Volume11,Number1(ene-jun2017)
ÓrganooficialdelaAsociaciónPeruanadeHelmintologíaeInvertebradosAfines(APHIA)
Lima-Perú
VersiónImpresa:ISSN2218-6425VersiónElectrónica:ISSN1995-1043
Auspiciado por:
ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
Neotropical Helminthology, 2017, 11(1), jan-jun: 85-94.
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
MONOGENEAN PARASITES SPECIES IN SERRASALMUS ALTISPINIS MERCKX, JÉGU &
SANTOS (CHARACIFORMES: SERRASALMIDAE) FROM BRAZILIAN AMAZON
FLOODPLAINS LAKES
ESPECIES DE MONOGENEOS PARÁSITOS EN SERRASALMUS ALTISPINIS MERCKX,
JÉGU & SANTOS, 2000 (CHARACIFORMES: SERRASALMIDAE) DE LAGOS
INUNDABLES DE LA AMAZONÍA BRASILEÑA
1 Instituto Nacional de Pesquisas da Amazônia, Laboratório de Parasitologia de Peixes Av. André Araújo 2936,
Petrópolis, CEP-69.067-375, Manaus, Amazonas, Brasil. germantiss1106@gmail.com
1 1
Germán Augusto Murrieta Morey ; Thiago Serrão Pinto ;
1 1
Aprigio Mota Morais & José Celso De Oliveira Malta
ABSTRACT
Serrasalmus altispinis Merckx, Jégu & Santos, 2000 is an abundant fish species from floodplain lakes in
the Brazilian Amazon. Information concerning to its parasitic fauna is lacking. The present study aimed to
identify the Monogenean species that parasitize their gills. Fifty-nine specimens of S. altispinis were
caught in six floodplain lakes in the Brazilian Amazon, between March and December 2013. Seven-
hundred-thirty-nine (739) Monogenean specimens belonging to seven genera and 22 species were
collected. All parasites species are recorded for the first time in S. altispinis. Within the Monogenean
species, Anacanthorus jegui Van Every & Kritsky, 1992 showed to be the most prevalent species
(50.85%) and Notozothecium deleastoideum Kritsky, Boeger & Jegú, 1998 the dominant one (20.08%)
showing the greatest intensity of infection (149) and mean abundance (2.51), respectively. The large
number of Monogenean species registered in S. altispinis, points out to the importance of this fish species
in maintaining the diversity in Brazilian Amazon floodplain lakes.
Neotropical Helminthology
85
Key words: Dactylogyridae – ectoparasites – sh – gills – piranha
86
Neotropical Helminthology, 2017, 11(1), jan-jun
RESUMEN
Palavras clave: Branquias – Dactylogyridae – ecotoparásitos – peces – piraña
Serrasalmus altispinis Merckx, Jégu & Santos, 2000 es una especie de pez abundante en lagos inundables
de la Amazonía brasileña y debido a su reciente descripción, carece de información acerca de su fauna
parasitaria; así, el presente estudio tuvo como objetivo identificar las especies de Monogenea que
parasitan sus branquias. Cincuenta y nueve especímenes de S. altispinis fueron capturadas en seis lagos
inundables de la Amazonía brasileña entre marzo y diciembre del 2013. Fueron colectados setecientos
treinta y nueve (739) especímenes de Monogenea, perteneciendo a siete géneros y 22 especies. Todas las
especies fueron registradas por primera vez en S. altispinis. Dentro de las especies de Monogenea,
Anacanthorus jegui Van Every & Kritsky, 1992 fue la especie con mayor prevalencia parasitaria (50,85%)
y Notozothecium deleastoidem Kritsky, Boeger & Jegú, 1998 la especie dominante (20,08%), registrando
también la mayor intensidad de infección (149) y abundancia media (2,51). El alto número de especies de
Monogenea registradas en S. altispinis, resalta la importancia de esta especie de mantener la diversidad en
lagos inundables de la Amazonía brasileña.
