The silverside (Odonthestes argentinensis Valenciennes, 1835) is an important aquatic resource in coasts
of de la Plata River both in Argentina and Uruguay. This fish species acts as intermediate host of several
parasites, included trematode metacercariae. It was found in gills of silversides collected in Uruguayan
waters, metacercariae of Ascocotyle sp. Looss, 1899 (Heterophyidae) and Stephanoprora uruguayensis
Holcman-Spector & Olagüe, 1989 (Echinostomatidae). The aim of this study was determinate the
prevalence and mean intensity of digenean metacercariae in the gills of O. argentinensis from the
Uruguayan coast of de la Plata River, its relationship with fish size and sampling season, and to describe
the spatial distribution of that metacercariae in gills. A total of 279 fish were examined. The prevalence
and mean intensity of the parasites was 53.04% and 26.38 respectively for S. uruguayensis and 34.05%
and 11.38 for Ascocotyle sp. We found a different distribution in the metacercariae between fore and rear
gill arches. While S. uruguayensis is distributed mainly in the gills archs 1 and 2; Ascocotyle sp. are mainly
in the gills archs 3 and 4. Although S. uruguayensis metacercariae were mainly found in the proximal
region of the gill filament, (K-S = 4.80; p<0.01) and Ascocotyle sp., which was mainly present in the distal
region (K-S =4.89; p<0.01). This restriction of transverse and lateral niche may correspond to different
penetration route and the different size of the cercariae.
ISSN Versión impresa 2218-6425 ISSN Versión Electrónica 1995-1043
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
SPATIAL DISTRIBUTION OF TWO DIGENEA METACERCARIAE IN GILLS OF THE SILVERSIDE
ODONTESTHES ARGENTINENSIS (ATHERINIFORMES) FROM DE LA PLATA RIVER (URUGUAY,
SOUTHWESTERN ATLANTIC OCEAN)
DISTRIBUCIÓN ESPACIAL DE DOS METACERCARIAS DE DIGENEOS EN BRANQUIAS DEL
PEJERREY ODONTHESTES ARGENTINENSIS (ATHERINIFORMES) DEL RIO DE LA PLATA
(URUGUAY)
1 Instituto de Investigaciones Pesquera, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay. Tomás
Basáñez 1160, PC:11300, Montevideo, Uruguay.
2 Departamento de Parasitología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
Corresponding author: E-mail: dcarnevia@gmail.com
1 2 1 1
Daniel Carnevia Guerrero ; Oscar Castro Di Falco ; Maite Letamendía Tourné & Alejandro Perretta Noschesi
ABSTRACT
Keywords: Ascocotyle – metacercariae – StephanoproraOdonthestes argentinensis
Neotropical Helminthology
41
Volume13,Number1(jan-jun2019)
ÓrganooficialdelaAsociaciónPeruanadeHelmintologíaeInvertebradosAfines(APHIA)
Lima-Perú
VersiónImpresa:ISSN2218-6425VersiónElectrónica:ISSN1995-1043
Auspiciado por:
Neotropical Helminthology, 2019, 13(1), ene-jun:41-47.
INTRODUCTION
42
RESUMEN
Palabras clave: Ascocotyle – metacercarias – StephanoproraOdonthestes argentinensis
El pejerrey (Odonthestes argentinensis Valenciennes, 1835) es un importante recurso acuático en las
costas del Río de la Plata. Este pez actúa como huesped intermediario de varios parásitos incluyendo
metacercárias de trematodes. En las branquias de estos peces colectados en la costa uruguaya del Rio de la
Plata encontramos metacercárias de Ascocotyle sp. Looss, 1899 (Heterophiydae) y Stephanoprora
uruguayensis Holcman-Spector & Olagüe, 1989 (Echinostomatidae). El objeto de este trabajo fue
determinar la prevalencia e intensidad media de infestación, así como describir la distribución especial de
estas metacercarias en las branquias. Se examinaron 279 peces. La prevalencia e intensidad media de la
parasitosis fue de 34,05 % y 11,38 para Ascocotyle sp. y de 53,04% y 26,38 para S. uruguayensis.
