ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
Neotropical Helminthology, 2018, 12(1), ene-jun:21-26.
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
MONOGENOIDEANS PARASITIZING RHAPHIODON VULPINUS SPIX & AGASSIZ, 1829
(CHARACIFORMES: CYNODONTIDAE) FROM LAKES BAIXIO AND CATALÃO,
AMAZONAS, BRAZIL
MONOGENÓIDEOS PARASITANDO RHAPHIODON VULPINUS (CHARACIFORMES:
CYNODONTIDAE) PROVENIENTES DE LOS LAGOS BAIXIO Y CATALÃO, AMAZONAS, BRASIL
1 Laboratório de Ecologia Molecular e Parasitologia Evolutiva (LEMPE), Universidade Federal do Paraná (UFPR), Rua
Evaristo F. F. da Costa 418, Jardim das Américas, Curitiba – PR, 80050-540. germantiss1106@gmail.com
2 Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de Biodiversidade, Laboratório de Parasitologia e
Patologia de Peixes, Av. André Araújo, 2936 – Petrópolis, Manaus, Amazonas, Brazil 69067-375. jcmalta@inpa.gov.br
1 2
Germán Augusto Murrieta Morey & José Celso de Oliveira Malta
ABSTRACT
Keywords: floodplain lakes – gills – nostrils – Notozothecium lamotheargumedoi Rhinoxenus piranhus
Rhaphiodon vulpinus Spix & Agassiz, 1829 is a neotropical fish species that inhabits lakes and rivers
throughout the Orinoco, Amazonas and Prata basins, and rivers of the Atlantic slopes of the Guianas. Up to
now in the Neotropical region, only one species of Monogenoidea is known from this fish. The present
study aims to identify the monogenoideans that parasitize R. vulpinus collected in two floodplain lakes.
Twelve specimens of R. vulpinus were captured and examined from Lake Baixio and 32 specimens from
Lake Catalão, both located in the township of Iranduba, Amazonas, Brazil. Two species of Monogenoidea
were identified: Notozothecium lamotheargumedoi Cohen & Kohn, 2008 infecting the gills and
Rhinoxenus piranhus Kritsky, Boeger & Thatcher, 1988 infecting the nostrils. Notozothecium
lamotheargumedoi is reported for the second time in R. vulpinus, while R. piranhus is cited for the first
time in a cynodontid species, increasing the number of known hosts for this parasite.
Neotropical Helminthology
21
INTRODUCTION
22
RESUMEN
Palabras clave: branquias – fosas nasales – lagos – Notozothecium lamotheargumedoiRhinoxenus piranhus
Rhaphiodon vulpinus Spix & Agassiz, 1829, es una especie de pez neotropical que habita lagos y ríos de
las vacías del Orinoco, Amazonas y Prata, y en ríos de los declives atlánticos de las Guayanas. Hasta ahora
en la región Neotropical, sólo una espécie de Monogenoidea es conocida para esta especie de pez. El
presente estudio pretende identificar las especies de monogenóideos que parasitan R. vulpinus colectados
en dos lagos inundables. Doce especímenes de R. vulpinus provenientes del lago Baixio y 32 especímenes
del lago Catalão, localizados en el município de Iranduba, Amazonas, Brasil, fueron capturados y
examinados. Dos especies de monogenóideos fueron identificadas: Notozothecium lamotheargumedoi
Cohen & Kohn, 2008 infectando las branquias y Rhinoxenus piranhus Kritsky, Boeger & Thatcher, 1988
en las fosas nasales Notozothecium lamotheargumedoi es citado por segunda vez en R. vulpinus, mientras
que, R. piranhus es citada por primera vez en una especie de cynodontídeo, aumentando el número de
hospederos conocidos para este parásito
For cynodontines, Domingues & Boeger (2005)
reported undetermined species of Rhinoxenus from
Hydrolicus scomberoides (Cuvier, 1819) and
posteriorly, Cohen & Kohn (2008) described
Notozothecium lamoarthogumedoi from the gills
of R. vulpinus collected in different localities of the
Paraná River, State of Paraná, Brazil, being the
only monogenoidean known for cynodontids. The
last report from a monogenoidean parasitizing a
cynodontid was made by Kohn et al. (2011) who
reported an undetermined species from R. vulpinus
collected in the reservoir of the Hydroelectric
Power Station of Itaipu, Paraná, Brazil.
During an investigation in two Amazon floodplain
lakes, two species of Monogenoidea were recorded
from the gills and nostrils of the cynodontid
freshwater fish R. vulpinus.
