75 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Neotropical Helminthology Neotropical Helminthology, 2025, vol. 19 (1), 75-84 ORIGINAL ARTICLE / ARTÍCULO ORIGINAL A NEW SPECIES OF RHINOXENOIDES (DACTYLOGYRIDAE) PARASITIZING TRIPORTHEUS ANGULATUS (SPIX & AGASSIZ, 1829) (CHARACIFORMES) FROM THE JURUÁ RIVER BASIN, BRAZILUNA NUEVA ESPECIE DE RHINOXENOIDES (DACTYLOGYRIDAE) QUE PARASITA A TRIPORTHEUS ANGULATUS (SPIX & AGASSIZ, 1829) (CHARACIFORMES) EN LA CUENCA DEL RÍO JURUÁ, BRASIL Simone Chinicz Cohen 1 ; Williane Maria de Oliveira Martins 2 & Marcia Cristina Nascimento Justo 1* ISSN Versión Impresa 2218-6425 ISSN Versión Electrónica 1995-1403 DOI: https://dx.doi.org/10.62429/rnh20251911914 Universidad Nacional Federico Villarreal Volume 19, Number 1 (jan - jun) 2025 Este artículo es publicado por la revista Neotropical Helminthology de la Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú auspiciado por la Asociación Peruana de Helmintología e Invertebrados Af nes (APHIA). Este es un artículo de acceso abierto, distribuido bajo los términos de la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) [https:// creativecommons.org/licenses/by/4.0/deed.es] que permite el uso, distribución y reproducción en cualquier medio, siempre que la obra original sea debidamente citada de su fuente original. ABSTRACT A new species of Rhinoxenoides was described parasitizing the gill f laments of neotropical triportheid f shes. T e new species was described from Triportheus angulatus (Spix & Agassiz, 1829) from the Juruá River, State of Acre, Brazil. Rhinoxenoides cruzeirensis n. sp. resembles Rhinoxenoides horacioschneideri Santos Neto, Costa, Soares & Domingues, 2018, mainly by presenting a coiled male copulatory organ (MCO) with clockwise rings; accessory piece with articulation process extending within the coils to the base of MCO; dorsal anchor with well-developed superf cial root, and dorsal bar absent. However, it dif ers from this by number of the coils of the MCO; accessory piece formed by a straight piece that expands in the middle, where it folds over itself; ventral bar short and robust; dorsal anchor with a well-developed superf cial root twice as long as the deep root, with a small wing-shaped extension in the distal portion. Keywords: Dactylogyridae – Neotropical Region – Parasites of f shes – Rhinoxenoides – South America – Triportheidae 1 Laboratório de Helmintos Parasitos de Peixes, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Avenida Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brasil. scohen@ioc.f ocruz.br / marciajusto@ioc.f ocruz.br 2 Laboratório de Biologia Geral do Instituto Federal de Acre (IFAC), Campus Cruzeiro do Sul, Estrada da Apadec nº1192, Bairro Nova Olinda, CEP: 69980-000, Cruzeiro do Sul, Acre, Brazil. williane.martins@ifac.edu.br * Corresponding author: marciajusto@ioc.f ocruz.brSimone Chinicz Cohen: https://orcid.org/0000-0001-8204-336X Williane Maria de Oliveira Martins: https://orcid.org/0000-0002-0684-3389 Marcia Cristina Nascimento Justo: https://orcid.org/0000-0003-2078-7587
76 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Chinicz Cohen et al. RESUMEN Se describió una nueva especie de Rhinoxenoides parasitando los flamentos branquiales de peces triportheidos neotropicales. La nueva especie fue descrita de Triportheus angulatus (Spix & Agassiz, 1829) del río Juruá, estado de Acre, Brasil. Rhinoxenoides cruzeirensis n. sp. se asemeja a Rhinoxenoides horacioschneideri Santos Neto, Costa, Soares & Domingues, 2018, principalmente por presentar organo copulatorio masculino (OCM) con anillos espirales en sentido horario; pieza accesoria con proceso de articulación que se extiende dentro de espirales hasta la base de OCM; ancla dorsal con raíz superfcial bien desarrollada y barra dorsal ausente. Pero se diferencia de este por el número de espirales de la OCM; pieza accesoria formada por una pieza recta que se expande en el centro, donde se pliega sobre sí misma; barra ventral corta y robusta; ancla dorsal con una raíz superfcial bien desarrollada dos veces más larga que la raíz profunda con una pequeña extensión en forma de ala en la porción distal. Palabras clave: Dactylogyridae – Parásitos de peces – Región neotropical – Rhinoxenoides – Sudamérica – Triportheidae INTRODUCTION Te Amazon biome boasts the largest hydrographic system in the world and the largest freshwater reserve, containing around 20% of the global freshwater, and is considered one of the richest ecosystems on the planet. Te Amazon hydrographic region represents 49.29% of the Brazilian territory, covering all or part of the states of Acre, Amazonas, Roraima, Rondônia, Pará, Amapá, Maranhão, Tocantins, and Mato Grosso (Tosta & Coutinho 2015; IBGE, 2019; Silva & Bampi, 2019).Parasite diversity in Amazonian fshes is likely underestimated, given the region’s rich ichthyofauna and high levels of endemism. Tis unique combination supports a remarkable variety of helminth species (Luque et al ., 2017). Understanding fsh parasite diversity could be an important tool for conserving global biodiversity (Luque et al ., 2017).Te Juruá River Basin belongs to the