Observamos una distribución desigual de las metacercarias entre los arcos branquiales internos y
externos. Mientras que S. uruguayensis se distribuye principalmente en los arcos branquiales 1 y 2;
Ascocotyle sp. es más abundante en los arcos branquiales 3 y 4. Además las metacercárias de S.
uruguayensis se encontraron principalmente en la región proximal del filamento branquial (KS = 4.80; p
<0.01) mientras que las de Ascocotyle sp. están principalmente en la región distal ( KS = 4,89; p <0,01).
Los autores postulan que esta restricción del nicho transversal y lateral puede corresponder a diferentes
vías de penetración y al diferente tamaño de las cercárias.
microhabitat within the host, and several niches
can be recognized within it. The selection of the
implantation site of parasites in the gills may
respond to several factors: water flows into the gill
chamber, availability of gill area for clamping
sheets, differences in blood flow in different areas
of gill arches, immunity level, etc. (Gutiérrez &
Martorelli, 1999a). There are few studies on spatial
distribution and interaction of parasites in the gills
of fish. Most of this works concerns the ecology of
parasitic monogeneans (Gutiérrez & Martorelli,
1999b, 1999c; Simková et al., 2000; Gutiérrez,
2001; Turgut et al., 2006; Soylu et al., 2010) and
copepods (Benz & Dupre, 1987; Bashirullah,
2000; Timi, 2003; Failla, 2012) and also exists few
researchs aimed in the spatial distribution of other
parasites as myxosporidia or Digenea (Nie, 1996;
Molnar, 2002; Tombi et al., 2010).
The objective of this study was determinate the
prevalence and mean intensity of digenean
metacercariae in the gills of O. argentinensis from
the Uruguayan coast of the Río de la Plata, its
relationship with fish size and sampling season,
and to describe the spatial distribution of that
metacercariae in gills.
The silverside Odontesthes argentinensis
Valenciennes, 1835; is distributed from the state of
Santa Catarina in Brazil, to Bahía Blanca in
Argentina, and is one of the species caught by
commercial and recreational fishermen in “de la
Plata” River. This fish acts as intermediate host of
several trematodes (Alarcos et al., 2010). In
Uruguay were identified two metacercariae in gills
of O. argentinensis: Stephanoprora uruguayensis
(Echinostomatidae) and Ascocotyle sp.
(Heterophyidae) (Letamendia et al., 2010;
Carnevia et al., 2012; Castro et al., 2012; Maidana
et al., 2012).
The niche separation facilitates the coexistence of
several species by reducing competition for
resources (Slagsvold & Wiebe, 2007). There is an
interaction between parasites that inhabit the same
host and constant competitive interaction leads to
niche diversification by segregation, eventually
causing site specificity. The mechanisms
responsible for niche restriction in parasites are
competition, predation, and reinforcement of
reproductive barriers (Rohde, 1979). The gills are a
Neotropical Helminthology, 2019, 13(1), ene-jun Carnevia Guerrero et al.
43
tested. For the analysis of differences in
infrapopulation of parasites between the gills
arches or arch sectors a nonparametric
Kolmogorov-Smirnov test was performed because
the data were not normally distributed (Zar, 2010).
We used the statistical software Statgraphic Plus
5.1 and significance level was established at
p<0.05.
Ethic aspects: The authors declare that all the
ethical aspects of the country and international
ones were fulfilled.
