 439-
444.
Causey, D. 1960. Parasitic copepoda from
Mexican coastal fishes. Bulletin of Marine
Sciences, Gulf and Caribbean, vol. 10, pp.
323-337.
Chero, J, Cruces, C, Iannacone, J, Sáez, G,
Alvariño, L, Rodríguez, C, Rodríguez, H,
Tuesta, E, Pacheco, A & Huamani, N. 2014.
Parasitological indexes of Peruvian Hake
Merluccius gayi peruanus Ginsburg, 1954
(Perciformes: Merlucciidae) acquired at
the fishing terminal of Ventanilla, Callao,
Peru. Neotropical Helminthology, vol. 8,
pp. 141-162.
Cisternas, F & Sielfeld, W. 2008. Habitat overlap
of Paralabrax humeralis (Cuvier &
Valenciennes, 1828), Hemilutjanus
macrophthalmos (Tschudi, 1845), and
Acanthistius pictus (Tschudi, 1845) (Pisces;
Serranidae) in the rocky subtidal south of
Iquique, Chile. Latin American Journal of
Aquatic Research, vol. 36, pp. 153-158.
Cohen, SC, Justo, MC & Kohn, K. 2013. South
American Monogenoidea parasites of
fishes, amphibians and reptiles. Oficina de
Livros, Rio de Janeiro, 663 p.
Crane, JW. 1972. Systematics and new species of
marine monogenea from California. The
Wasmann Journal of Biology, vol. 30, pp.
109-166.
Cressey, RF. 1969. Five new parasitic copepods
from California inshore fish. Proceedings of
the Biological Society of Washington, vol.
82, pp. 409-427.
Derbel, H, Châari, M & Neifar, L. 2012. Digenean
species diversity in teleost fishes from the
g u l f o f G a b e s , Tu n i s i a ( We s t e r n
mediterranean). Parasite, vol. 19, pp. 129-
135.
Neotropical Helminthology, 2017, 11(1), jan-jun
182
Gómez del Prado-Rosas et al.
S p e c i e s . V e r s i o n 2 0 1 5 . 2 .
<www.iucnredlist.org>. Downloaded on 07
September 2015.
IUCN. 2015b. The IUCN Red List of Threatened
S p e c i e s . V e r s i o n 2 0 1 5 . 2 .
<www.iucnredlist.org>. Downloaded on 10
September 2015.
Jofré, ML, Neira, OP, Noemí, HIN & Cerva, CJL.
2008. Pseudoterranovosis y sushi. Revista
Chilena de Infectología, vol. 25, pp. 200-
206.
Jones, JB. 1985. A revision of Hatschekia Poche,
1902 (Copepoda: Hatschekiidae), parasitic
on marine fishes. New Zealand Journal of
Zoology, vol. 12, pp. 213-271.
Jones A, Bray, RA & Gibson, DJ. 2005. Keys to the
Trem a t od a . Vol. 2. London: CAB
International and The Natural History
Museum. 768 p.
Khalil, LF, Jones, A & Bray, RA. 1994. Keys to the
Cestode parasites of vertebrates. CAB
International. Wallingford, United
Kingdom. 751 p.
Kohn, A & Cohen, SC. 2003. South American
Monogenea- list of species, host and
geographical distribution. International
Journal for Parasitology, vol. 28, pp. 1517-
1554.
Kohn, A, Fernandes, BMM & Cohen, SC. 2007.
South American trematodes parasites of
fishes. 318 p.
Lamothe-Argumedo, R. 1984. Monogéneos de
peces IX. Un género y especies nuevos de la
familia Diclidophoridae del Golfo de
California, México. Anales del Instituto de
Biología. Universidad Nacional Autónoma
de México. Serie Zoología, vol. 55, pp. 73-
84.
Linton, E. 1910. Helminth fauna of the Dry
Tortugas. II. Trematodes. Papers from the
Tortugas Laboratory of the Carnegie
Institute of Washington 4 (Publication 133),
pp. 11-98.