INTRODUCTION Within Serralsamidae, Serrasalmus altispinis
Merckx, Jégu & Santos, 2000, commonly known
as “piranha seca” inhabits lakes of white water
Rivers, usually being capture together with S.
rhombeus close to the aquatic vegetation and in the
flooded forest (Claro-Jr., 2003). As S. altispinis is a
recently described species (Merckx et al., 2000).
There is still scarce information about their
parasitic fauna, thus, the present study aimed to
identify the species of Monogenea that parasitize
their gills in different Brazilian Amazon floodplain
lakes.
Between March and December 2013, 59 S.
altispinis were captured in five floodplain lakes of
the Solimões River: Lake Baixio (03°17'27, 2''S/
60°04'29,6''W) in the township of Iranduba, Lake
Preto (03°21'17, 1''S/ 60°37'28,6''W) in
Manacapurú; Lake Ananá (03°53'54,8''S/
61°40'18,4''W) in Anori; Lake Araçá (S03°45'
04,3" S/ 62°21' 25,9" W) in Codajás and Lake
Maracá (03°50'32,8''S/ 62°34'32,4''W) in Coari
and one lake in the Purus River: São Tomé (03°49'
39,0"S/ 61°25' 24,6" W).
Fish were caught using 100 mm between adjacent
nodes-meshed, 20 m long x 2 m high gillnets.
Posteriorly the fishes were quickly immersed in 75
The class Monogenea is very diverse in number of
species, morphology and ecology (Poulin, 2002).
Monogenean species parasitize the, skin, outer and
inner organs of several aquatic vertebrates, and
they are well known by their high host and
infestation site's specificity (Poulin, 1992).
In the Neotropical region there exist around 300
Monogenean species and Brazil has the largest
number of parasites recorded in Serrasalmidae fish
species (Cohen et al., 2013). Dactylogyridae is the
most diverse taxon on these hosts (Boeger et al.,
2006).
Hosts, defined as home, mating point and resource
for parasites, consist of replicated habitats in time
and space. Host-parasite systems are undoubtedly
interesting models for understanding patterns and
processes in community ecology (Price, 1990).
Taxonomical studies contribute to the knowledge
of the diversity, not only with the discovery of new
species, but also by registering new occurrences in
new hosts and in new geographical areas (Luque &
Poulin, 2007). Studies in Serrasalmidae species
have showed the major role of this fish species as
hosts of many Monogenean parasites, thus,
contributing directly with the local biodiversity
(Boeger & Kritsky, 1988; Kritsky et al. 1988;
Boeger & Thatcher, 1988; Kritsky et al., 1997).
MATERIAL AND METHODS
Murrieta Morey et al.
87
total number of individuals of species A, B, C …N.
The constancy of occurrence method (Dajoz, 1973)
aided to identify the resident species, by the
followed expression: c = [(p / P) x 100], where p is
the number of collections containing the species in
interest and P is the total number of collections
performed. The species with c 50 were
considered constant, with 25 c < 50, accessory
and with c < 25, accidental.
The variance-to-mean-ratio (VMR) and the Green
index (GI) were used to examine dispersion
patterns of Monogenean species (Ludwig &
Reynolds, 1988). Green's index was used to
compare samples that vary in the total number of
individuals, their sample means and the number of
sample units in the sample. GI varies between 0 (for
random) and 1 (for maximum clumping) (Ludwig
& Reynolds, 1988). Statistical significance was set
at p < 0.05. Data were analyzed using the software
BioEstat 5.0.
Fifty-nine gills of S. altispinis with 11.89 cm ± 2.40
standard lengths were analyzed. Fifty-three fish
(90%) were parasitized by at least one
Monogenean species. Seven hundred and thirty
nine (739) specimens of the class Monogenea,
belonging to seven genera and 22 species were
collected: Amphithecium diclonophallum Kritsky,
Boeger & Jégu, 1997 (INPA 620); A. falcatum
Boeger & Kritsky, 1988 (INPA 621);
Anacanthorus amazonicus Kritsky & Boeger,
1995 (INPA 622); A. cintus Van Every & Kritsky,
1992 (INPA 623), A. cladophallus Van Every &
Kritsky, 1992 (INPA 624); A. crytocaulus Van
Every & Kritsky, 1992 (INPA 625); A.
