ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
Neotropical Helminthology, 2018, 12(2), jul-dic:261-277.
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
IMPLICATIONS OF THE SANITARY QUALITY OF BEACHES IN THE PARASITIC ECOLOGY OF
EMERITA ANALOGA (STIMPSON, 1857) (DECAPODA: HIPPIDAE)
IMPLICANCIAS DE LA CALIDAD SANITARIA DE LAS PLAYAS EN LA ECOLOGÍA PARASITARIA
DE EMERITA ANALOGA (STIMPSON, 1857) (DECAPODA: HIPPIDAE)
1 1,2 2 2 2 3
Uriel Torres ; José Iannacone ; Seid Romero ; Angélica Guabloche ; Lorena Alvariño ; Jhon Chero ; Celso
3 3 2 4 5
Cruces ; Gloria Sáez ; David Minaya ; Jorge Manuel Cárdenas-Callirgos & Asucena Naupay
ABSTRACT
The power of contamination of domestic effluents lies in the amount of organic matter and
microorganisms they contain. The objective of the present study was to determine the implications of
effluent impact on the parasitic ecology of the mole sand crab in the central coast of Peru. Emerita analoga
A total of 5287 specimens of were collected from 13 beaches off Lima, Peru between July 2001 E. analoga
and June 2016. The influence of the sanitary quality established by the quantity of thermotolerant
coliforms in relation to parasitic indexes, the length of the cephalothorax and sex of
-1
(NMP·100mL ) E.
analoga, according to date and place of collection, and distance from the tide line. The parasites found
were: (Perry, 1942) Van Cleave, 1947 (Acanthocephala) and Profilicollis altmani Proleptus carvajali
(Fernandez & Villalba, 1985) (Nematoda). The prevalence of and was 57.8% and P. altmani P. carvajali
45.3%, reaching an average abundance of 4.27 and 1.10, respectively. The shortest length of the
cephalothorax of was found on the beach "Conchán" characterized as "Unhealthy", according E. analoga
to the level of thermotolerant coliforms, in September 2013. No differences were observed in the
prevalence (p = 0.72) and average abundance (p = 0.37) of with respect to sanitary quality. The P. altmani
prevalence (p = 0.02) and mean abundance (p = 0.03) of was significantly different in relation P. carvajali
to sanitary quality. The 9 collection dates showed uniformity in the prevalence and average abundance of
P. altmani P. carvajali (p = 0.11, p = 0.16) and (p = 0.59, p = 0.18). The 13 beaches showed a significant
discontinuity around the prevalence and average abundance of (p = 0.01, p = 0.05) and P. altmani P.
carvajali (p = 0.02, p = 0.01). "Pucusana", qualified as "Healthy", presented the highest prevalence and
average abundance of . "San Pedro" qualified as "Healthy" presented the highest prevalence and P. altmani
average abundance of . There is a relationship between the season of the year and the parasite P. carvajali
Neotropical Helminthology
261
Volume12,Number2(jul-dec2018)
ÓrganooficialdelaAsociaciónPeruanadeHelmintologíaeInvertebradosAfines(APHIA)
Lima-Perú
VersiónImpresa:ISSN2218-6425VersiónElectrónica:ISSN1995-1043
1Laboratorio de Parasitología. Facultad de Ciencias Biológicas (FCB). Universidad Ricardo Palma (URP). Lima, Perú.
2Laboratorio de Ecología y Biodiversidad Animal (LEBA). Facultad de Ciencias Naturales y Matemática (FCNNM).
Universidad Nacional Federico Villarreal (UNFV). Lima, Perú.
3 Laboratorio de Parasitología General y Especializada. Facultad de Ciencias Naturales y Matemática (FCNNM).
Universidad Nacional Federico Villarreal (UNFV). Lima, Perú.
4Global Health Initiative, Wabash College, USA.
5Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima, Perú.
Author for correspondence: E-mail: urieltorreszevallos@gmail.com / joseiannacone@gmail.com
mean abundance (p = 0.006), but not in relation to prevalence (p = 0.31). The degree of environmental
disturbance derived from the discharge of wastewater, urban and industrial, leads to the proposal of the use
of the helminths present in as indicators of sanitary quality.E. analoga
Keywords: sanitary quality – crustacean – Emerita analoga - helminth – parasite – Lima beaches
RESUMEN
El poderío de contaminación de los efluentes domésticos radica en la cantidad de materia orgánica y
microorganismos que contienen. El objetivo del presente estudio fue determinar las implicancias de la
calidad sanitaria de las playas en la ecología parasitaria del “Muy Muy” en la costa Emerita analoga
central del Perú. Se recolectaron 5287 especímenes de de 13 playas del departamento de Lima, E. analoga
Perú entre julio del 2001 a junio del 2016. Se analizó la influencia de la calidad sanitaria establecida por la
cantidad de coliformes termotolerantes en relación a los índices parasitarios, la longitud
-1
(NMP·100mL )
del cefalotórax y sexo de , según fecha y lugar de colecta, y distancia desde la línea de marea. E. analoga
Los parásitos encontrados fueron: (Perry, 1942) Van Cleave, 1947 (Acanthocephala) Profilicollis altmani
y (Fernandez & Villalba, 1985) (Nematoda). La prevalencia de y Proleptus carvajali P. altmani P.
carvajali fue de 57,8 % y 45,3 %, alcanzando una abundancia media de 4,27 y 1,10, respectivamente. La
menor longitud del cefalotórax de se encontró en la playa “Conchán” calificada como “No E. analoga
Saludable”, según el nivel de coliformes termotolerantes, en septiembre del 2013. No se observó
diferencias en la prevalencia (p=0,72) y abundancia media (p=0,37) de P. altmani con respecto a la
calidad sanitaria. La prevalencia (p=0,02) y abundancia media (p=0,03) de P. carvajali fue
significativamente distinta en relación a la calidad sanitaria. Las 9 fechas de colecta exhibieron
uniformidad en la prevalencia y abundancia media de P. altmani (p=0,11; p=0,16) y P. carvajali (p=0,58;
p=0,18). Las 13 playas demostraron una discontinuidad significativa en torno a la prevalencia y
abundancia media de P. altmani (p=0,01; p=0,05) y P. carvajali (p=0,02; p=0,01). “Pucusana”, calificada
como “Saludable”, presentó la mayor prevalencia y abundancia media de P. altmani. “San Pedro”
calificado como “Saludable” presentó la mayor prevalencia y abundancia media de P. carvajali. Existe
una dependencia entre la estación del año y el parásito, expresada en la abundancia media (p=0,006), pero
no en relación a la prevalencia (p=0,31). El grado de disturbio ambiental derivado del vertido de aguas
residuales, urbanas e industriales conlleva a la propuesta del uso de los helmintos presentes en E. analoga
como indicadores de la calidad sanitaria.
Palabras clave: calidad sanitaria – crustáceo – helminto – parásito – playa
The concept of ecosystem health has played a role
in environmental management, the public domain
and even in our current scientific and legislative
lexicon (Marcogliese, 2005), the justification for
incorporating the concept lies in the search for the
stability of ecological systems (Merrill et al.,
2018).
The Coastal-Marine Zone (ZCM), is the
geomorphological space inside and outside the
INTRODUCCIÓN mediolitoral zone, in which the interaction between
the marine and terrestrial systems takes place (CE,
2008ab). This space is under constant
anthropogenic pressure, due to a high human
population. Beaches are important because they
give us a chance to reconnect with nature nearby.
The depopulation of the Andean area in favor of the
coast, established as littoralization (Meneses,
1998), is evidenced by the fact that 58% of the
population inhabits the coasts of Peru (INEI,
2018).
Marine pollution is a problem that has been
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
262
growing exponentially, exceeding the limits of the
self-purifying power of the sea (Savichtcheva &
Okabe, 2006), according to DIGESA (Direction of
environmental health of Peru) (1997) in
3 -1
Metropolitan Lima, about 15 m ·s of domestic
wastewater are discharged into the sea by means of
six collectors, one of them through the Rímac
River, the main source of water for the capital of
Peru.