A total of 279 fish were examined, 60.2% of them
were collected in cold season and 39.8% in warm
season. The prevalence and mean intensity of the
parasites was 53.04% and 26.38 respectively for S.
uruguayensis and 34.05% and 11.38 for Ascocotyle
sp. Prevalence and mean intensity of S.
uruguayensis were no correlated with fish size
(p=0.08 and p=0.16, respectively). However the
prevalence and the mean intensity of Ascocotyle sp.
were correlated with fish size (p=0.01 and 0.03,
respectively). The prevalence for S. uruguayensis
and Ascocotyle sp. in warm season was 27.02% and
13.5% respectively, while in cold season was
70.65% and 48.5% respectively. There was a
difference between the prevalence in the warm and
cold season for both S. uruguayensis (Z =-7.15,
p<0.01) and Ascocotyle sp. (Z=-6.02, p<0.01). We
Monthly samplings were made during a year in
coasts of de la Plata River in Montevideo city
(56º07`W, 34º54`S), in each sampling a minimum
of 20 fishes were collected. The fishes were
obtained from an artisanal fisherman, already dead
and were transported refrigerated to the laboratory.
Each fish was measured and weighed, then
dissected and gill arches were removed. The arches
were numbered 1 to 4 in an anteroposterior
direction (considering the arches 1 and 2 as fore
and 3 and 4 as rear) and the blades of each gill arch
were divided into proximal and distal region (fig.
1). Each gill arch was observed under a light
microscope in fresh, and the number and location
of the parasites were recorded.
With analytical purposes was adopted the criteria
of two thermal seasons in de la Plata River estuary
proposed by Guerrero et al. (1997), this implies the
existence of a warm season (December to March)
with a mean surface temperature of 12°C in our
sampling site and a cold season (June to
September) with 22°C of mean surface
temperature in the same site. Prevalence and mean
intensity of parasitism were calculated according
to Bush et al. (1997). The relationship between the
mean intensity and prevalence with the fish size
was analyzed by a correlation test (fish were
divided into 7 classes respect to the total length). To
compare the prevalence between seasons the null
hypothesis of equal proportions by Z test was
MATERIAL AND METHODS
RESULTS
Neotropical Helminthology, 2019, 13(1), ene-jun Metacercariae in gills of Odontesthes
Figure 1. Diagram showing gill arches position in Odontesthes argentinensis (operculum removed) and division of gill arch in
proximal and distal region (P and D).
44
DISCUSSION
lower than A. longa (93.06) (Perretta et al., 2005;
Brock & Font, 2009; Galvan-Borja et al., 2010;
Shoaibi et al., 2010; Martorelli et al., 2012).
If well the existence of a positive correlation
between the prevalence and mean intensity of
metacercariae with the fish size has been reported
previously, it is still discussed; several authors
argue this existence by means a cumulative effects
and the increment of parasite penetration with the
increase of the body surface of the fishes (Coleman
& Travis, 1998; Yamada et al., 2007; Namba et al.,
2012), but on the other hand, Portes et al. (2013) for
example, do not found correlations between the
number of metacercariae of A. longa and the fish
size.
The high prevalence and intensity levels found in
the cold season in this study contrast the findings
made by others. Coleman & Travis (1998) found an
increased prevalence and intensity of infection to
Ascocotyle pachycystis Schroeder & Leigh, 1965;
metacercariae in the warm season, which was
explained by the lower survival of highly
parasitized fish (Cyprinodon variegatus Lacépède,
1803) during the winter, and by the low production
of cercariae by lowering the temperature
(Steinauer & Font, 2003). A possible explanation
of our findings could be that O. argentinensis
breeding in the cold season, many juveniles being
captured in the warm season, so the cumulative
effect is more pronounced during the cold season.