gravihamulatus Van Every & Kritsky, 1992 (INPA
626); A. jegui Van Every & Kritsky, 1992 (INPA
627); A. lepyrophallus Kritsky, Boeger & Van
Every 1992 (INPA 628); A. mesocondylus Van
Every & Kritsky, 1992 (INPA 629); A. peryphallus
Kritsky, Boeger & Van Every 1992 (INPA 630); A.
prodigiosus Van Every & Kritsky, 1992 (INPA
631); A. sciponophallus Van Every & Kritsky,
1992 (INPA 632); A. serrasalmi Van Every &
Kritsky, 1992 (INPA 633), Anacanthorus sp. (INPA
Neotropical Helminthology, 2017, 11(1), jan-jun
. -1
mg clove oil L solution and euthanized
(CONCEA, 2013). In the field, fishes were
measured and weighed and posteriorly gills were
removed and preserved in formalin 5% for
posterior analyses at the laboratory of Fish
Parasitology (LPP) in the National Institute of
Amazonian Research (INPA).
At the laboratory, the Monogenean species found
were preserved in formalin 5% (Amato et al.,
1991). For morphological studies, the parasites
were mounted in Grey and Wess medium (Amato et
al., 1991).
Taxonomical identification was according to
Boeger & Kritsky (1988); Kritsky et al. (1988);
Boeger & Thatcher (1988); Kritsky et al. (1997).
Morphometric analyses were performed using a
computerized system for analysis of images QWin
Lite 2.5 (Leica). Voucher specimens were
deposited in the zoological collection of the
National Institute of Amazonian Research (INPA).
Vocher numbers are showed in the results
following the species name between brackets.
The ecological terms in parasitology follow Bush
et al. (1997): prevalence (P) is the number of
infected fish with one or more individuals of a
particular parasite species (or taxonomic group)
divided by the number of hosts examined
(expressed as a percentage). Intensity (of infection,
I) is the number of individuals of a particular
parasite species in a single infected host (expressed
as a numerical range); mean intensity (of infection,
mI) is the average intensity, or the total number of
parasites of a particular species found in a sample
divided by the number of infected hosts; and mean
abundance (of infection, mA) is the average
abundance, or the total number of parasites of a
particular species found in a sample divided by the
number of total hosts.
On the prevalence basis and according to Bush &
Holmes (1986), the parasite species were termed:
Core (prevalence > 66%), secondary (prevalence
between 33 and 66%) and satellite (prevalence <
33%).
The dominance index of each parasite species was
calculated according to Rohde et al. (1995): D =
A
[(N / N + N + N + …N ) x 100]; where N is the
A A B C N A
dominance of species A; N + N + N + …N is the
A B C N
RESULTS
monogenean in Serrasalmus altispinis
Monogenean species N Ni P(%) I Rx mI ± smA DI CM C% C
Amphithecium diclonophallum
59
7
11.86
12
(1 -
5)
1.71 ± 1.49
0.2
1.63
Satellite
17 Accidental
Amphithecium facatum
59
22
37.29
71
(1 -
14)
3.22 ± 3
1.2
9.63
Secondary
42
Accesory
Anacanthorus amazonicus
59
8
13.56
21
(1 -
13)
2.62 ± 4.20
0.36
2.85
Satellite
25
Accesory
Anacanthorus cintus
59
2
3.39
4
(1 -
3)
2 ± 1.41
0.07
0.54
Satellite
4
Accidental
Anacanthorus cladophallus
59
1
1.69
1
1
1
0.02
0.14
Satellite
4
Accidental
Anacanthorus crytocalus
59
2
3.39
2
2
1
0.03
0.27
Satellite
8
Accidental
Anacanthorus gravihamulatus
59
2
3.39
2
2
1
0.03
0.27
Satellite
8
Accidental
Anacanthorus jegui
59
30
50.85
104
(1 -
13)
3.46 ± 2.99
1.76
14.11
Secondary
46
Accesory
Anacanthorus lepyrophallus
59
13
22.03
45
(1 -
16)
3.46 ± 4.99
0.76
6.11
Satellite
38
Accesory
Anacanthorus mesocondylus
59
18
30.51
34
(1 -
13)
1.88 ± 2.80
0.58
4.61
Satellite
33
Accesory
Anacanthorus peryphallus
59
13
22.03
21
(1 -
3)
1.61 ± 0.76
0.36
2.85
Satellite
33
Accesory
Anacanthorus prodigiosus
59
9
15.25
12
( 1 -
3)
1.33 ± 0.70
0.2
1.63
Satellite
13
Accidental
Anacanthorus sciponophalus
59
20
33.9
44
(1 -
7)
2.2 ± 1.63
0.75
5.97
Secondary
46
Accesory
Anacanthorus serrasalmi
59
3
5.08
4
(1 -
2)
1.33 ± 0.57
0.07
0.54
Satellite
8
Accidental
Anacanthorus sp.