Faced with this situation, different protocols for the
detection and monitoring of marine pollution have
been proposed (Williams & Mackenzie, 2003;
Borja et al., 2008; Crain et al., 2008), from the use
of faecal contamination indicator organisms
(Sumampouw & Riskani, 2014); Benthic
invertebrates as accumulators of toxic substances
(Birk et al., 2012); tools for assessing nested
environmental status (NEAT), this multi-proxy
approach being one of the most integrative
methods (Andersen et al., 2014; Nemati et al.,
2017); to a perspective of the beaches as
socioecological systems (Botero & Hurtado,
2009).
The use of parasites as potential indicators of
marine pollution has been analyzed in different
studies (Möller, 1987; Khan & Thulin, 1991;
Mackenzie et al., 1995; Lafferty, 1997; Mackenzie,
1999; Lewis et al., 2003; Pietrock & Marcogliese,
2003; Williams & Mackenzie, 2003; Marcogliese,
2005; Monserrat et al., 2007; Blanar et al., 2009;
Gilbert & Avenant-Oldewage, 2017).
Parasites are omnipresent (Marcogliese, 2005),
parasitism being the most common interspecific
relationship on Earth (Price, 1980). Each species of
parasite reflects the participation and trophic
interaction of different links in an ecosystem
(Latham & Poulin, 2002; Marcogliese, 2005),
some stages of transmission of free life (heteroxene
cycle), are highly sensitive to environmental
conditions (Mackenzie, 1999), finally, the eggs of
certain parasites may be in contact with the marine
sediment, expressing the health of the ecosystem
(Williams & Mackenzie, 2003).
Emerita analoga (Stimpson, 1857) (Anomura:
Hippidae) is a crustacean hermaphrodite
protandrid (Subramonian & Gunamalai, 2003).
This marine organism lives in a sedentary state as
an adult on sandy beaches in the middle and upper
263
infralittoral zones (Contreras et al., 1999; Bhaduri
et al., 2018), in a bathymetric range between 0 and
3 m (Retamal, 2000). Its geographic distribution
extends from Alaska, USA (58 ° N) to Aysén, Chile
(55 ° S), although it is absent in tropical zones (Tam
et al., 1996).
Emerita analoga occupies a central position,
constituting an important component in the food
chain of the coastal marine sandy ecosystem
(Alvitres et al., 1999b). This crustacean acts as an
intermediate host for some parasites (Kolluru et al.,
2011). In Peru, seven metazoan parasites have been
recorded and described for E. analoga, among
which is thorny-headed worms Profilicollis
altmani (Perry, 1942) Van Cleave, 1947 and the
nematode Proleptus carvajali Fernández &
Villalba, 1985 (Fernández & Villalba, 1985; Oliva
et al., 1992; Alvitres et al., 1999b; Nickol et al.,
1999; Tantaleán et al., 2005; Iannacone et al.,
2007; Iannacone & Alvariño, 2009; Oliva et al.,
2008; Chero et al., 2014).
One of the causes of alteration of the sanitary
quality of the beaches is due to an increase in the
quantity of thermotolerant coliforms, generating
eutrophication processes that hinder the
development of the life cycle of numerous
organisms from benthic organisms to the parasites
that they can harbor. In this sense, the present
investigation determines the implications of the
sanitary quality of the beaches on the parasitic
ecology of E. analoga, in the central coast of Peru.
Periodically, from July 2001 to June 2016,
specimens of E. analoga from 13 sandy beaches of
the were collected, one was located in the province
of Huaura and the other 12 in the province of Lima,
from north to south, the beaches were the
following: “Los Viños” (10°89´S; 77°69´W),
“Hermosa” (11°77´S; 77°18´W), “Playa Chica”
(11°80´S; 77°17´W), “Costa Azul” (11°87´S;
77°15´W), “Los Delfines” (12°11´S; 77°05´W),
“Los Yuyos” (12°15´S; 77°02´W), “Agua Dulce”
(12°16´S; 77°02´W), Venecia (12°23´S;
76°97´W), “Conchán” (12°25´S; 76°93´W), “San
Pedro (12°29´S; 787´W), “El Silencio
MATERIAL AND METHODS
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic
(12°31´S; 76°83´W), “Santa María del Mar”
(12°40´S; 76°77´W) and “Pucusana” (12°48´S;
76°79´W).
The collection methodology for E. analoga was
carried out through transects, 4 transects were
located on each beach and separated from each
other by 100 m, each transect started on the tide line
(lower level of the supralittoral) and finished
offshore (Veas et al., 2013). The collection was
made every 5 m (Sánchez & Alamo, 1974; Lépez et
al., 2001), starting from the tide line and ending at
the "station - 40 m", therefore, there were 9
sampling stations. To obtain the sample, a PVC
cylinder 1 m long with a diameter of 15 cm (0.003
3
m ) was introduced into the sand for up to 20 cm
and then sifted in 2 mm sieve (Penchaszadeh,
1971).
In the laboratory the sex of the specimen was
determined following Sánchez & Alamo (1974),
for the male the genital apparatus ends in a genital
papilla located at the base of the fifth pereiopods,
the abdomen lacks pleopods; On the other hand, in
females, the genital pore is found in the coxa of the
third pair of pereiopods, in addition they present
three pairs of pleopods whose function is to carry
the eggs during incubation. In parallel, the length of
the cephalothorax (LCT) was measured, which was
considered as the size (Oliva et al., 1992; Alvitres
et al., 1999a; Iannacone et al., 2007).
Subsequently, the search for parasites was carried
out on the same day of collection, to avoid the
effect of environmental stress (Iannacone et al.,
2010), searching exhaustively on the external body
surface, in the hemocele, intestine and
hepatopancreas (Iannacone et al., 2007; Oliva et
al., 2008).
Information was obtained on the sanitary quality of
the 13 sampling beaches provided by the Direction
of environmental health (DIGESA), Lima, Peru,
according to the date of collection or a date close to
this date (week 33-2001 “Santa María del Mar;
week 40-2006 “Hermosa, “El Silencio” and
“Pucusana”; week 42-2011 “Los Viños”; week 12-
2012 “Venecia”; week 36-2012 “San Pedro”; week
12-2013 “San Pedro”; week 32-2013 “Los Yuyos”;
week 34-2013 “San Pedro”, “Conchán”, “El
Silencio”; week 36-2013 “Agua Dulce”, “Los
Delfines”; week 38-2013 “Hermosa”, “Costa
Azul”, “Santa Rosa o Chica”; week 42-2013
264
“Venecia”; week 36-2014 “San Pedro”; week 7-
2016 “San Pedro”) . The sanitary quality of beaches
is defined according to the quantity of
-1
thermotolerant or fecal coliforms (NMP·100mL ),
the different ranges of values and their
qualification are: 0 - 200, healthy or good; 201 -
1000, regularly healthy; > 1000, unhealthy or bad
(DS, 1983; DS, 2011; APHA AWWA WEF,
2017).
The possible bias of capture of specimens of E.
analoga was evaluated through reciprocity
between the number of individuals from the
different collection sites, the prevalence and
average parasitic abundance, for this, a linear
regression was made (natural logarithms) and Rho
non-parametric Spearman correlation (Beltrán-
Saavedra, 2015).
Prevalence (PRE) and mean abundance (AM) were
determined by taxon, according to Bush et al.
(1997) and Bautista-Hernández et al. (2013), in
relation to the sex of E. analoga (Alvitres et al.,
1998; Alvitres et al., 1999a), the distance from the
tide line, the season of the year and the sanitary
quality of the beach; in the case of sex, specimens
that were not determined for statistical analysis
were discarded.
The sexual dimorphism of E. analoga was
confirmed by the Mann-Whitney U test. A
2
contingency table was made for the X test, with the
purpose of examining the possible dependence of
the length of the cephalothorax of E. analoga and
the sanitary quality of the beaches. The
heterogeneity of the length of the cephalothorax of
E. analoga per season of the year was evaluated
with the Kruskal-Wallis test. The seasonal
alternation of the year, probably associated with the
life cycle of the parasites of E. analoga, was
explained using a univariate general linear model.
The effect of the length of the cephalothorax of E.
analoga on its parasitic load and total prevalence
was evaluated through Spearman's nonparametric
Rho test (Poulin, 1999; Iannacone et al., 2010;
Iannacone et al., 2011; Leiva et al., 2015; Violante-
González et al., 2016).