There is little information that allows us to interpret
the preferential location of Ascocotyle sp. and S.
uruguayensis in the gills of O.argentinensis. The
morphological and physiological factors that
determine the selection of a specific parasite are
still unknown for most species. In the case of the
gill parasites, differences in the flow of water
between gills, as well as differences in blood flow
found a different distribution in the metacercariae
between fore and rear gill arches. While S.
uruguayensis is distributed mainly in the gills archs
1 and 2; Ascocotyle sp. are mainly in the gills archs
3 and 4. Differences were found between the total
number of metacercariae of S. uruguayensis (K-S =
3.03; p<0.01) and Ascocotyle sp. (K-S = 1.82;
p<0.01) present in the gills 1 and 2 with respect to 3
and 4. Differences were found between the number
of metacercariae of S. uruguayensis (K-S = 4.80;
p<0.01), which were mainly found in the proximal
region of the gill filament, and Ascocotyle sp. (K-S
=4.89; p<0.01), which was mainly present in the
distal region (Table 1).
The prevalence of S. uruguayensis found in the
silverside (53.04%) was higher than that found in
other fish species in Patagonia (Galaxias
maculatus Jenyns, 1842, 29.54%, Brachygalaxias
bulbcki Regan, 1908. 26.9% , Aplochiton zebra
Jenyns, 1842, 3%) (Viozzi et al., 2008, 2009;
Fernández et al., 2012), but lesser than the
prevalence of S. aylacostoma Ostrowski &
Quintana, 2007; found in fishes from the Parana
River (88-100%) (Ostrowski & Quintana, 2007).
Instead the mean intensity of infection (26.38) was
much higher than that cited by these researchers (1
to 3.8).
The prevalence of Ascocotyle sp. found in this
study (34.05%) was lower than that found in other
fish species (A. longa Ransom,1920, 35%, A.
tenuicollis Price, 1935, 58%, A. ampullacea Miller
& Harkima, 1962, 80% and A. mcintoshi Price,
1936, 87%). The mean intensity of infection
(11.38) was similar to that reported for A.
ampullacea and A. mcintoshi (9.1 to 10.8) but
Neotropical Helminthology, 2019, 13(1), ene-jun Carnevia Guerrero et al.
Table 1. Metacercariae in the gills of Odontesthes argentinensis from Rio de la Plata, Uruguay (average, SD,
minimum-maximun) (n = 279).
site
Stephanoprora
uruguayensis Ascocotyle sp.
Gills arches 1 and 2
98.91 +
71.32 (1 –
308) 1.64 +
2.14 (0 – 8)
Gills arches 3 and 4
19.65 + 16.19 (1 –
62) 2.17 +
2.23 (0 – 8)
Proximal region of gills
56.32 +
62.31 (1 –
308) 0.32 +
1.08 (0 – 8)
Distal region of gills
2. 94 +
13.92 (0 –
113) 1.58 +
2.02 (0 – 7)
45
to areas of the gills, have been postulated as the
main factors that determine the preferential
localization (Rohde, 1979). We postulate a
preferential location of As co co ty le and
Stephanoprora metacercariae in gills of O.
argentinensis based on the different route of arrival
to the gill and different cercariae sizes (Ascocotyle
140-265 µm, Stephanoprora 85-141 µm).
According to Stein (1968) and Leigh (1974)
cercariae of the genus Ascocotyle penetrate
through the gills of fish, then migrate to the target
o r g a n s . B y c o n t r a s t , c e r c a r i a e o f
Echinostomatidae have a great tail and takes
intense movements near the surface to attract fish
that ingest, afterwards penetrate the wall gut and
would travel through the bloodstream to the target
organs. Gill would be reached via the branchial
artery afferent to settle at the secondary lamellae
(Koie, 1986; Paller & Uga, 2008).
Odontesthes argentinensis could be parasitized
with trematode metacercariae of the family
H e t e r o p h y i d a e ( A s c o c o t y l e s p . ) a n d
Echinostomatidae (Stephanoprora uruguayensis)
in gills, with higher prevalence and intensity of
infection in the cold season. Metacercariae are
differentially located in the gills: S. uruguayensis
dominates arches 1 and 2 in the proximal area,
while Ascocotyle sp. predominates in arches 3 and
4 in the distal zone. This restriction of transverse
and lateral niche may correspond to different
penetration route and the different size of the
cercariae.