Lira-Guerrero, G, García-Prieto, L & Pérez-Ponce
de León, G. 2008. Helminth parasites of
a t h e r i n o p s i d f r e s h w a t e r f i s h e s
(Osteichthyes: Atheriniformes) from central
M e x i c o . R e v i s t a M e x i c a n a d e
Biodiversidad, vol. 79, pp. 325-331.
Love, MS, Brooks, A, Bussatto, D, Stephens, J &
Gregory, PA. 1996. Aspects of the life
histories of the kelp bass, Paralabrax
de peces del género Paralabrax (Pisces:
Serranidae) en las costas del Noroeste de
México. Tesis de Doctorado. Universidad
Nacional Autónoma de México. 362 p.
González, T, Henríquez, V & López, Z. 2013.
Variations in the fecundity and body size of
d i g e n e a n ( O p e c o e l i d a e ) s p e c i e s
parasitizing fishes from Northern Chile.
Revista de Biología Marina y Oceanografía,
vol. 48, pp. 421-429.
Heinz, M L & Dailey, M D . 1 9 7 4 . T h e
T r y p a n o r h y n c h a ( C e s t o d a ) o f
elasmobranch fishes from southern
C a l i f o r n i a a n d N o rt h er n M e x i c o .
Proceedings of the Helminthological
Society of Washington, vol. 41, pp. 161-
169.
Henríquez, V & González, MT. 2012. Patterns of
v a r i a t i o n i n p a r a s i t e c o m p o n e n t
communities and infracommunities of a
littoral fish species from the northern coast
of Chile. Journal of Helminthology, vol. 88,
pp.1-8.
Iannacone, J & Alvariño, L. 2009. Dinámica
poblacional de la diversidad parasitaria de
la Cabrilla Paralabrax humeralis
(Teleostei: Serranidae) en Chorrillos, Lima,
Perú. Neotropical Helminthology, vol. 3,
pp. 73-88.
Iannacone, J & Alvariño, L. 2011. Aspectos
cuantitativos de los parásitos del pejesapo
Sicyases sanguineus (Müller & Troshel,
1843) (Perciformes: Gobiesocidae) de la
zona costera de Chorrillos, Lima, Perú.
Neotropical Helminthology, vol. 5, pp. 56-
72.
Iannacone, J, Cárdenas-Callirgos, J & Alvariño, L.
2010. Ecología comunitaria de los
parásitos de la chilindrina Stromateus
stellatus (Cuvier, 1829) (Perciformes:
Stromateidae) de la zona costera de
Chorrillos, Lima, Perú. Neotropical
Helminthology, vol. 4, pp.159 -167.
Iannacone, J, Cerapio, JP, Cárdenas-Callirgos, J,
Sánchez, K, Briceño, F & Dueñas, A. 2011.
Comunidades de parásitos en el trambollo
Labrisomus philippii (Steindachner, 1866)
(Perciformes: Labrisomidae) de la zona
coster a de Chorr illos Lima, Perú.
Neotropical Helminthology, vol. 5, pp. 73-
84.
IUCN. 2015a. The IUCN Red List of Threatened
Neotropical Helminthology, 2017, 11(1), jan-jun
183
Biodiversity parasitic of two species of Paralabrax
change on the parasites and infectious
diseases of aquatic animals. Revue
Scientifique et technique (International
Office of Epizootics), vol. 27, pp. 467-584.
Martínez-Brown, JM, Medel-Narváez, JD,
Hernández-Ibarra, NK & Ortíz-Galindo,
JL. 2012. Evidencia de la estabilidad
cariotípica durante la divergencia evolutiva
entre Paralabrax maculatofasciatus y P.
nebulifer (Perciformes: Serranidae).
CICIMAR Oceánides, 27: 25-34.
Merlo-Serna, AI & Gara-Prieto, L. 2016. A
ch eckl ist o f he lmin th pa rasi tes o f
Elasmobranchii in Mexico. ZooKeys, vol.
563, pp. 73-128.
Miller, DJ & Lea, RN. 1972. Guide to the coastal
marine fishes of California. The California
Department of Fish and Game´s Fish
Bulletin, vol. 157, pp. 1-249.