The Kruskal-Wallis test was used to determine if
the sanitary quality of the beaches conditioned the
load and parasitic frequency (AM and PRE) of E.
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
analoga. This test was also used to visualize
differences in the parasitic indexes between the
nine sampling periods (July - September 2001,
September - October 2006, October 2011, May
2012, September 2012, April 2013, September
2013. , September 2014 and June 2016) and the
thirteen collection beaches (Hogue & Swig, 2007;
Beltrán-Saavedra, 2015; Faulkes, 2017).
Finally, an assumed parasitic spatial segregation
was verified, by means of the average abundance
and prevalence of E. analoga (Oliva et al., 1992),
in association with the distance from the tide line
using the nonparametric Kruskal-Wallis and Rho
test of Spearman, this last test was done by
converting the variable DIST (distance from the
tide line) from factor to numerical vector.
All the statistical tests were evaluated with a level
of significance (α) of 0.05. The R version 3.5.1
software was used with the "ggplot2" package for
the graphics (Wickham, 2016).
Ethical aspects
The procedures for collecting the diversity of
parasitic fauna in the mole sand crab followed the
guidelines of the "Institutional Animal Care and
Use Committee" (IACUC) (APA, 2012),
minimizing the number of organisms used,
repetitions and using the three Rs " Rs-
replacement, reduction, and refinement, and
resolution 2558-2018-CU-UNFV that includes the
code of ethics for research at the National
University Federico Villarreal (UNFV). For the
management of the parasitic fauna, the guidelines
of the protection and animal welfare law of Peru
265
were followed (Law No. 30407: Article 19). For the
field collection of mole sand crab, the impact on the
abundance of species was minimized so that it is
minimal (Costello et al., 2016).
Conflicts of interest
The authors declare that they do not present any
conflicts of interest.
A total of 5288 individuals of E. analoga were
captured, of which 2487 were males, 1478 females
and the rest were undetermined individuals (1323).
The percentage discarded of the latter was males
62.72% and females 37.28%. The males had a
length of the cephalothorax of 1.42 ± 0.5 cm and
the females 1.80 ± 0.71 cm, the size difference
being a determining attribute in the sexual
dimorphism (U = 252, z = 2, 85; p = 0.004).
The lowest LCT was found at the beach "Conchán"
qualified as "Not Healthy" in September 2013, the
2
X test showed a dependence between the length of
the cephalothorax and the sanitary quality of the
2
beaches (X = 114.48 ; df = 70; p = 0.001; Table 1).
A remarkable heterogeneity was observed per
2
season of the year in relation to the LCT (X =
136.69, df = 70, p = 0.001; Table 2), and a causal
dependence was found between the season and the
parasitic taxon expressed in the MA (F = 5.45, df =
2, p = 0.006; Table 2), this relationship was not
noted in the PRE (F = 1.16, df = 2, p = 0.31; Table
2).
RESULTS
Table 1. Parasite load (mean parasitic abundance and prevalence) and length of the cephalothorax of E. analoga
according to the sanitary quality of the 13 beaches of the central coast of Peru between July 2001 to June 2016.
P. altmani P.carvajali
Sanitary quality
n
MA PRE
MA PRE LCT
Healthy 2935
6.48
74.08
1.04 42.06 1.99
Regularly healthy
784
1.43
63.40
1.29 62.33 2.09
Unhealthy 254 1.97 67.86 0 0 1.82
n = number of individuals. MA = mean parasitic abundance. PRE = prevalence. LCT = length of the cephalothorax of E. analoga.
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic
MaleFemale
Total parasitic mean abundance
Total prevalence
Length of the cephalothorax
Parasite
P. altmani
P. carvajali
266
Table 2. Parasite load (mean parasitic abundance and prevalence) and length of the cephalothorax of E. analoga
according to the seasonal variation between July 2001 to June 2016, in the central coast of Peru.
P. altmani P. carvajali
Season n
MA
PRE
MA
PRE LCT
Autumn
1190 1,37 55,28 1,18 50.18 1,8
Winter 1345 2,04
74,8
1,14
44,91 2,17
Spring 1438 19,28 76,36 0,55 31,76 1,62
n = number of individuals. MA = mean parasitic abundance. PRE = prevalence. LCT = length of the cephalothorax of E. analoga.
in the MA and PRE of P. altmani (MA: p = 0.16,
PRE: p = 0.06) and P. carvajali (MA: p = 0.11;
PRE: p = 0.20).
The LCT of E. analoga did not present a correlation
in favor of the total MA (r = 0.09, p = 0.41, Fig. 1),
s
but presented a positive weak correlation towards
the total PRE (r = 0.23; p = 0.04, Fig. 1).
s
The metazoan parasitic fauna was formed by P.
altmani (Acantocephala: Polymorphidae) in its
larval form and P. carvajali (Nematoda:
Physalopteridae) in its larval form. The MA of P.
altmani and P. carvajali was 4.27 and 1.10,
reaching a PRE of 57.8% and 45.3%, respectively,
for both sexes of E. analoga.
There was no capture bias of E. analoga expressed
Figure 1. Scatter plot between mean parasitic abundance and prevalence of P. altmani and P. carvajali in relation to the length of
the cephalothorax according to the sex of E. analoga collected in 13 beaches of the central coast of Peru, between July 2001 to
June 2016.
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
Sex
Total prevalence
Unhealthy Regularly healthy Healthy
Female Male
Total parasitic mean abundance
Female Male Female Male
Figura 2. Box plot between total mean parasitic abundance and total prevalence in relation to the sanitary quality of the beaches
according to the sex of E. analoga collected in 13 beaches of the central coast of Peru, between July 2001 to June 2016.
The sanitary quality of the beaches had the highest
MA (6.48) and PRE (74.08%) of P. altmani on the
beaches classified as "Healthy", the nematode P.
carvajali reached the highest MA (1.29) and PRE
(62.33%) on the beaches classified as "Regularly
Healthy" (Table 1). However, according to the non-
parametric Kruskal-Wallis test, no differences
267
were observed in MA (H = 1.98, df = 2, p = 0.37)
and PRE (H = 0.62, df = 2, p = 0 , 72) of P. altmani
with respect to sanitary quality, on the contrary,
MA (H = 6.20, df = 2; p = 0.03) and PRE (H = 6.74,
df = 2; p = 0.02) of P. carvajali was significantly
different (Fig. 2).
The highest MA (26.45) of P. altmani by dates
occurred in September - October 2006, the largest
PRE corresponded to September 2014 with
78.13%, in contrast, the date July - September 2001
was recorded with the lowest MA (0.08) and PRE
(6.72%). As for P. carvajali, the highest MA (2.48)
and PRE (72.66) occurred in September 2012 and
September 2014, respectively. Found individuals
of P. carvajali on the date July-September 2001,
having been collected only on the beach "Santa
María del Mar" (Table 3). However, the 9
collection dates showed uniformity in the MA and
PRE of P. altmani (H = 11.74, df = 8, p = 0.16 and H
= 12; 77; df = 8; p = 0, 11) and P. carvajali (H =
10.85, df = 8, p = 0.18 and H = 6.13, df = 8, p =
0.59).
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic
Female Male
Prevalence
Total parasitic mean
abundance
Distance from the tide line
P. carvajali
P. altmani
Parasite
268
Table 3. Parasite load (mean parasitic abundance and prevalence) of the parasites of E. analoga according to the date
of collection, in the central coast of Peru, between July 2001 to June 2016.
n = number of individuals. MA = mean parasitic abundance. PRE = prevalence. LCT = length of the cephalothorax of E. analoga.