To Florencia Cremonte for critically reading the
manuscript and appropriate suggestions.
ACKNOWLEDGEMENTS
Bashirullah, A. 2000. Non-interaction coexistence
of two parasitic copepods of Charax hippus
(Carangidae) in eastern Venezuela.
Crustacean Issues, vol. 12, pp. 791-796.
BIBLIOGRAPHIC REFERENCES
Benz, G & Dupre, K. 1987. Spatial distribution of
the parasite Kroyeria carchariaeglauci
( C o pe p o da , S i p h o n o s t o m a t o id e a ,
Kroyeriidae) on the gills of the blue shark
(Prionace glauca L). Canadian Journal of
Zoology, vol. 65, pp. 1275-1281.
Brock, S & Font, W. 2009. Helmints of the western
mosquitofish (Gambusia affinis) in Bayou
Traverse Louisiana, U.S.A. Comparative
Parasitology, vol. 76, pp. 210-221.
Bush, A, Kevin, L, Lotz, J & Shostak, A. 1997.
Parasitology meets ecology on its own
terms: Margolis et al. revisited. Journal of
Parasitology, vol. 83, pp. 575-583.
Carnevia, D, Castro, O, Letamendía, M, Perretta,
A, Lado, P & Casas, G. 2012. Prevalencia
de metacercárias de Heterophyidae
(Trematoda, Digenea) en peces estuarinos
del Río de la Plata. II Congreso Uruguayo
de Zoología, Montevideo, p. 62.
Castro, M, Carnevia, D & Castro, O. 2012.
Prevalencia y ecología parasitaria de
S t e p h a n o p r o r a s p . ( D i g e n e a ,
Echistomatidae) en el pejerrey Odontesthes
a r g e n t i n e n s i s ( O s t e i c h t h y e s ,
Atherionopsidae). II Congreso Uruguayo
de Zoología, Montevideo, p. 143.
Coleman, F & Travis, J. 1998. Phenology of
recruitment and infection patterns of
Ascocotyle pahycystis, digenean parasite
in the sheepshead minnow, Cyprinodon
variegatus. Environmental Biology of
Fishes, vol. 51, pp. 87-96.
Failla, G. 2012. Spatial distribution and
microhabitat selection of copepods
(Copepoda, Ergasilidae), gill parasites of
Mugil platanus (Pisces, Mugilidae) from
Laguna de Rocha, Uruguay. Boletín de la
Sociedad Zoológica del Uruguay, vol. 21,
pp. 39-49.
Fernandez, V, Semenas, L & Viozzi, G. 2012.
Parasites of “Peladilla” Aplochiton zebra
(O sm er if orm es , G al ax ii dae) from
Patagonia (Argentina and Chile).
Comparative Parasitology, vol. 79, pp. 231-
237.
Galvan-Borja, D, Olivero-Verbel, J & Barros-
García, L. 2010. Occurrence of Ascocotyle
(Phagicola) longa Ranson, 1920 (Digenea,
Heterophyidae) in Mugil incilis from
Cartagena Bay, Colombia. Veterinary
Parasitology, vol. 168, pp. 31-35.
Neotropical Helminthology, 2019, 13(1), ene-jun Metacercariae in gills of Odontesthes
46
Veterinary Parasitology, vol. 190, pp. 599-
603.
Molnar, K. 2002. Site preference of fish
myxosporeans in the gill. Diseases of
Aquatic Organisms, vol. 48, pp. 197-207.
Namba, T, Madi, R & Veta, M. 2012. Ascocotyle
s p . m e t a c e r c a r i a e ( D i g e n e a ,
Heterophyidae) in tissues of mullets Mugil
liza and Mugil curema (Osteichthyes,
Mugilidae) collected in the fish trade of the
Iguape city, Sao Paulo, Brazil. Neotropical
Helmintology, vol. 6, pp. 271-275.