59
22
37.29
68
(1 -
5)
3.04 ± 1.60
1.14
9.09
Secondary
33
Accesory
Calpidothecium crescentis
59
1
1.69
1
1
1
0.02
0.14
Satellite
4
Accidental
Enallothecium aegidatum
59
16
27.12
54
( 1 -
7)
3.31 ± 1.92
0.9
7.19
Satellite
38
Accesory
Myramothecium whittingtoni
59
2
3.39
2
2
1
0.03
0.27
Satellite
8
Accidental
Notothecium cyphophallum
59
17
28.81
71
(1 -
21)
4.17 ± 5.99
1.2
9.63
Satellite
33
Accesory
Notothecium deleastoideum
59
23
38.98
149
(1 -
25)
6.43 ± 6.05
2.51
20.08
Secondary
42
Accesory
Notozothecium euzeti
59
1
1.69
1
1
1
0.02
0.14
Satellite
4
Accidental
Notozothecium minor 59 12 20.34 16 (1 - 3) 1.33 ± 0.77 0.27 2.17 Satellite 29 Accesory
Table 1. Parasitic indexes, dominance index (DI), community status (CM) and constancy of occurrence method (C%) of the Monogenean parasites species in
Serrasalmus altispinis collected in Brazilian Amazon oodplain lakes.
N P = Number of examined sh; Ni = number of infected sh; % = prevalence; I = intensity of infection; Rx = intensity of infection range variation; mI = mean intensity of infection; mA = mean
abundance; ± = shunting line standard.s
Neotropical Helminthology, 2017, 11(1), jan-jun Murrieta Morey et al.
88
Table 2. Morphometric characters measuring matrix of Monogenean species parasitizing Serrasalmus altispinis (measures in µm).
Monogenean
Species
Body lenght Body wider
width
Haptorial
lenght
Haptorial
width
Ventral anchor
lenght
Dorsal anchor
lenght
Ventral bar Dorsal
bar
Cirrus lenght Accesory
piece
Amphithecium
diclonophallum
230 (222-237) 100 (94-106) 51 (49-62) 75 (69-80) 30 (31-34) 33 (32-36) 31 (30-33) 28 (27-30) 30 (26-33) 18 (16-20)
Amphithecium
facatum
250 (218-290) 80 (65-86) 54 (50-60) 76 (70-80) 27 (24-29) 31 (29-36) 28 (26-33) 26 (24-27) 40 (37-42) 33 (31-36)
Anacanthorus
amazonicus
365 (300 – 403) 90 (80-99) 40 (36-42) 75 (70-79) - - - - 62 (59-73) 50 (47-55)
Anacanthorus
cintus
460 (312-583) 85 (76-91) 30 (28-38) 73 (65-88) - - - - 52 (46-54) 50 (39-53)
Anacanthorus
cladophallus
360 80 40 65 - - - - 54 50
Anacanthorus
crytocalus
400 68 40 81 - - - - 43 45
Anacanthorus
gravihamulatus
538 110 88 73 - - - - 60 58
Anacanthorus
jegui
483 (463-506) 80 (73-94) 34 (33-38) 73 (54-88) - - - - 48 (44-54) 39 (34-40)
Anacanthorus
lepyrophallus
410 (280-529) 88 (72-100) 43 (34-49) 74 (61-79) - - - - 58 (50-66) 48 (43-55)
Anacanthorus
mesocondylus
418 (362-490) 99 (96-110) 42 (38-44) 79 (70-89) - - -- - 76 (69-83) 78 (70-79)
Neotropical Helminthology, 2017, 11(1), jan-jun monogenean in Serrasalmus altispinis
89
Anacanthorus
periphallus
320 (240-379) 109 (88-139) 47 (40-58) 90 (67-102) - - - - 53 (49-59) 50 (44-53)
Anacanthorus
prodigiosus
470 (440-530) 106 (89-128) 48 (44-53) 88 (82-93) - - - - 68 (67-71) 55 (52-60)
Anacanthorus
sciponophallus
384 (332-487) 83 (60-95) 34 (30-43) 72 (66-80) - - - - 80 (73-88) 75 (68-83)
Anacanthorus
serrasalmi
530 (528-532) 102 (98-105) 46 (40-48) 78 (72-80) - - - - 62 (59-65) 59 (55-59)
Anacanthorus sp.