M o r a v e c, F. 2 0 0 6 . D r a c u nc u l o i d a nd
Anguillicoloid Nematodes Parasitic in
Vertebrates. Academia, Prague, 634 p.
Muñoz, G & Castro, R. 2012. Comunidades de
p a r á s i t o s e u m e t a z o o s d e p e c e s
labrisómidos de Chile Central. Revista de
Biología Marina y Oceanografía, vol. 47,
pp. 565-571.
Muñoz, G & Olmos, V. 2007. R e visi ó n
bibliográfica de especies ectoparásitas y
hospedadoras de sistemas acuáticos de
Chile. Revista de Biología Marina y
Oceanografía, vol. 42, pp. 89-148.
Muñoz, G & Olmos, V. 2008. R e visi ó n
bibliográfica de especies endoparásitas y
hospedadoras de sistemas acuáticos de
Chile. Revista de Biología Marina y
Oceanografía, vol. 43, pp. 173-245.
Nelson, JS. 2006. th
Fishes of the World. 4 Ed. John
Wiley & Sons. New York. 601 p.
Oliva, M & Muñoz, MA. 1985. Helicometra
fasciata (Rudolphi, 1819) y Helicometrina
nimi a L i n t o n , 1 9 1 0 ( Tre m a t o d a :
Opecoelidae) en peces marinos de la II
Región, Chile. Parasitología al Día, vol. 9,
pp. 107-111.
Oliva, ME, Bórquez, AS & Olivares, AN. 1992.
Sexual status of Paralabrax humeralis
(Serranidae) and infection by Philometra
sp. (Nematoda: Dracunculoidea). Journal
of Fish Biology, vol. 40, pp. 979-980.
Oliva, ME, Valdivia, IM, Chávez, RA, Molina, H &
Cárdenas, R. 2015. Molecular and
clathratus, and barred sand bass, P
nebulifer; from the southern California
Bight. Fishery Bulletin, vol. 94, pp. 472-
481.
Lowe, CG, Topping, DT, Cartamil, DP &
Papastamatiou, YP. 2003. Movement
patterns, home range, and habitat
utilization of adult kelp bass Paralabrax
clathratus in a temperate no-take marine
reserve. Marine Ecology Progress Series,
vol. 256, pp. 205-216.
Lozano-Cobo, H, Gómez-Gutiérrez, J, Franco-
Gordo, MC & Gómez del Prado-Rosas,
M C . 2 0 1 7 . T h e d i s c o v e r y o f
a c a n t h o c e p h a l a p a r a s i t i z i n g
Chaetognatha. Acta Parasitologica, vol. 62,
pp. 401-411.
Luque, JL & Bruno, M. 1990. Two new species of
Acantholochus Cressey, 1984 (Copepoda:
Bomolochidae) parasitic on Peruvian
marine fishes. Journal of Natural History,
vol. 24, pp. 241-249.
Luque, JL & Oliva, ME. 1999. Metazoan parasite
Inf r a c o mmun i t i e s o f Menticirrhus
(Teleostei: Sciaenidae): An amphi-oceanic
A p p r o x i m a t i o n . T h e J o u r n a l o f
Parasitology, vol. 85, pp. 379-381.
Luque, JL & Tavares, LER. 2007. Checklist of
Copepoda associated with fishes from
Brazil. Zootaxa, vol. 1579, pp. 1-39.
Luque, JL, Iannacone, J & Farfán, C. 1991.
Parásitos de peces óseos marinos en el
Perú: Lista de especies conocidas. Boletín
de Lima (Perú), vol. 13, pp. 17-24.
Luque, JL, Cruces, C, Chero, J, Paschoal, F, Alves,
PV, Da Silva, AC, Sanchez, L & Iannacone,
J. 2016. Checklist of metazoan parasites of
f i s h e s f r o m P e r u . N e o t r o p i c a l
Helminthology, vol. 10, pp. 301-375.
Manter, HW. 1940. Digenetic trematodes of fishes
from the Galapagos Islands and the
neighboring Pacific. Allan Hancock Pacific
Expeditions, vol. 2, pp. 325-497.