Nie, P. 1996. Co-ocurrence and microhabitat of
Ancyrocephalus mogurnidae (Monogenea)
and Henneguya wishanensis (Myxosporea)
on gills of the mandarin fish Siniperca
chuatsi. Folia Parasitolologica, vol 43, pp.
272-276.
Ostrowski, M & Quintana, M. 2007. The life cycle
of Stephanoprora aylacostoma n. sp.
(Digenea: Echinostomatidae), parasite of
the threatened snail Aylacostoma
chloroticum (Prosobranchia, Thiaridae), in
Argentina. Parasitolological Research, vol.
102, pp. 647-655.
Paller, V & Uga, S. 2008. Attachment and
penetration of Centrocestus armatus
(Digenea: Heterophyidae) cercariae to gills
of secondary intermediate fish hosts.
Journal of Parasitology, vol. 94, pp. 578-
583.
Perretta, A, Carnevia, D. & Castro, O. 2005.
Distribución de las metacercárias de
Ascocotyle (Phagicola) longa (Trematoda:
Heterophyidae) en los órganos internos de
juveniles de lisa, Mugil platanus (Pisces,
Mugiliadae). Act. VIII Jornadas de
Zoologia del Uruguay, p. 93.
Portes, C, Correa, K, da Silva, V & Nunes, E. 2013.
Fish-borne trematodosis: potential risk of
infection by Ascocotyle (Phagicola) longa
(Heterphyidae). Veterinary Parasitology,
vol. 193, pp. 302-306.
Rohde, K. 1979. A critical evaluation of intrinsic
and extrinsic factors responsible for niche
restriction in parasites. The American
Naturalist, vol. 114, pp. 648-671.
Shoaibi, B.; Ebranhimzadeh, H. and Sarifpour I.
2010. Occurrence and histopathology of
Ascocotyle tenicuillis metacercariae in gill
of platy fish (Xiphophorus maculatus)
imported to Iran. Iran Journal of Fisheries
Guerrero, R, Acha, M, Framiñan, M & Lasta, C.
1997. Physical Oceanography of the Rio de
la Plata Estuary. Continental Shelf
Research, vol. 17, pp. 727-742.
Gutierrez, P. 2001. Monogenean community
structure on the gills of Pimelodus albicans
from Rio de la Plata (Argentina): a
comparative approach. Parasitology, vol.
122, pp. 465-470.
Gutierrez, P & Martorelli, S. 1999a. Hemibranch
preference by freshwater monogeneans a
function of gill area, water current, or both?
Folia Parasitologica, vol. 46, pp. 263-266.
Gutierrez, P & Martorelli, S. 1999b. The structure
of the monogenean community on the gills
of Pimelodus maculatus in Rio de la Plata
(Argentina). Parasitology, vol. 119, pp. 177-
182.
Gutierrez, P & Martorelli, S. 1999c. Niche
preference and spatial distribution of
Monogenea on the gills of Pimelodus
maculatus in Rio de la Plata (Argentina).
Parasitology, vol. 119, pp. 183-188.
Kǿie, M. 1986. The life-history of Mesorchis
d e n t i c u l a t u s ( T r e m a t o d a ,
E c h i n o s t o m a t i d a e ) Ze i t s, 1 909 .
Parasitology, vol. 72, pp. 335-343.
Leigh, H. 1974. Life history of Ascocotyle
mcintoshi (Trematoda, Heterophyidae).
Journal of Parasitology, vol. 60, pp. 768-
772.
Letamendía, M, Castro, O, Perretta, A & Carnevia,
D. 2010. Identificación del pejerrey
Odonthestes argentinensis (Pisces,
Teleostei, Atheriniidae) como segundo
h o s p e d a d o r i n t e r m e d i a r i o d e
S t e p h a n o p r o r a s p . ( D i g e n e a ,
Schinostomatidae) en las costas de
Montevideo. I Congreso de Zoología del
Uruguay. p.108.
Maidana, N, Carnevia, D & Castro, O. 2012.