532 (433-597) 129 (109-162) 59 (41-62) 122 (84-148) - - - - 89 (79-100) 61 (47-69)
Calpidothecium
crescentis
280 75 78 88 47 39 40 33 30 36
Enallothecium
aegidatum
218 (180-238) 89 (86-97) 60 (55-66) 94 (88-97) 40 (38-43) 34 (29-34) 35 (33-41)
31 (33-37)
25 (22-27)
20 (18-25)
Myramothecium
whittingtoni
358 99 75 76 33 30 40 30 47 17
Notothecium
cyphophallum
230 (225-232) 110 (98-114) 69 (55-70) 104 (98-109)
51 (47-53) 44 (43-48) 40 (38-41)
36 (29-37)
44 (39-48)
30 (26-31)
Notothecium
deleastoideum
262 (225-300) 99 (89-104) 56 (53-60) 99 (74-111) 45 (43-48) 44 (41-46) 33 (32-37)
46 (41-46)
37 (33-40)
31 (29-34)
Notozothecium euzeti
274 80 62 76 36 30 32 29 70 65
Notozothecium minor
249 (239-250)
88 (84-90)
76 (68-76)
81 (76-83)
44 (40-46)
33 (29-34)
43 (40-44)
28 (28-32)
55 (52-59)
30 (29-34)
Monogenean
Species
Body lenght Body wider
width
Haptorial
lenght
Haptorial
width
Ventral anchor
lenght
Dorsal anchor
lenght
Ventral bar Dorsal
bar
Cirrus lenght Accesory
piece
Neotropical Helminthology, 2017, 11(1), jan-jun Murrieta Morey et al.
90
Serrasalmus spp.: A. cintus, A. cladophallus, A.
crytocalus, C. crescentis and N. euzeti.
Of the parasite species that occur on hosts of the
Family Serrasalmidae, 35 species of eight genera
interact with more than one host species. Their
majority is restricted to species of Serrasalmus
(Braga et al., 2014). The ability of using a lot of
hosts may be related to the biological and
ecological characteristics of both linage of hosts
and species of parasites (Agosta et al., 2010).
In this study S. altispinis was parasitized by 22
Monogenean species of seven genera. Species of
five of these genera are specific of Serrasalmidae
species: Amphithecium; Calpidothecium;
Enallothecium; Myramothecium and Notothecium.
Only two genera showed not to be specific to
Serrasalmidae: Anacanthorus, which also
parasitizes fish species of Characidae and
Curimatidae, and Notozothecium that is also found
in Cynodontidae (Braga et al., 2014).
In this study, the thirteen species of the genus
Anacanthorus: A. amazonicus; A. cintus; A.
cladophallus; A. crytocaulus; A. gravihamulatus;
A. jegu; A. lepyrophallus; A. mesocondylus; A.
peryphallus; A. prodigiosus; A. sciponophalus; A.
serrasalmi; Ancanthorus sp. and the two of
Notozothecium: N. euzeti and N. minor S. altispinis
are specific of Serrasalmidae, supporting Braga et
al. (2014).