Between March and December 2013, 12 R.
vulpinus (Fig. 1) were captured in Lake Baixio
0 0
(03 17'27, 2''S/ 60 04'29,6''W) in the township of
Iranduba, and between March and July 2016, 32 R.
0
vulpinus were captured in Lake Catalão (3 10'04''S/
0
59 54'45''W), also in Iranduba, Amazonas, Brazil.
Fish were caught using 100 mm between adjacent
nodes-meshed, 20 m long x 2 m high gillnets.
Cynodontidae comprises 13 species grouped into
two subfamilies: Cynodontinae with the genera
Cynodon Agassiz, 1829; Hydrolycus Cuvier, 1819;
Rhaphiodon Spix & Agassiz, 1829 and Roestinae
with the genera Gilbertolus (Steindachner, 1878),
and Roestes (Kner, 1858) (Lucena & Menezes,
1998). Cynodontines inhabit rivers, lakes, and
flooded forests in all water types, throughout the
Orinoco, Amazonas and Prata basins, and in rivers
of the Atlantic slopes of the Guianas (Toledo-Piza,
2000).
Rhaphiodon vulpinus Spix & Agassiz, 1829 is a
neotropical fish species identified by the oblique
mouth, large canine teeth and relatively long
pectoral fins (Lucena & Menezes, 1998). In lakes,
adults are caught in open areas and in the flooded
forest. Young specimens are caught in the aquatic
vegetation (Saint-Paul et al. 2000). It is a pelagic
and migratory fish, with diurnal habit, piscivorous,
hunting in shoals and predates its prey swallowing
it whole (Pouilly et al., 2004).
The class Monogenoidea is very diverse in number
of species, morphology and ecology (Poulin &
Valtonen 2002). Monogenoideans are found
parasitizing the skin, outer and inner organs of
several aquatic vertebrates, and they are well
known by their high host and infestation site's
specificity (Poulin, 1992).
MATERIAL AND METHODS
Murrieta Morey et al.
Neotropical Helminthology, 2018, 12(1), ene-jun
23
RESULTS
Posteriorly, fishes were quickly immersed in 75 mg
-1
clove oil·L solution and euthanized following the
recommendations of the Ethics and Animal
Welfare Committee (CONCEA, 2013). In the field,
fishes were measured and weighed and posteriorly
gills and nostrils were removed and preserved in
formalin 5% for posterior analyses at the
laboratory of Fish Parasitology (LPP) in the
National Institute of Amazonian Research (INPA).
For morphological studies, the parasites were
mounted in Grey and Wess medium (Amato et al.,
1991). Taxonomical identification was according
to Cohen & Kohn (2008) and Kritsky et al. (1988).
Voucher specimens were deposited in the
Crustacean Collection of the National Institute of
Amazon Research (INPA), Manaus, AM, Brazil
(INPA 643 and 644). The ecological terms in
parasitology follow Bush et al. (1997).
Notozothecium lamotheargumedoi (Fig. 2) was
found parasitizing the gills of R. vulpinus collected
in both lakes, while Rhinoxenus piranhus (Fig. 3)
was found in the nostrils from specimens collected
only in the Lake Baixio. The highest parasitic
levels were registered for N. lamotheargumedoi
(Table 1).
Figure 1. Lateral view of Raphiodon vulpinus Spix & Agassiz, 1829 collected in Amazon oodplain lakes
Figure 2. A. Total body of Notozothecium lamotheargumedoi Cohen & Kohn, 2008 collected from Rhaphiodon vulpinus Spix &
Agassiz, 1829. cc = copulatory complex, B. male copulatory complex. ci = cirrus, ap = accessory piece. C. Haptor. vb = ventral
bar.
Monogenoideans parasitizing Rhaphiodon
Neotropical Helminthology, 2018, 12(1), ene-jun
Notozothecium species were reported only for
Characiformes (Characidae and Serrasalmidae)
(Cohen et al., 2013). Notozothecium
lamotheargumedoi seems to be very specific and
was only cited for R. vulpinus (Cohen & Kohn,
2008) being the only species of Notozothecium
reported for a species of Cynodontidae. In the
present study, N. lamotheargumedoi is reported for
the second time in R. vulpinus, expanding its
geographic distribution to the state of Amazonas.
24
Figure 3. A. total body of Rhinoxenus piranhus Kritsky, Boeger & Thatcher, 1988 collected from Rhaphiodon vulpinus Spix &
Agassiz, 1829. B. anterior part. cc = copulatory complex, v = vagine, C. Haptor. da = dorsal anchor, va = ventral anchor, vb =
ventral bar.