P. altmani P. carvajali
Collection date n MA PRE MA PRE
jul-sep 2001
1453
0.08
6.72 0 0
sep-oct 2006 339 26.45 71.89 0.38 24.60
oct-2011
854
1.17
56.54 0.77 32.41
may-2012
469
1.09
52.94 0.78 46.20
sep-2012
340
2.30
64.72 2.48 61.54
abr-2013 434 1.22 40.43 1.18 38.12
sep-2013 325 1.20 48.94 0.75 40.08
sep- 2014 785 1.95 78.13 1.48 72.66
abr - 2016 287 1.54 67.22 1.16 60.30
A significant discontinuity was found, by means of
the non-parametric Kruskal-Wallis test, in the 13
beaches for the MA and PRE of P. altmani (H =
35.46, df = 19, p = 0.01 and H = 29.31 ; df = 19; p =
0.05) and P. carvajali (H = 31.59, df = 19, p = 0.02
and H = 32.75, df = 19, p = 0.02). It should be noted
that the highest MA (72.06) and PRE (97.46%) of
P. altmani was found on the "Pucusana" beach in
the period September-October 2006, being
qualified for that date as a "Healthy beach" On the
other hand, P. carvajali presented the highest MA
(2.48) on the beach "San Pedro" for September
2012, date on which it was qualified as "Healthy";
September 2014 with its only beach "San Pedro"
showed the highest PRE (72.65%), on that date it
was classified as "Regularly Healthy" (Table 4).
The non-parametric Rho correlation of Spearman
showed a negative association between the
distance from the tide line and the MA of P. altmani
(r = - 0.50, p = 0.15), the PRE presented a slight
s
correlation (r = 0.33, p = 0.34), likewise, in the MA
s
of P. carvajali (r = - 0.32, p = 0.37), while the PRE
s
did not show any association (r = 0, 02; p = 0.96);
s
Figure 3. Scatter plot of the mean parasitic abundance and prevalence per parasite in relation to the distance from the tide line
according to the sex of E. analoga collected in 13 beaches of the central coast of Peru, between July 2001 to June 2016.
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
the probable parasitic spatial segregation was
evidenced through the Kruskal-Wallis test,
indicating a significant inequality in the MA of P.
altmani (H = 16.11, df = 8, p = 0.04) and PRE of P.
carvajali (H = 18.57, df = 8, p = 0.01) compared to
269
the different distances from the tide line, in
contrast, uniformity was observed in MA of P.
carvajali (H = 11.99, df = 8; p = 0.15) and PRE of P.
altmani (H = 14.46, df = 8, p = 0.07) (Fig. 3).
Tabla 4. Parasitic load (mean parasitic abundance and prevalence) of the parasites of E. analoga according to the
beach of origin, in the central coast of Peru, between July 2001 to June 2016.
P. altmani P. carvajali
beaches n
MA
PRE MA PRE
Los Viños 854
1.17
56.54 0.77 32.41
Hermosa
195
2.77
70.06 0 0
Chica
57
1
66.67 0 0
Venecia
826
0.81
41.24 0.66 38.76
Conchán
32
2.22
77.78 0 0
San Pedro 1631 1.91 70.10 1.57 66.52
El Silencio 111 1.56 73.40 0.99 47.48
S. María del Mar 1453 0.08 6.72 0 0
Pucusana 118 72.06 97.46 1.45 89.66
n = number of individuals. MA = mean parasitic abundance. PRE = prevalence.
LCT = length of the cephalothorax of E. analoga.
A small number of examined hosts will lead to an
error in the search towards hosts with greater
parasitic richness (Poulin, 2013), in turn generating
an apparent narrow amplitude of niche (Poulin,
1992) or giving rise to the capture only of " active
animals "(Beldomenico, 2008). The different
sample sizes of E. analoga, collected between July
2001 and June 2016 along the central coast of Peru,
did not show any capture bias expressed in the AM
or PRE, as a result of the effort of sampling.
The general average of the length of the
cephalothorax of E. analoga was 1.28 cm, the
males had 1.42 ± 0.5 cm and the females 1.8 ± 0.71
cm, tending towards a marked sexual dimorphism
in the difference of sizes confirming what was
indicated by Lépez et al. (2001), Iannacone et al.
(2007) and Jerez & George-Nascimento (2010).
Sánchez & Alamo (1974) mention that external sex
differences are observed from 3 mm and 4 mm, in
males and females respectively, therefore it was not
possible to determine some individuals (0.5 ± 0.25
DISCUSSION cm), the size of these, reveals its stage in megalopa
sensu Lépez et al. (2001) and Núñez et al. (1974).
The proportion of sexes (62.3% males and 37.7%
females) found in the present study shows us a clear
protandric hermaphroditism (Subramonian &
Gunamalai, 2003), confirming the findings of
Penchaszadeh (1971).
Surface-volume relationships increase the rates of
incorporation of toxic substances, especially in
small species of crustaceans (Jiang et al., 2012).
The greater length of the cephalothorax
corresponded to the category of "Regularly
Healthy" beaches, and the shortest length was
observed in the "Unhealthy" beaches. A
dependence between the length of the
cephalothorax and the sanitary quality of the
beaches was demonstrated (Table 1). Zhang et al.
(2010) point out that crustaceans are the most
sensitive organisms, after echinoderms, to reduced
levels of oxygen, a condition that is generated in
eutrophic ecosystems, due to a constant
accumulation of organic waste that depletes
oxygen during decomposition (Zouiten, 2012;
Veas et al., 2013).
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic
Bretz et al. (2002) point out that high concentration
of the toxic PSPT in E. analoga limit its growth.
Barca-Bravo et al. (2008) indicate that the
asymmetry of certain morphological parameters in
amphipods may reflect environmental stress on
sandy beaches. The "Unhealthy" beaches are the
busiest places for the population of Metropolitan
Lima; the anthropogenic pressure, and in turn, the
greater release of toxins confers a limitation to the
body growth of E. analoga, likewise, the density
and benthic richness can be affected in front of
hypoxia / anoxia levels (Brazeiro, 2005; Aparicio,
2013). Guiñez et al. (2015) point out that E.
analoga is a potential bioindicator of
environmental health due to contamination by
heavy metals, and could be used to alert the impact
of this disturbance on the human population.
This study revealed an MA of P. altmani and P.
carvajali of 4.27 and 1.10, reaching a PRE of
57.8% and 45.3%, respectively, for both sexes of E.
analoga. The gradient of parasitic occurrence of E.
analoga as reported in Peru is: Oliva et al. (1992)
44% of global PRE (P. altmani and P. carvajali) in
577 individuals from 11 beaches of the department
of Lima; Tantaleán et al. (2002) PRE of 48% for P.
altmani from the beach "Bujama", in Mala, Lima.
Iannacone et al. (2007) 55.3% of PRE for P.
altmani, while P. carvajali, reached 12.1% in 860
specimens acquired from the Fishing Terminal of
Chorrillos, Lima, Peru; Alvitres et al. (1999ab)
75% of global PRE (Eutetrarhynchus sp. Pintner,
1913, Nybelinia sp. Poche, 1926, Proleptus sp.
Dujardin, 1845, Spiruroidea, P. altmani,
Maritrema sp. Nicoll, 1907 and Digenea) before
"El Niño", and 53.2% during "El Niño" in 1331
individuals for Lambayeque; Rojas-Meza &
Sebastián-Cabrera (2010), found 77.1% of PRE for
P. altmani in 2300 individuals reviewed from 23
beaches south of Lima. These results indicate that
the PRE for P. altmani found in the present study
coincides with Iannacone et al. (2007) meanwhile,
the PRE of P. carvajali agrees with that stipulated
by Oliva et al. (1992). The niche amplitude
observed in Alvitres et al. (1999ab).
A causal relationship has been found between the
season of the year and the parasitic taxon expressed
in the MA of P. altmani and P. carvajali, this
association was not observed in the PRE. The
highest MA and PRE of P. altmani occurs in spring
with a value of 19.28 and 76.36 respectively, P.
270
carvajali presents the highest MA (1.18) and PRE
(50.18) in autumn. The present work reveals an
association between parasitic load and frequency
in favor of warmer times; however, we cannot
generalize due to the absence of evaluation in
summer. Apparently, this relationship is due to the
arrival of migratory birds that nest in the northern
hemisphere and migrate to the southern
hemisphere in search of food and shelter (García-
Olaechea et al., 2018), speculation would be
approved according to Torres et al. (2006), who
find the greatest abundance and diversity of birds in
September and January in the Wildlife Refuge
"Pantanos de Villa" and the adjacent beach.
However, Leiva et al. (2015) point out that there is
no relationship between the abundance of
definitive hosts and the parasitic load of
intermediary hosts for Chile.