The opportunity to colonize new host species is
related to the availability of suitable hosts for a
s u c c e s s f u l c o l o n i z a t i o n . O n l y h o s t s
phylogenetically or ecologically related to their
parasites will provide them with the necessary
conditions for their survival and transmission
(Noble & Noble, 1961).
Serrasalmidae species bear high parasite richness
per host. They have shown to be parasitized by
many species of many genera and also tend to share
their parasites with closely related species. Thus,
Serrasalmidae is considered the family with the
largest number of hosts and Monogenean species
within neotropical fishes (Braga et al., 2014). The
number of species found in this study is a clear
example of how Serrasalmidae species can be
parasitized by large number of Monogenean
species.
634), Calpidothecium crescentis (Mizelle & Price,
1965)(INPA 635); Enallothecium aegidatum
(Boeger & Kritsky, 1988) (INPA 636),
Mymarothecium whittingtoni Kritsky, Boeger &
Jegú, 1996 (INPA 637); Not o the c iu m
cyphophallum Kritsky, Boeger & Jegú, 1998
(INPA 638); N. deleastoideum Kritsky, Boeger &
Jegú, 1998 (INPA 639); Notozothecium euzeti
Kritsky, Boeger & Jegú, 1996 (INPA 640); N.
minor Boeger & Kritsky, 1988 (INPA 641) (Table
1).
Amphitecium falcatum, Anacanthorus jegui, A.
sciponophalus, Ancanthorus sp. and Notothecium
deleastoideum, were considered secondary species
(prevalence between 33-66%), the other species
were considered satellite (prevalence < 33%).
Anacanthorus jegui presented the highest
prevalence (50.85%). Notothecium deleastoideum
presented the highest intensity of infection (149)
and was the dominant species (20.08%) (Table 1).
The constant fish species, according to the
occurrence constancy method, varied among
Monogenean species, being 55% of the species
were accessory and 45% accidental (Table 1).
Values of the variance-to-mean-ratio and Green's
index for each Monogenean species showed an
aggregate distribution of the parasites in the host
with a low degree of aggregation.
The Monogenean species morphometric measures
and morphological characters are presented in
table 2.
Twenty-five (25) Monogenean species (Cohen et
al., 2013) are named for Serrasalmus spp. Out of
the 25 species mentioned for Serrasalmus spp. 16
of them were found on S. altispinis: A.
diclonophallum, A. falcatum, A. amazonicus, A.
gravihamulatus, A. jegui, A. lepyrophallus, A.
mesocondylus, A. periphallus, A. prodigiosus, A.
sciponophallus, A. serrasalmi, E. aegidatum, M.
whittingtoni, N. cyphophallum, N. deleastoideum
and Notozothecium minor. Five species found in S.
altispinis are registered for the first time in
Neotropical Helminthology, 2017, 11(1), jan-jun monogenean in Serrasalmus altispinis
DISCUSSION
91
Neotropical Helminthology, 2017, 11(1), jan-jun Murrieta Morey et al.
The co-existence of species can be favored by
reducing the overall intensity of competition via
aggregated utilization of hosts (Jaenike & James,
1991). The co-existence of species is facilitated if
species are distributed in a way that interspecific
aggregation is reduced relative to intraspecific
aggregation (Jaenike & James, 1991). In this study,
22 Monogenean species co-exist in the gills of S.
altispinis. The success of this co-existence could be
explained by the low degree of aggregation of all
species that allow small groups to settle in the same
habitat.
Serrasalmus altispinis is a host of 22 Monogenean
gill parasite species. All these species are recorded
for the first time in this fish. The high species
richness found in S. altispinis increases the
knowledge of the distribution of Monogenean
parasites in a new host species. This fact reveals the
determining role of this fish species in contributing
to increase and maintain the biodiversity in
Brazilian Amazonian floodplain lakes.