Table 1. Parasitic indexes of the Monogenean parasite species in Rhaphiodon vulpinus Spix & Agassiz, 1829
collected in Amazon floodplain lakes. N = number of examined fish, Ni = number of infected fish, P% = prevalence, I
= intensity of infection, mI = mean intensity of infection, mA = mean abundance.
Species
Lake N Ni P% I mI mA
Notozothecium lamotheargumedoi
Baixio 12 6 50 1090 181.66
90.83
Catalão 32 32 100 1372 42.88 42.88
Rhinoxenus piranhus
Baixio 12 3 25 10 3.33 0.83
DISCUSSION If a parasitic species infects a host belonging to a
small family, the probability of a close coevolution
between the parasite and the host species will be
greater than if the host belongs to a larger family in
which the colonization of a new host will be more
frequent (Poulin, 1992). This is probably the case
of N. lamotheargumedoi which parasitizes R.
vulpinus, a fish from a small family in which the
coevolutionary processes may be stronger,
resulting in high parasite-host specificity.
The chemical composition of fish skin is well
known to be species-specific. Initial contact
between the adhesive areas of oncomiracidium
Murrieta Morey et al.
Neotropical Helminthology, 2018, 12(1), ene-jun
Amato, JFR, Boeger, WA & Amato, SB. 1991.
Protocolos para laboratório coleta e
processamento de parasitas do pescado.
Imprensa Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro,
Brasil. 81 pp.
Bush, AO, Lafferty, KD, Lotz, JM & Shostak, AW.
1997. Parasitology meets ecology on its
own terms: Margolis et al. revisited. The
Journal of parasitology, vol. 83, pp. 575-
583.
Cohen, SC, Kohn, A. 2008. Una especie nueva del
género Notozothecium (Monogenea,
Dactylogyridae), parásita de Rhaphiodon
vulpinus (Cynodontidae, Characiformes)
del río Paraná, estado de Paraná, Brasil.
Revista mexicana de biodiversidad, vol. 79,
pp. 95-98.
Cohen, S, Justo, M & Kohn, A. 2013. South
American Monogenoidea parasites of
fishes, amphibians and reptiles. Oficina de
Livros, Rio de Janeiro, Brasil. 663 pp.
CONCEA. 2013. Diretrizes da Prática de
Eutanásia do Conselho Nacional de
Controle de Experimentação Animal -
CONCEA. Ministério da Ciência,
Tecnologia e Inovação, Brasília, DF. 54 pp.
Domingues, MV & Boeger, WA. 2005.
Neotropical Monogenoidea. 47. Phylogeny
and coevolution of species of Rhinoxenus
(Plat y h e lmint h e s , M o nogeno i d e a,
Dactylogyridae) and their Characiformes
hosts (Teleostei, Ostariophysi) with
descripti on of four n ew species.
Zoosystema, vol. 27, pp. 441-467.
Eiras, JC, Takemoto, RM, Pavanelli, GC &
Adriano, EA. 2010. Diversidade dos
parasitas de peixes de água doce do Brasil.
Clichetec, Maringá. pp. 2380-2389.
Iannacone, JA & Luque, JL. 1993. New records of
helminths parasitic on Peruvian Amazonian
fishes (Osteichthyes). Revista de biología
tropical, vol. 41, pp. 303-305.
Kohn, A, Moravec, F, Cohen, S, Canzi, C,
Takemoto, R & Fernandes, B. 2011.
Helminths of freshwater fishes in the
reservoir of the Hydroeletric Power Station
of Itaipu, Paraná, Brazil. Check List, vol. 7,
pp. 681-690.
25
larvae and host epidermis may contribute to the
interaction of the sensory organs of the parasite
with the specific chemicals of the host epidermis
and the recognition between those components and
the adherents secreted by monogeneans
(Whittington et al., 2000). The occurrence of N.
lamotheargumedoi only in R. vulpinus is a clear
example of host-specificity, where apparently
exists a specialized communication between both
organisms, which allows this parasite species
recognize and parasitize this fish.
Rhinoxenus spp. were recorded parasitizing the
nostrils of some Anostomidae, Bryconidae,
Prochilodontidae and Triportheidae species (Eiras
et al., 2010; Moreira et al., 2017). R. piranhus was
registered only on Serrasalmidae species in three
different countries. In Brazil, it was cited on
Pygocentrus nattereri Kner, 1858 and Serrasalmus
altuvei Ramírez, 1965 (Kritsky et al., 1988; Vital et
al., 2011; Morais et al., 2012), in French Guiana on
P. nattereri and S. spilopleura Kner, 1858
(Domingues & Boeger, 2005) and in Peru on P.
nattereri (Iannacone & Luque, 1993; Luque et al.,
2016). In the present study R. piranhus is recorded
for the first time in the nostrils of a Cynodontidae
especies, increasing the number of known hosts for
this parasite.