Manter, HW. 1967. Some aspects of the
geographical distribution of parasites.
Journal of Parasitology, vol. 53, pp. 1-9.
Manter, HW & Van Cleave, HJ. 1951. Some
digenetic trematodes, including eight new
species, from marine fishes of La Jolla,
Calif. Proceedings of the United States
National Museum, vol. 101, pp. 315-340.
Marcogliese, DJ. 2008. The impact of climate
Neotropical Helminthology, 2017, 11(1), jan-jun
184
Gómez del Prado-Rosas et al.
Ramos-Ascherl, Z, Williams Jr., EH, Bunkley-
Williams, L, Tuttle, LJ, Sikkel, PC & Hixon,
MA. 2015. Parasitism in Pterois volitans
(Scorpaenidae) from coastal waters of
Puerto Rico, the Cayman Islands, and the
Bahamas. Journal of Parasitology, vol. 101,
pp. 50-56.
Roberts, DA, De Martini, EE & Plummer, KM.
1984. The feeding habits of juvenile-small
adult barred sand bass (Paralabrax
nebulifer) in nearshore waters off northern
San Diego County. California cooperative
oceanic fisheries investigations, Report,
vol. 25, pp. 105-111.
Rosim, DF, Mesquita, RLB & Luque, JL. 2010.
Occurrence of Gamispatulus schizodontis
Thatcher & Boeger, 1984 (Cyclopoida,
Ergasilidae) in the nasal cavities of
Erythrinidae fishes from Brazil. Pan-
American Journal of Aquatic Sciences, vol.
5, pp.153-156.
Roumbedakis, K, Marchiori, NC, Garcia, P, Pereira
Jr, J, Castro, LAS & Martins, ML. 2014.
Helicometrina nimia Li nto n, 19 10
(Digenea: Opecoelidae) in dusky grouper
Epinephelus marginatus (Lowe, 1834)
(Teleostei: Serranidae) from southeastern
Brazil. Brazilian Journal of Biology, vol. 74,
pp. 472-479.
Ruggiero, MA, Gordon, DP, Orrell, TM, Bailly, N,
Bourgoin, T, Brusca, RC, Cavalier-Smith,
T, Guiry, MD & Kirk, PM. 2015. A higher
level classification of all living Organisms.
vol. 10, e0119248.
Sadovy, Y & Domeier, ML. 2005. Perplexing
problems of sexual patterns in the fish genus
Paralabrax (Serranidae, Serraninae).
Journal of Zoology, vol. 267, pp. 121-133.
Sarmiento, L, Tantaleán, M & Huiza, A. 1999.
Nematodos parásitos del hombre y de los
animales en el Perú. Revista Peruana de
Parasitología, vol. 14, pp. 9-65.
Schmidt, GD. 1986. Handbook of tapeworm
identification. CRC Press, Inc., Boca Raton,
Florida. 675 p.
Sowjanya, P, Ratnakala, M & Sreeramulu, K. 2015.
Digenic Trematodes of Lutjanus Species
from Visakhapatnam coast, Andhra
Pradesh. International Journal of Scientific
Research, vol. 4, pp. 536-539.
Stephens, JS, Jr., Morris, PA, Zebra, K & Love, M.
1984. Factors affecting fish diversity on a
morphological evidence demonstrating two
species of Helicometrina Linton 1910
(Digenea: Opecoelidae) in northern Chile.
Journal of Parasitology, vol. 101, pp. 694-
700.
Ortiz, M. 2010. Dynamical and spatial models of
Kelp forest of Macrocystis integrifolia and
Lessonia trabeculata (SE Pacific) for
assessment harvest scenarios: short-term
responses. Aquatic Conservation: Marine
and Freshwater Ecosystems, vol. 20, pp.
494-506.
Pérez-Matus, A, Pledger, S, Díaz, FJ, Ferry, LA &
Vásquez, JA. 2012. Plasticity in feeding
selectivity and trophic structure of kelp
forest associated fishes from northern
Chile. Revista Chilena de Historia Natural,
vol. 85, pp. 29-48.
rez-Ponce de León, G, Gara-Prieto, L &
Mendoza-Garfias, B. 2007. Trematode
parasites (Platyhelminthes) of wildlife
vertebrates in Mexico. Zootaxa, vol. 1534,
pp. 1-247.