We are indebted to the PIATAM Project and the
National Research Institute of Amazonia (INPA)
for their logistical support, as well as to the whole
Fish Parasitology Laboratory staff team for the
technical assistance they provided us with
throughout this study.
The presence of core species indicates the
existence of stable and balanced populations,
indicating higher colonization and growth rates
(Bush & Holmes, 1986). The presence of
secondary species suggests moderate colonization
rates and the establishment of their populations in
unsaturated sites by the core species, interacting to
occupy the same habitat (Bush & Holmes, 1986).
Satellite species with a low rate of colonization
usually settle in an infracommunity with a basic
structure already determined by core and
secondary species, being able to establish
themselves only in small numbers or in existing
random gaps (Bush & Holmes, 1986).
In this study, the absence of core species and the
presence of several secondary and satellite species
in the gills of S. altispinis can be explained with the
high number of species registered for this host. The
absence of core species increases the availability of
the colonization area, where small groups of
secondary and satellite species can be established.
Possibly this is a strategy used by these parasite
species to cohabit in the gills of S. altispinis. In this
way the secondary species registered in this study,
are established first in the gills of S. altispinis and
later in unoccupied spaces, the satellite species are
established in smaller groups.
According to the occurrence constancy method
(Dajoz, 1973), the constant species are considered
resident of the parasite assemblages, while the
accessory and accidental species are considered
transient or immigrant species. In the present study,
there were registered only accessory and accidental
species. In this way, the Monogenean species of S.
altispinis can immigrate from host to host species,
due to the low specificity of these parasites, which
use more than one Serrasalmidae species as host.
The influence of a fish species' ability to form
schools on the degree of parasite aggregation is
presented as a determining factor in parasite
diversity (Morand et al., 2000). The formation of
schools might be expected to allow greater access
of parasitic groups to their hosts because schools
increase the size of the resource to be explored
from a macroecological perspective, and schooling
can influence the abundance of certain parasites,
susceptibility of hosts to infection and parasite
aggregation values, which was observed in the
present study for all Monogenean species.
ACKNOWLEDGEMENTS
Agosta, SJ, Janz, N & Brooks, DR. 2010. How
specialists can be generalists: resolving the
“parasite paradox” and implications for
emerging infectious disease. Zoologia, vol.
27, pp. 151–162.
Amato, JFR & Boeger, WA, Amato, SB. 1991.
Protocolos para laboratório-coleta e
processamento de parasitas do pescado.
Imprensa Universitária, Universidade
Federal do Rio de Janeiro. Rio de Janeiro,
Brasil. 81 pp.
BIBLIOGRAPHIC REFERENCES
92
Neotropical Helminthology, 2017, 11(1), jan-jun monogenean in Serrasalmus altispinis
Kritsky, DC, Boeger, WA & Jégu, M. 1997.
N e o t ro p i c a l M o n o g e n o i d e a . 3 0 .
Ancyrocephalinae (Dactylogyridae) of
Piranha and their relatives (Teleostei,
Serrasalmidae) from Brazil: Species of
Calpidothecium gen. n., Calpidothecioides
gen. n., Odothecium gen. n., and
Notothecioides gen. n. Journal of the
Helminthological Society Washington, vol.
64, pp. 208-218.
Kritsky, DC, Boeger, WA & Thatcher, VE. 1988.
Neotropical monogenea. II: Rhinoxenus,
n e w g e n u s ( D a c t y l o g y r i d a e :
Ancyrocephalinae) with descriptions of
three new species from the nasal cavities of
Amazonian Characoidea. Proceedings of
the Biological Society of Washington, vol.
101, pp. 87-94.
Ludwig, JA & Reynolds, JF. 1988. Statistical
ecology: a primer in methods and
computing. John Wiley & Sons, New York,
USA.
Luque, JL & Poulin, R. 2007. Metazoan parasite
species richness in Neotropical fishes:
hotspots and the geography of biodiversity.
Parasitology, vol. 134, pp. 865-878.