The adult form of the acanthocephalan P. altmani
has been found in Larus belcheri (Vigors, 1829), L.
dominicanus (Lichtenstein, 1823), Leucophaeus
modestus (Tschudi, 1843), Leucophaeus pipixcan
(Wagler, 1831), Chroicocephalus serranus
(Tschudi, 1844), Podiceps occipitalis (Garnot,
1826), Numenius phaeopus (Linnaeus, 1758) and
Calidris sp. (Oliva et al., 1992; Tantaleán et al.,
2005; Riquelme et al. 2006; Rodríguez et al.,
2016). Although it has also been reported to
Haematopus palliatus Temminck, 1820 and
Pluvialis squatarola (Linnaeus, 1758) feeding on
E. analoga (Castro & Myers, 1987). On the other
hand, P. carvajali has registered in Mustelus mento
(Cope, 1877); Rhinobatos planiceps (Garman,
1880), Triakis maculata (Kner & Steindachner,
1867), Schroederichthys chilensis (Guichenot,
1848), Raja chilensis (Guichenot, 1848) and
Discopyge tschudii (Heckel, 1841) (George-
Nascimento et al., 1994; Iannacone et al., 2011),
arvae were occasionally found in Labrisomus
philippii (Steindachner, 1866) and Scartichthys
gigas (Steindachner, 1876), and in a variety of
marine bony fishes (García-Varela et al., 2013;
Luque et al., 2016).
Iannacone et al. (2007) found no correlation
between the length of the cephalothorax of E.
analoga with the PRE and MA of P. altmani and
Proleptus sp. On the contrary, it was observed in
the present study, since a positive correlation was
found between the MA and total PRE coinciding
with that indicated by Alvitres et al. (1999ab). The
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
finding of positive and significant coefficients
allows us to infer a gradual accumulation of
parasites throughout host ontogeny (Zambrano &
George-Nascimento, 2010; Violante-Gonzalez et
al., 2015; Bhaduri et al., 2018). Violante-Gonzalez
et al. (2012) conjecture that the survival of the host
is reduced by the pathological consequences
attributable to the parasites, leading in some cases
to an increase in host sensitivity to contaminants
(Iannacone & Alvariño, 2003).
The change in sanitary quality is due to the increase
in organic matter (OM), which is related to an
increase in the amount of coliforms (Wynes &
Wissing, 1981) and/or an increase, in rainfall
(Espinal, 2008). The constant discharge of
wastewater, coupled with the massive use of
fertilizers, accelerate eutrophication processes,
causing oxygen levels and turbidity that make the
natural development of aquatic ecosystems
impossible, and an effect on benthic
macroinvertebrates as E. analoga (Elías et al.,
2003; Zouiten, 2012).
The sanitary quality of the beaches has been a
determining factor in the parasitic load and
frequency of P. altmani and P. carvajali. The lower
MA and PRE of P. altmani occurs in the "Regularly
Healthy" beaches, while P. carvajali is absent in
"Unhealthy" beaches, the nematode presents more
contrasting results compared to the 3 categories of
sanitary quality of the Beaches. Lafferty (1997)
points out that nematodes are good indicators
because they are sensitive to eutrophication, while
acanthocephali are more susceptible to heavy
metals, even accumulating a xenobiotic agent to a
greater degree than their host (Sures, 2003; Nachev
& Sures, 2016; Gilbert & Avenant-Oldewage,
2017). Espinal (2008) finds that Uvulifer
ambloplitis (Hughes, 1927) and Clinostomum
complanatum (Rudolphi, 1814) Braun, 1899 are
favored by the alteration in water quality
(eutrophication), while acanthocephalan
Polymorphus Lühe, 1911 does not present any
association with water quality and was found only
in the month of lowest salinity. Therefore, a greater
susceptibility of P. altmani to the osmotic stress
generated as a side effect of the wastewater
discharge can be presumed.
The use of P. altmani as a bioindicator of fecal
contamination is based on its spatial segregation,
271
the highest MA was observed in females and males
between the intertidal until its peak in 15 m, from
where it begins to decay (Fig. 3), the intertidal zone
is exposed to reservoirs of faecal bacteria protected
in biofilms (Hartz et al., 2007), at the same time,
grains of sand provide an environment potentially
favorable for their survival and development
(USEPA, 1999). P. altmani and P. carvajali are
exposed to high organic matter load in the
intertidal, postulating them as sentinel
bioindicators in an early warning system that
contemplates, from the morphological analysis of
the host to its load and parasitic frequency.
The unhealthiness of the beaches limits the growth
of E. analoga. The spring season favors the
parasitic load of P. altmani, while autumn is
favorable for P. carvajali. There is a gradual
accumulation of parasites, dependent on the length
of the cephalothorax of E. analoga. An early
warning system is proposed around the size, load
and parasitic frequency of E. analoga.
Alvitres, V, Gutierrez, R, Veneros, B, Chanamé, J
& Fupuy, J. 1998. Distribución de la
población de Emerita analoga, durante abril
octubre 1995, Playas de Trujillo, La
Libertad-Perú. Ecología, vol. 1, pp. 65-71.
Alvitres, V, Chanamé, J, Fupuy, J, Chambergo, A,
Angulo, E, Amaya, R & Cortez, M. 1999a.
Influencia de “El Niño 1997-98” sobre la
fecundidad de Emerita analoga en
Lambayeque-Perú. Revista Peruana de
Biología, vol. 6, pp. 77-84.
Alvitres, V, Chanamé, J, Fupuy, J, Chambergo, A &
Cortez, M. 1999b. Cambios en la
prevalencia de los helmintos parásitos de
Emerita analoga por efecto de “El Niño
1997-98”. Revista Peruana de Biología, vol.
6, pp. 69-76.
APA (American Psychological Association). 2012.
Guidelines for ethical conduct in the care
and use of nonhuman animals in research.
American Psychological Association
Committee on Animal Research and Ethics
in 2010-11. American Psychological
Association. Washington USA. 9 pp.
BIBLIOGRAPHIC REFERENCES
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic
Aparicio, D. 2013. Condiciones de hipoxia/anoxia
en la bahía de Cienfuegos, Cuba:
consecuencias adversas para la macrofauna
bentónica. Tesis de Licenciatura. Facultad
Ciencias Agropecuarias. Universidad
Central “Marte Abreu” de las Villas.
APHAAWWAWEF (American Public Health
Association & American Water Works
Association). Water Environment
Federation). 2017. Standard methods for the
examination of water and wastewater.
American Public Health association. Baird,
rd
RB, Eaton, AD & Rice, EW (eds.). 23 Ed.
Washington, DC.
Andersen, JH, Dahl, K, Göke, C, Hartvig, M,
Murray, C, Rindorf, A, Skov, H, Vinther, M
& Korpinen, S. 2014. Integrated assessment
of marine biodiversity status using a
prototype indicator-based assessment tool.
Frontiers in Marine Science, vol. 1:55, pp. 1-
8.
Barca Bravo, S, Servia, MJ, Cobo, F & Gonzalez,
MA. 2008. The effect of human use of sandy
beaches on developmental stability of
Talitrus saltator (Montagu, 1808)
(Crustacea, Amphipoda). A study on
fluctuating asymmetry. Marine Ecology,
vol. 29, pp. 91-98.
Bautista-Hernández, CE, Scott, M & Pulido-
Flores, G. 2013. Los parásitos y el estudio de
su biodiversidad: un enfoque sobre los
estimadores de la riqueza de especies.
Estudios científicos en el estado de Hidalgo
y zonas aledañas, vol. 2, pp. 13-17.
Beldomenico, PM. 2008. Ecoepidemiología: salud
en animales silvestres. Facultad de Ciencias
Veterinarias, Universidad Nacional del
Litoral. Esperanza, Argentina.
Beltrán-Saavedra, LF. 2015. Caracterizando
patrones ecológicos en la estructura
parasitaria Influencia ecorregional y
hospedadora en un modelo Phthiraptera-
aves del norte de Chile. Doctoral
Dissertation, Universidad de Concepción.
Facultad de Ciencias Naturales y
Oceanográficas. Departamento de Zoología.