Petrochenko, VI. 1971. Acanthocephala of
domestic and wild animals. Vol. II.
Jerusalem: Israel Program for Scientific
Translations. 478 p.
Pondella, DJ, Craig, MT & Franck, JPC. 2003. The
phylogeny of Paralabrax (Perciformes:
Serranidae) and allied taxa inferred from
partial 16S and 12S mitochondrial
ribosomal DNA sequences. Molecular
Phylogenetics and Evolution, vol. 29, pp.
176-184.
Preacher, KJ. 2001. Calculation for the chi-square
test: An interactive calculation tool for chi-
square tests of goodness of fit and
independence [Computer software].
Available from http://quantpsy.org.
Quast, JC. 1968. Observations on the food and
biology of the kelp bass (Paralabrax
clathratus), with notes on its sportfishery at
San Diego, California. Pp. 81-105 In
Utilization of kelp-bedd resources in
southern California. (WJ North and CL
Hubbs, eds.). The California Department of
Fish and Game´s Fish Bulletin, vol. 139.
h t t p : / / c o n t e n t . c d l i b . o r g / v i e w ?
docId=kt2489n586;NAAN=13030&doc.vi
ew=frames&chunk.id=d0e1666&toc.id=0
&brand=calisphere Consult Date: October
th
10 2016
Neotropical Helminthology, 2017, 11(1), jan-jun
185
Biodiversity parasitic of two species of Paralabrax
parasitic copepods. Proceedings of the
United States National Museum, vol. 59,
pp.1-17.
Wilson, ChB. 1937. Parasitic copepods taken
during the third Hancock expedition to the
Galapagos Islands. Allan Hancock Found.
Pacific Expeditions, vol. 2, pp. 23-30.
Yamaguti, S. 1961. Systema helminthum. Vol. III.
The nematodes of vertebrates. Part 1
Interscience Publishers, Inc. New York.
1261 p.
Yamaguti, S. 1963a. Systema helminthum. Vol. V.
Acanthocephala. Interscience Publishers,
Inc. New York. 423 p.
Yamaguti, S. 1963b. Parasitic copepoda and
br anch iura of fi shes . Interscience
Publishers, Inc. New York. 1103 p.
Yamaguti, S. 1971. Synopsis of digenetic
trematodes of vertebrates. Vol. I. Keigaku
Publishing Co. Tokyo. 1074 p.
temperate reef: the fish assemblage of Palos
Verdes Point, 1974-1981. Environmental
Biology of Fishes, vol. 2, pp. 259-275.
Stuardo, J & Fagetti, E. 1961. Copépodos
Parásitos Chilenos. I. Una lista de las
especies conocidas y descripción de tres
especies nuevas. Revista Chilena de
Historia Natural, vol. 55, pp. 55-82.
Tantaleán, M & Huiza, A. 1994. Sinopsis de los
parásitos de peces marinos de la costa
peruana. Biotempo, vol. 1, pp. 53-101.
Tantaleán, M, Martínez, R & Juárez, D. 1975.
Estudio de algunos tremátodos del Perú.
Revista Peruana de Medicina Tropical.
Nacional Mayor San Marcos, vol. 2-4, pp.
46-56.
Tantaleán, M, Sánchez, L, Gómez, L & Huiza, A.
2005. Acantocéfalos del Perú. Revista
Peruana de Biología, vol. 12, pp. 83-92.
Vélez, EI. 1987. Sobre la fauna de Trematodos en
peces marinos de la familia Lutjanidae en el
mar Caribe. Actualidades Biológicas, vol.
16, pp. 70-84.
Wilson, ChB. 1921. New species and new genus of
Neotropical Helminthology, 2017, 11(1), jan-jun
186
Gómez del Prado-Rosas et al.
Received October 30, 2016.
Accepted March 1, 2017.