Merckx, A, Jégu, M & Santos, GM. 2000. Une
nouvelle espèce de Serrasalmus (Teleostei:
Characidae: Serrasalminae), S. altispinis
n. sp., décrite du Rio Uatumã (Amazonas,
B r é s i l ) a v e c u n e d e s c r i p t i o n
complémentaire de S. rhombeus (Linnaeus,
1766) du plateau guyanais. Cybium, vol.
24, pp. 181-201.
Morand, S & Harvey, PH. 2000. Mammalian
metabolism, longevity and parasite species
richness. Proceedings of the Royal Society
of London B: Biological Sciences, vol. 267,
pp. 1999-2003.
Noble, ER & Noble, GA. 1961. Parasitology. The
Biology of Animal Parasites. Lea & Febiger
US Ed. pp. 714.
Poulin, R. 1992. Determinants of host specificity in
parasites of freshwater fishes. International
Journal for Parasitology, vol. 22, pp. 753-
758.
Poulin, R. 2002. The evolution of monogenean
diversity. International journal for
parasitology, vol. 32, pp. 245-254.
Price, PW. 1990. Host populations as resources
defining parasite community organization.
In: Parasite communities: patterns and
Boeger WA & Kritsky, DC. 1988. Neotropical
Monogenea. 12. Dactylogyridae from
Serrasalmus nattereri (Cypriniformes,
Serrasalmidae) and aspects of their
morphologic variation and distribution in
the Brazilian Amazon. Journal of
Parasitolology, vol. 55, pp. 188-213.
Boeger, WA & Thatcher, VE. 1988. Rhinergasilus
piranhus gen. et sp. n. (Copepoda,
Poecilostomatoida, Ergasilidae) from the
Nasal Cavities of Piranha Caju,
Serrasalmus nattereri, in the Central
A m a z o n . P r o c e e d i n g s o f t h e
Helminthological Society of Washington,
vol. 55, pp. 87-90.
Boeger, WA, Vianna, RT & Thatcher, VE. 2006.
Monogenoidea. In: Amazon fish parasites.
Sofia: Pensoft Publishers, pp. 42-116.
Braga, MP, Araújo, SB & Boeger, WA. 2014.
Patterns of interaction between Neotropical
fre s hwa t er f ish e s a n d t h ei r gi l l
Mon o ge noid e a (P l a ty hel m i nthe s ).
Parasitology Research, vol. 113, pp. 481-
490.
Bush, AO & Holmes, JC, 1986. Intestinal helmints
of lesser scaup ducks: an interactive
community. Canadian Journal Zoology, vol.
64, pp. 142-152.
Bush, AO, Lafferty, KD, Lotz, JM & Shostak, AW.
1997. Parasitology meets ecology on its
own terms. Journal of Parasitology, vol. 83,
pp. 575-583.
Claro-Jr, LH. 2003. A influência da floresta
alagada n a estrutura t r ó f i ca de
comunidades de peixes em lagos de várzea
da Amazônia Central. Teses de Mestrado,
INPA-UFAM, Manaus, pp. 61.
Cohen, S, Justo, M & Kohn, A. 2013. South
American Monogenoidea parasites of
fishes, amphibians and reptiles. Oficina de
Livros, Rio de Janeiro, Brasil, pp. 663.
CONCEA, 2013. Diretrizes da Prática de
Eutanásia do Conselho Nacional de
Controle de Experimentação Animal -
CONCEA. Ministério da Ciência,
Tecnologia e Inovação, Brasília, DF. pp. 54.
Dajoz, R. 1973. Ecologia Geral. São Paulo. Vozes,
pp. 472.
Jaenike, J & James, AC. 1991. Aggregation and the
coexistence of mycophagous Drosophila.
The Journal of Animal Ecology, vol. 60, pp.
913-928.
93
Neotropical Helminthology, 2017, 11(1), jan-jun Murrieta Morey et al.
processes. Springer Netherlands, pp. 21-44.
Rohde, K, Hayward, C & Heap, M. 1995. Aspects
of the ecology of metazoan ectoparasites of
marine fishes. International Journal for
Parasitology, vol. 25, pp. 945-970.
Received January 13, 2017.
Accepted March 15, 2017.
94