Identificación de metacercarias de
heterófidos presentes en el pejerrey
Odonthestes argentinensis (Osteichthys,
Atherinopsidae) de las costas uruguayas
del Rio de la Plata. II Congreso Uruguayo
de Zoologia, p187.
Martorelli, S, Lino, A, Marcotegui, P, Montes, M &
Panei, C. 2012. Morphological and
molecular identification of the fish-borne
metacercariae of Ascocotyle (Phagicola)
longa in Mugil liza from Argentina.
Neotropical Helminthology, 2019, 13(1), ene-jun Carnevia Guerrero et al.
47
Spatial distribution of Monogenean and
Myxosporidian gill parasites of Barbus
martorelli Roman 1971 (Teleostei:
Cyprinidae): the role of intrinsic factor.
African Journal of Agriculture Research,
vol. 5, pp. 1662-1669.
Turgut, E.; Shinin, A. and Wootten, R. 2006.
Spatial distribution of Dactylogyrus
(Monogenean) on the gills of the host fish.
Turkey Journal of Fisheries Sciences, vol. 6,
pp. 93-98.
Viozzi, G, Flores, V, Marin, S, Mancilla, M &
Carvajal, J. 2008. Parasites of the red
jollytail, Grachygalaxias bullocki
(Osmariformes, Galaxiidae), from Maullin
river, Patagonia, Chile. Comparative
Parasitology, vol. 75, pp. 329-328.
Viozzi, G, Semenas, L, Brugni, N & Flores, V.
2009. Metazoan parasites of Galaxias
maculatus (Osmeriformes: Galaxiidae)
from Argentinean Patagonia. Comparative
Parasitology, vol. 76, pp. 229-239.
Yamada, F, Takemoto, R. & Pavanelli, G. 2007.
Aspectos ecológicos dos ectoparasitos
branquiais de Satanoperca pappaterra
(Cichlidae) da planicie de inundacao do
alto Parana, Brasil. Acta Scientiarum
Biological Sciences, vol. 29, pp. 331-336.
Zar, J. 2010. Biostatistical analysis. New Jersey,
Prentice Hall. 944p.
Science, vol. 9, pp 472-477.
Simková, A, Desdevises, Y, Gelnar, M & Morand,
S. 2000. Co-existence of nine gill
ectoparasites (Dactylogyrus: Monogenea)
parasiting the roach (Rutilus rutilus L)
history and present ecology. International
Journal of Parasitology, vol. 30, pp, 1077-
1088.
Slagsvold T. and Wiebe K. 2007. Learning the
ecological niche. Proceedings of Biological
Science of Royal Society, vol. 274, pp 19-
23.
Soylu, E, Rüzgar, B & Soylu, M. 2010. Seasonal
dynamics and spatial distribution of
Dactylogyrus crucifer Wagner, 1857, on the
gills of roach (Rutilus rutilus L.) from Lake
Saparda, Turkey. Turkey Journal of
Zoology, vol. 34, pp. 393-398.
Stein, P. 1968. Studies on the life history and
biology of the trematode genus Ascocotyle.
Thesis (Ph.D.) University of Miami, 188p.
(Diss. Abst. 29: 4448-4449).
Steinauer, M & Font, W. 2003. Seasonal dynamics
of the helminths of bluegill (Lepomis
macrocirus) in a subtropical region.
Journal of Parasitology, vol. 89, pp. 324-
328.
Timi, J. 2003. Habitat selection by Lernanthropus
c y n o s c i o c o l a ( C o p e p o d a ,
Lernanthropidae) host as physical
environmental, a major determinant of
niche restriction. Parasitology, vol. 127,
pp. 155-163.
Tombi, J, Nack, J & Bilong-Bilong, C. 2010.
Received February 12, 2019.
Accepted April 28, 2019.
Neotropical Helminthology, 2019, 13(1), ene-jun Metacercariae in gills of Odontesthes