The high values in the parasitic indexes of N.
lamotheargumedoi indicate its efficiency on the
transmission of new individuals and the
colonization of the gills of R. vulpinus. Lentic
environments such as the Lake Baixio and Catalão,
facilitate the life cycle of this parasites, influencing
positively in the abundance of specimens that
parasitize the gills of this fish. In contrast, R.
piranhus seems to be less efficient. This could be,
because the nostrils are smaller than the gills, so the
space of colonization is reduced.
The authors thank the support of Laboratorio de
Parasitologia de Peixes (LPP) of the Instituto
Nacional de Pesquisas da Amazonia - INPA.
GAMM received a scholarship from the
Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior CAPES (Brazil).
ACKNOWLEDGEMENTS
BIBLIOGRAPHIC REFERENCES
Monogenoideans parasitizing Rhaphiodon
Neotropical Helminthology, 2018, 12(1), ene-jun
26
Kritsky, DC, Boeger, WA & Thatcher, VE. 1988.
Neotropical monogenea. II: Rhinoxenus,
n e w g e n u s ( D a c t y l o g y r i d a e :
Ancyrocephalinae) with descriptions of
three new species from the nasal cavities of
Amazonian Characoidea. Proceedings of
the Biological Society of Washington, vol.
101, pp. 87-94.
Lucena, CA & Menezes, NA. 1998. A phylogenetic
analysis of Roestes Günther and
Gilbertolus Eigenmann, with a hypothesis
on the relationships of the Cynodontidae
and Acestrorhynchidae (Teleostei:
Ostariophysi: Characiformes). Phylogeny
and Classification of Neotropical Fishes,
vol. 10, pp. 261-278.
Morais, AM. 2011. Biodiversidade de parasitos da
piranha vermelha Pygocentrus nattereri
( K n e r, 1 8 5 8 ) ( C h a r a c i f o r m e s ;
Serrasalmidae) e sua avaliação como
bioindicadores na Amazônia Central.
Dissertação de Doutorado, Instituto
Nacional de Pesquisas da Amania,
Manaus, Amazonas. 234 pp.
Moreira, A, De Oliveira, T, Morey, G & Malta, J.
2017. Metazoários parasitas de Tripotheus
angulatus (Spix & Agassiz, 1829) do lago
Catalão, Rio Solimões, Amazonas, Brasil.
Folia Amazónica, vol. 26, pp. 9-16.
Pouilly, M, Yunoki, T, Rosales, C & Torres, L.
2004. Trophic structure of fish assemblages
from Mamo River floodplain lakes
(Bolivia). Ecology of Freshwater Fish, vol.
13, pp. 245-257.
Poulin, R. 1992. Determinants of host-specificity in
parasites of freshwater fishes. International
Journal for Parasitology, vol. 22, pp. 753-
758.
Poulin, R & Valtonen, ET. 2002. The predictability
of helminth community structure in space: a
comparison of fish populations from
adjacent lakes. International Journal for
Parasitology, vol. 32, pp. 1235-1243.
Saint-Paul, U, Zuanon, J, Correa, MAV, García, M,
Fabré, NN, Berger, U & Junk, WJ. 2000.
Fish communities in central Amazonian
white-and blackwater floodplains.
Environmental Biology of Fishes, vol. 57,
pp. 235-250.
Toledo-Piza, M. 2000. The Neotropical fish
subfamily Cynodontinae (Teleostei:
Osta r i ophys i : C h a raci f o rmes) : a
phylogenetic study and a revision of
Cynodon and Rhaphiodon. American
Museum Novitates, vol. 3286, pp. 1-88.
Vital, JF, Varella, AMB, Porto, DB & Malta, JC.
2011. Sazonalidade da f auna de
metazoários de Pygocentrus nattereri (Kner,
1858) no lago Piranha (Amazonas, Brasil) e
a avaliação de seu potencial como
indicadora da saúde do ambiente. Biota
Neotropica, vol. 11, pp. 199-204.
Whittington, ID, Cribb, BW, Hamwood, TE &
Halliday, JA. 2000. Host-specificity of
monogenean (platyhelminth) parasites: a
role for anterior adhesive areas?.
International Journal of Parasitology, vol.
30, pp. 305-320.
Received January 3, 2018.
Accepted February 5, 2018.
Murrieta Morey et al.
Neotropical Helminthology, 2018, 12(1), ene-jun