Bhaduri, RN, Hilgers, MS, Singh, R & Hickman,
ME. 2018. Coexistence patterns of two
larval helminth parasites associated with
their intermediate host, the mole crab
Emerita analoga S t i m ps o n , 18 5 7
(Decapoda: Anomura: Hippidae). Journal
272
of Crustacean Biology, vol. 38, pp. 278-284.
Birk, S, Bonne, W, Borja, A, Brucet, S, Courrat, A,
Poikane, S, Solimini, A, Van de Bund, W,
Zampoukas, N & Hering, D. 2012. Three
hundred ways to assess Europe's surface
waters: An almost complete overview of
biological methods to implement the Water
Fr a m e wo r k D ire c ti ve . Ecological
Indicators, vol. 18, pp. 31-41.
Blanar, CA, Munkittrick, KR, Houlahan, J,
MacLatchy, DL & Marcogliese, DJ. 2009.
Pollution and parasitism in aquatic
animals: a meta-analysis of effect size.
Aquatic Toxicology, vol. 93, pp. 18-28.
Borja, A, Bricker, SB, Dauer, DM, Demetriades,
NT, Ferreira, JG, Forbes, AT, Hutchings, P,
Jia, X, Kenchington, R, Carlos-Marques, J
& Zhu, C. 2008. Overview of integrative
tools and methods in assessing ecological
integrity in estuarine and coastal systems
worldwide. Marine Pollution bulletin, vol.
56, pp. 1519-1537.
Botero, C & Hurtado, Y. 2009. Tourist Beach Sorts
as a classification tool for Integrated Beach
Management in Latin America. Coastline
Reports, vol. 13, pp. 133-142.
Brazeiro, A. 2005. Geomorphology induces life
history changes in invertebrates of sandy
beaches: the case of the mole crab Emerita
analoga in Chile. Journal of the Marine
Biological Association of the United
Kingdom, vol. 85, pp. 113-120.
Bretz, CK, Manouki, TJ & Kvitek, RG. 2002.
Emerita analoga (Stimpson) as an indicator
species for paralytic shellfish poisoning
toxicity along the California coast. Toxicon,
vol. 40, pp. 1189-1196.
Bush, AO, Lafferty, KD, Lotz, JM & Shostak. AW.
1997. Parasitology meets ecology on its own
terms: Margolis et al. revisited. The Journal
of Parasitology, vol. 83, pp. 575-583.
Castro, G & Myers, J. 1987. Ecología y
conservación del playero blanco (Calidris
alba) en el Perú. Boletín de Lima, vol. 52,
pp. 47- 60.
CE. 2008a. Roadmap for Maritime Spatial
Planning: Achieving Common Principles in
the EU, consultado el 7 de julio del 2018,
< h t t p : / / e u r - l e x .
europa.eu/LexUriServ/LexUriServ.do?uri=
COM:2008:0791:FIN:ES: PDF>
CE. 2008b. Directiva 2008/56/ce del Parlamento
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
Europeo y del Consejo, consultado el 7 de
j u l i o d e l 2 0 1 8 , < h t t p : / / e u r -
lex.europa.eu/LexUriServ/LexUriServ.do?
uri=OJ:L:2008:164:0019:0040:ES:PDF>
Chero, J, Cruces, C, Iannacone, J, Sáez, G &
Alvariño, L. 2014. Helmintos parásitos de
Anisotremus scapularis (Tschudi, 1846)
(Perciformes: Haemulidae) Chita
adquiridos en el terminal pesquero de Villa
María del Triunfo, Lima, Perú. Neotropical
helminthology, vol. 8, pp. 411-428.
Contreras, H, Defeo, O & Jaramillo, E. 1999. Life
history of Emerita analoga (Stimpson)
(Anomura, Hippidae) in a Sandy beach of
south central Chile. Estuarine Coastal and
Shelf Science, vol. 48, pp. 101-112.
Costello, M, Beard, KH, Corlett, RT, Cumming, G,
Devictor, V, Loyola, R, Maas, B, Miller-
Rushing, AJ, Pakeman, R & Primack, RB.
2016. Field work ethics in biological
research. Biological Conservation, vol. 203,
pp. 268-271.
Crain, C, Kroeker, K & Halpern, B. 2008.
Interactive and cumulative effects of
multiple human stressors in marine systems.
Ecology letters, vol. 11, pp. 1304-1315.
DIGESA (Dirección General de Salud Ambiental).
1997. Salud Ambiental: Playas año 97
01. Ministerio de Salud, Lima, consultado el
1 7 d e a g o s t o d e 2 0 1 8 ,
<http://bvs.minsa.gob.pe/local/minsa/3286.
PDF>
DS (Decreto Supremo N.º 007-83-SA). 1983.
Modificaciones de los artículos 81 y 82 del
Reglamento de Títulos I, II y II de la Ley
General de Aguas, D.L. 17752. Perú,
consultado el 21 de julio del 2018,
<http://www2.congreso.gob.pe/Sicr/Comis
iones/2004/Ambiente_2004.nsf/Document
osweb/C280BDBA4083E4A705256F3200
55046E/$FILE/DS007-83-sa.pdf>
DS (Directiva Sanitaria). 2011. Directiva Sanitaria
que establece el Procedimiento para la
Evaluación de la Calidad Sanitaria de las
Playas del Litoral Peruano. Directiva
Sanitaria 038- MINSA/DIGESAv.01 /
Ministerio de Salud. Dirección General de
Salud Ambiental Lima: Ministerio de
Salud. 19 p.
Elías, R, Rivero, MS & Vallarino, EA. 2003.
Sewage impact on the composition and
distribution of polychaeta associated to
273
intertidal mussel beds of the Mar del Plata
rocky shore, Argentina. Iheringia, Serie
Zoología, Porto Alegre, vol. 93, pp. 309-
318.
Espinal, T. 2008. Comparación de las
comunidades helmínticas de Astyanax
aeneus (Günther, 1860) y Floridichthys
polyommus (Hubbs, 1936) en áreas
prioritarias del Río Champotón, Campeche,
México con distinto grado de disturbio
ambiental. Tesis de Maestría. Escuela
Nacional de Ciencias Biológicas. Instituto
Politécnico Nacional.
Faulkes, Z. 2017. Filtering out parasites: sand
crabs (Lepidopa benedicti) are infected by
more parasites than sympatric mole crabs
(Emerita benedicti). PeerJ, consultado el 2
d e j u n i o d e l 2 0 1 8 , <
https://doi.org/10.7717/peerj.3852>
Fernández, J & Villalba, C. 1985. Proleptus
carvajali n. sp. (Nematoda: Spiruroidea),
nuevos registros y lista sistemática de los
nematodos de peces en aguas chilenas.
Revista Chilena de Historia Natural, vol. 58,
pp. 109-120.
García-Olaechea, A, Chávez-Villavicencio, C &
Tabilo-Valdivieso, E. 2018. ¿Influyen las
aves migratorias neárticas en el patrón
estacional de aves de los humedales
costeros? Revista peruana de biologia, vol.
25, pp. 117-122.
García-Varela, M, Pérez-Ponce de León, G, Aznar,
FJ & Nadler, SA. 2013. Phylogenetic
r e l a t i o n s h i p a m o n g g e n e r a o f
Polymorphidae (Acanthocephala), inferred
from nuclear and mitochondrial gene
sequences. Molecular Phylogenetics and
Evolution, vol. 68, pp. 176–184.
George-Nascimento, M, Carmona, R & Riffo, R.
1994. Occurrence of larval nematodes
Proleptus sp. (Spirurida: Physalopteridae)
and Anisakis sp. (Ascardida: Anisakidae) in
the crab Cancer plebejus Poeppig, in Chile.
Scientia Marina, vol. 58, pp. 355–358.
Gilbert, BM & Avenant-Oldewage, A. 2017.
Parasites and pollution: the effectiveness of
tiny organisms in assessing the quality of
aquatic ecosystems, with a focus on Africa.
Environmental Science and Pollution
Research, vol. 24, pp. 18742-18769.
Guiñez, M., Valdés, J & Castillo, A. 2015.
Contenido de metales en sedimentos y en
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic
Emerita analoga (Stimpson, 1857), en bahía
Mejillones del Sur, Chile. Latin American
Journal of Aquatic Research, vol. 43, pp. 94-
106.
Hartz, A, Cuvelier, M, Novosielski, K, Bonilla,
TD, Green, M, Esiobu, N, McCorquodake,
DS & Rogerson, A. 2007. Survival potential
of Escherichia coli and enterococci in
subtropical beach sand: implications for
water quality managers. Journal of
Environmental Quality, vol. 37, pp. 898-
905.
Hogue, C & Swig, B. 2007. Habitat quality and
endoparasitism in the Pacific sanddab
Citharichthys sordidus from Santa Monica
Bay, southern California. Journal of Fish
Biology, vol. 70, pp. 231-242.
Iannacone, J & Alvariño, L. 2003. Efecto
ecotoxicológico agudo del mercurio sobre
larvas del “Muy Muy” Emerita analoga
(Stim pson ) (Deca poda: Hippid ae)
procedentes de cuatro localidades de Lima.
Ecología aplicada, vol. 2, pp. 111-114.
Iannacone, J, Alvariño, L & Bolognesi, B. 2007.
Aspectos cuantitativos de los metazoos
parásitos del muy muy Emerita analoga
(Stimpson) (Decapoda, Hippidae) en
Chorrillos, Lima, Perú. Neotropical
Helminthology, vol. 1, pp. 59-68.
Iannacone, J & Alvariño, L. 2009. Aspectos
cuantitativos de la parasitofauna de
Anisotremus scapularis (Tsc hu di )
(Osteichthyes, Haemulidae) capturados por
pesquería artesanal en Chorrillos, Lima,
Perú. Revista Ibero-Latinoamericana
Parasitología, vol. 1, pp. 56-64.
Iannacone, J, Morón, L & Guizado, S. 2010.
Variación entre años de la fauna de
parásitos metazoos de Sciaena deliciosa
(Tschudi, 1846) (Perciformes: Sciaenidae)
en Lima, Perú. Latin American Journal of
Aquatic Research, vol. 38, pp. 218-226.
Iannacone, J, Ávila, J, Rojas, S, Salas, M, Neira, K,
Palomares, R, Valdivia, S, Pacheco, V &
Ferrario, V. 2011. Dinámica poblacional de
los parásitos metazoos del pez guitarra del
pacífico Rhinobatos planiceps (Batoidea:
Rajiformes) de la zona costera marina de
Lima, Perú. Neotropical Helminthology,
vol. 5, pp. 265-278.
INEI. 2018. Crecimiento y distribución de la
población, 2017, consultado el 17 de agosto
274
d e 2 0 1 8 ,
<https://www.inei.gob.pe/media/MenuRec
ursivo/publicaciones_digitales/Est/Lib1530
/libro.pdf>
Jerez, R & George-Nascimento, M. 2010.
Asociación del parasitismo por Profilicollis
b u l l o c k i ( P a l e a c a n t h o c e p h a l a ,
Polymorphidae) con la conducta y la
pigmen tación de Emerita analoga
(Anomura, Hippidae) en Chile. Revista de
biología marina y oceanografía, vol. 45, pp.
525-529.
Jiang, Z, Huang, Y, Chen, Q, Zeng, J & Xu, X.
2012. Acute toxicity of crude oil water
accommodated fraction on marine
copepods: the relative importance of
acclimatization temperature and body size.
Marine Environmental Research, vol. 81,
pp. 12-17.
Khan, RA & Thulin, J. 1991. Influence of pollution
on parasites of aquatic animals. Advances
in parasitology, vol. 30, pp. 201-238.
Kolluru, GR, Green, ZS, Vredevoe, LK, Kuzma,
MR, Ramadan, SN & Zosky, MR. 2011.
Parasite infection and sand coarseness
increase sand crab (Emerita analoga)
burrowing time. Behavioural Processes, vol.
88, pp. 184–191.
Lafferty, KD. 1997. Environmental parasitology:
What can parasites tell us about human
impacts on the environment? Parasitology
Today, vol. 13, pp. 251-255.
Latham, ADM & Poulin, R. 2002. Field evidence of
the impact of two acanthocephalan
parasites on the mortality of three species of
New Zealand shore crabs (Brachyura).
Marine Biology, vol. 41, pp. 1131-1139.
Leiva, N, George-Nascimento, M & Muñoz, G.
2015. Carga parasitaria en crustáceos
decápodos de la costa central de Chile:
¿existe alguna asociación con la
ab un d an c i a de lo s h os p ed ad o res
definitivos? Latin American Journal of
Aquatic Research, vol. 43, pp. 726-738.
Lépez I, Furet, L & Aracena, O. 2001. Población de
Emerita analoga (Stimpson 1857) en playas
Amarilla y Rinconada, Antofagasta:
aspectos abióticos, bióticos y concentración
de cobre. Gayana, vol. 65, pp. 55-76.
Lewis, J, Hoole, D & Chappell, LH. 2003.
Parasitism and environmental pollution:
parasites and hosts as indicators of water
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
quality. Parasitology, vol. 126, pp. 81-83.
Luque, JL; Cruces, C, Chero, J, Paschoal, F, Alves,
PV; Da Silva, AC, Sánchez, L & Iannacone,
J. 2016. Checklist of metazoan parasites of
f i s h e s f ro m P e r u . N e o t r o p i c a l
Helminthology, vol. 10, pp. 301-375.
MacKenzie, K, Williams, HH, Williams, B,
McVicar, AH & Siddall, R. 1995. Parasites
as indicators of water quality and the
potential use of helminth transmission in
marine pollution studies. Advances in
parasitology, vol. 35, pp. 85-144.
Mackenzie, K. 1999. Parasites as pollution
indicators in marine ecosystems: a proposed
early warning system. Marine Pollution
Bulletin, vol. 38, pp. 955-959.
Marcogliese, DJ. 2005. Parasites of the
superorganism: are they indicators of
ecosystem health? International Journal for
Parasitology, vol. 35, pp. 705-716.
Meneses, M. 1998. La Utopía Urbana: El
movimiento de pobladores en el Perú.
Brandon Enterprises Editores, Lima.
Merrill, NH, Mulvaney, K, Martin, D, Chintala, M,
Berry, W, Gleason, T, Balogh, S &
Humphries, A. 2018. A Resilience
Framework for Chronic Exposures: Water
Quality and Ecosystem Services in Coastal
Social-Ecological Systems. Coastal
Management, vol. 46, pp. 242-258.
Möller, H. 1987. Pollution and parasitism in the
aquatic environment. International Journal
for Parasitology, vol. 17, pp. 353-361.
Monserrat, JM, Martínez, P, Geracitano, L, Amado,
L, Martinez, G, Lopes Leães, G, Soares, I,
Ferreira-Cravo M, Ventura-Lima, J &
Bianchini, A. 2007. Pollution biomarkers in
estuarine animals: Critical review and new
perspectives. Comparative Biochemistry
and Physiology Part C: Toxicology &
Pharmacology, vol. 146, pp. 221-234.
Nachev, M & Sures, B. 2016. Environmental
parasitology: Parasites as accumulation
bioindicators in the marine environment.
Journal of Sea Research, vol. 113, pp. 45-50.
Nemati, H, Reza, M, Ramezanpour, Z, Ebrahimi,
GH, Muxika, I & Borja, A. 2017. Using
multiple indicators to assess the
environmental status in impacted and non-
impacted bathing waters in the Iranian
Caspian Sea. Ecological Indicators, vol. 82,
pp. 175-182.
275
Nickol, B, Crompton, DWT & Searle, D. 1999.
Reintroduction of Profilicollis Meyer, 1931,
as a genus in Acanthocephala: significance
of the intermediate host. The Journal of
Parasitology, vol. 85, pp. 716-718.
Núñez, J, Aracena, O & López, MT. 1974. Emerita
analoga en Llico, provincia de Curicó
(Crustacea Decapoda, Hippidae). Boletín de
la Sociedad de Biología de Concepción, vol.
48, pp. 11-22.
Oliva, ME, Luque, JL & Cevallos, A. 1992.
Parásitos de Emerita analoga (Stimpson)
(Crustacea): Implicancias ecológicas.
Boletín de Lima, vol. 79, pp. 77-90.
Oliva, ME, Barrios, I, Thatje, S & Laudien, J. 2008.
Changes in prevalence and intensity of
infection of Profilicollis altmani (Perry,
1942) cystacanth (Acantocephala)
parasitizing the mole crab Emerita analoga
(Stimpson, 1857): an El Niño cascade
effect? Helgoland Marine Research, vol. 62,
pp. S57-S62.
Penchaszadeh, PE. 1971. Observaciones
cuantitativas preliminares en playas
arenosas de la costa central del Perú con
especial referencia a las poblaciones de
muy-muy (Emerita analoga) (Crustacea,
Anomura Hippidae). Oficina de Ciencias de
la UNESCO para América Latina, DOCIN6:
3-16.
Pietrock, M & Marcogliese, DJ. 2003. Free-living
endohelminth stages: at the mercy of
environmental conditions. Trends in
parasitology, vol. 19, pp. 293-299.
Poulin, R. 1992. Determinants of host-specificity in
parasites of freshwater fishes. International
Journal of Parasitology, vol. 22, pp.
753–758.
Poulin, R. 1999. Body size vs abundance among
parasite species: positive relationships?
Ecography, vol. 22, pp. 246-250.
Poulin, R. 2013. Explaining variability in parasite
aggregation levels among host samples.
Parasitology, vol. 140, pp. 541-546.
Price, PW. 1980. Evolutionary biology of
parasites. Monographs in Population
Biology. Princeton University Press.
Retamal, MA. 2000. Decápodos de Chile.
Universidad de Concepción. CD-ROM
Series. Springer-Verlag.
Riquelme, C, George-Nascimento, M & Balboa, L.
2006. Morfometría y fecundidad de
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic
Profilicollis bulloki Mateo, Córdova &
G u z m á n 1 9 8 2 ( A c a n t h o c e p h a l a :
Polymorphidae) en especies simpátricas de
aves costeras de Chile. Revista Chilena de
Historia Natural, vol. 79, pp. 465–474.
Rodríguez, SM, D'Elía, G. & Valdivia, N. 2016.
The phylogeny and life cycle of two species
of Profilicollis (A ca nt h oc e ph al a :
Polymorphidae) in marine hosts off the
Pacific coast of Chile. Journal of
Helminthology, vol. 91, pp. 589-596.
Rojas-Meza, VJ & Sebastián-Cabrera, YM. 2010.
Consumo de Emerita analoga “muy muy” y
su infección por larvas Profilicollis altmani
en las playas del sur de lima - 2010. Revista
ECI, vol. 8, pp. 163-166.
Sánchez, G & Alamo, V. 1974. Algunos aspectos de
la biología del “muy muy” (Emerita
analoga). Serie de Informes Especiales N °
IM-167. Instituto del Mar.
Savichtcheva, O & Okabe, S. 2006. Alternative
indicators of fecal pollution: Relations with
pathogens and conventional indicators,
current methodologies for direct pathogen
monitoring and future application
perspectives. Water Research, vol. 40, pp.
2463-2476.
Subramoniam, T & Gunamalai, V. 2003. Breeding
biology of the intertidal sand crab Emerita
(Decapoda: Anomura). Advances in Marine
Biology, vol. 46, pp. 91-182.
Sumampouw, OJ & Riskani, Y. 2014. Bacteria as
Indicators of Environmental Pollution:
Review. International Journal of Ecosystem,
vol. 4, pp. 251-258.
Sures, B. 2003. Accumulation of heavy metals by
intestinal helminths in fish: an overview and
perspective. Parasitology, vol.126, pp. S53-
S60.
Tam, YK, Kornfield, I & Ojeda, FP. 1996.
Divergence and zoogeography of mole
crabs, Emerita spp. (Decapoda: Hippidae),
in the Americas. Marine Biology, vol. 125,
pp. 489-497.
Tantaleán, M, Cárdenas, J & Güere, R. 2002.
Profilicollis altmani (Perry, 1942) Van
Cleave, 1947 (Acanthocephala) en el Perú.
Con notas sobre la infección experimental
de mamíferos terrestres. Revista peruana de
biología, vol. 9, pp. 49-51.
Tantaleán, M, Sánchez, L, Gómez, L & Huiza, A.
2005. Acantocéfalos del Perú. Revista
276
peruana de biología, vol. 12, pp. 83-92.
Torres, M, Quinteros, Z & Fernando, T. 2006.
Variación temporal de la abundancia y
diversidad de aves limícolas en el refugio de
vida silvestre Pantanos de Villa, Perú.
Ecología aplicada, vol. 5, pp. 119-125.
USEPA (United States Environmental Protection
Agency). 1999. Storm Water Technology
Fact Sheet: Porous Pavement, consultado el
9 d e j u n i o d e l 2 0 1 8 , <
https://www3.epa.gov/scram001/guidance/
guide/eac-ozone.pdf>
Veas, R, Hernández-Miranda, E, Quiñones, RA,
Díaz-Cabrera, E, Rojas, JM & Fariña, JM.
2013. The influence of environmental
factors on the abundance and recruitment of
the sand crab Emerita analoga (Stimpson
1857): Source-sink dynamics? Marine
Environmental Research, vol. 89, pp. 9-20.
Violante-González, J, Quiterio, G, Larumbe, E,
Gil, S, Rojas, A & Carbajal, J. 2012. Impacto
del parasitismo en la mortalidad del
“chiquilique” Emerita analoga (Anomura:
Hippidae), en tres localidades del estado de
Guerrero, México. Tlamati Sabiduría, vol. 4,
pp. 14-21.
Violante-Gonzalez, J, Quiterio-Rendon, G,
Monks, S, García-Ibañez, S, Pulido-Flores,
G, Rojas-Herrera, AA & Larumbe-Moran,
E. 2015. Parasite Communities of the Pacific
Mole Crab, Emerita rathbunae (Anomura:
Hippidae), in sandy beaches from Guerrero
and Michoacán, Mexico. Open Journal of
Marine Science, vol. 5, pp. 468-476.
Violante-González, J, Monks, S, Quiterio-Rendon,
G, García-Ibáñez, S, Larumbe-Morán, E &
Rojas-Herrera, A. 2016. Life on the beach
for a sand crab (Emerita rathbunae)
(Decapoda, Hippidae): parasite-induced
mortality of females in populations of the
Pacific sand crab caused by Microphallus
nicolli (Microphallidae). Zoosystematics
and Evolution, vol. 92, pp. 153-161.
Wickham, H. 2016. ggplot2: elegant graphics for
data analysis. Springer-Verlag, New York.
216 p.
Williams, HH & MacKenzie, K. 2003. Marine
parasites as pollution indicators: an update.
Parasitology, vol. 126, pp. S27-S41.
Wynes, DL & Wissing, TE. 1981. Effects of water
quality on fish and macroinvertebrate
communities. Ohio Academy of Science,
Torres et al.
Neotropical Helminthology, 2018, 12(2), jul-dic
vol. 81, pp. 259-267.
Zambrano, D & George-Nascimento, M. 2010. El
parasitismo por Profilicollis bullocki
(Acanthocephala: Polymorphidae) en
Emerita analoga (Anomura: Hippidae)
según condiciones contrastantes de
abundancia de hospederos definitivos en
Chile. Revista de Biología Marina, vol. 45,
pp. 277-283.
Zhang, J, Gilbert, D, Gooday, A, Levin, L, Naqvi,
SWA, Middelburg, JJ, Scranton, M, Ekau,
W, Peña, A, Dewitte, B, Oguz, T, Monteiro,
PMS, Urban, E, Rabalais, NN, Ittekkot, V,
Kemp, WM, Ulloa, O, Elmgren, R, Escobar-
Briones, E & Van der Plas AK. 2010.
277
Natural and human-induced hypoxia and
consequences for coastal areas: synthesis
and future development. Biogeosciences,
vol. 7, pp. 1443-1467.
Zouiten, H. 2012. Análisis mediante modelado
avanzado de procesos de eutrofización en
lagunas litorales: aplicación a masas de
aguas atlánticas y mediterráneas. Tesis
Doctoral. Departamento de Ciencias y
Técnicas del Agua y del Medio Ambiente.
Universidad de Cantabria. España.
Received December 2, 2018.
Accepted December 31, 2018.
Sanitary quality of beaches in the parasitic ecology
Neotropical Helminthology, 2018, 12(2), jul-dic