great Amazon Basin and is located between the states of Acre and Amazonas. It is drained by extensive rivers in a general southwest-north-east direction, with rivers of great importance throughout its course, such as the Juruá River, which rises in the Peruvian Andes and fows into the Solimões River. Tis river is one of the main tributaries of the right bank of the Amazon River and is considered one of the most winding in the world, forming huge food grids and thousands of lakes (ACRE, 2012; Costa et al ., 2012; Sousa & Oliveira, 2016, Mota da Silva, 2020). Although there is signifcant diversity of helminth species recorded in the Amazon, knowledge about parasite richness remains incomplete in certain areas. Most research focuses on the Central and Eastern Amazon, while the southwestern Amazon has received limited attention. Studies in the Juruá River basin have primarily documented parasitic fauna in aquaculture systems, leading to a substantial knowledge gap regarding the biodiversity of parasites associated with fsh in natural systems in this southwestern Amazon region (Virgilio et al ., 2021). Recent research on the Juruá River has identifed fve species of monopisthocotylan, including three Cosmetocleithrum spp. parasitizing the catfsh Oxydoras niger (Valenciennes, 1821) in the Juruá River: Cosmetocleithrum basicomplexum Silva, Meneses, Martins, Cohen, Costa & Justo, 2023, Cosmetocleithrum confusus Kritsky, Tatcher & Boeger, 1986, Cosmetocleithrum sacciforme Silva, Meneses, Martins, Cohen, Costa & Justo, 2023, and Unibarra juruaensis Justo, Martins & Cohen, 2023 and Unibarra paranoplatensis (Suriano & Incorvaia, 1995) parasitizing Pimelodus blochii Valenciennes, 1840 (Justo et al ., 2023; Silva et al., 2023).Within the order Characiformes, Triportheidae includes fve genera and 23 species (Froese & Pauly, 2024), among which Triportheus angulatus (Spix & Agassiz, 1829), a benthopelagic freshwater fsh, distributed in the Amazon River basin in South America and exclusive to the Neotropical Region (Malabarba, 2004, Froese & Pauly, 2024). Tese species are exploited by subsistence fshing and have become an alternative source of fsh since the natural stocks of other commercially important fsh species in the Amazon have declined over time (Cajado et al ., 2023).To date, 29 species of Monopisthocotyla have been described in South America from Triportheidae hosts, with the majority of these species classifed under the genus Anacanthorus Mizelle & Price, 1965 (see Table).
77 New species of Rhinoxenoides Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Table 1. Species of Monopisthocotyla reported in South America from Triportheus spp. hosts. MONOPISTHOCOTLAHOSTCOUNTRYREFERENCE Anacanthorus acuminatus Kritsky, Boeger & Van Every, 1992 T. albus, T. angulatus, T. elongatus BRKritsky et al. (1992); Moreira et al. (2017) Anacanthorus alatus Kritsky, Boeger & Van Every, 1992 T. albus, T. elongatus BRKritsky et al . (1992) Anacanthorus andersoni Kritsky, Boeger & Van Every, 1992 T. angulatus BRKritsky et al . (1992) Anacanthorus bellus Kritsky, Boeger & Van Every, 1992 T. albus, T. elongatus, Triportheus sp.BRKritsky et al. (1992) Anacanthorus calophallus Kritsky, Boeger & Van Every, 1992 T. elongatus BRKritsky et al. (1992) Anacanthorus carinatus Kritsky, Boeger & Van Every, 1992 T. angulatus BRKritsky et al . (1992) Anacanthorus chaunophallus Kritsky, Boeger & Van Every, 1992 T. angulatus BRKritsky et al. (1992); Moreira et al. (2017) Anacanthorus chelophorus Kritsky, Boeger & Van Every, 1992 T. angulatus, Triportheus sp.BRKritsky et al. (1992); Moreira et al. (2017) Anacanthorus cornutus Kritsky, Boeger & Van Every, 1992 T. angulatus BRKritsky et al. (1992) Anacanthorus euryphallus Kritsky, Boeger & Van Every, 1992 T. albus, T. angulatus, T. elongatus BRKritsky et al. (1992); Moreira et al. (2017) Anacanthorus formosus Kritsky, Boeger & Van Every, 1992 T. elongatus, Triportheus sp.BRKritsky et al. (1992) Anacanthorus furculus Kritsky, Boeger & Van Every, 1992 T. elongatus, T. rotundatus BRKritsky et al. (1992); Santos & Tavares-Dias (2017) Anacanthorus glyptophallus Kritsky, Boeger & Van Every, 1992 T. angulatus BRKritsky et al. (1992) Anacanthorus lygophallus Kritsky, Boeger & Van Every, 1992 T. angulatus BRKritsky et al. (1992); Moreira et al. (2017) (Continúa Table 1)
78 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Chinicz Cohen et al. Anacanthorus nanus Kritsky, Boeger & Van Every, 1992 T. angulatus BRKritsky et al. (1992) Anacanthorus pelorophallus Kritsky, Boeger & Van Every, 1992 T. elongatus BRKritsky et al . (1992) Anacanthorus pithophallus Kritsky, Boeger & Van Every, 1992 T. angulatus , T. curtus , T. rotundatus BRKritsky et al . (1992); Oliveira et al. (2016); Moreira et al. (2017); Santos & Tavares-Dias (2017) Anacanthorus quinqueramus Kritsky, Boeger & Van Every, 1992 T. albus, T. elongatus, Triportheus sp . BRKritsky et al. (1992) Anacanthorus ramulosus Kritsky, Boeger & Van Every, 1992 T. albus, T. elongatus BRKritsky et al. (1992) Anacanthorus strongylophallus Kritsky, Boeger & Van Every, 1992 T. elongatus BRKritsky et al. (1992) Anacanthorus tricornis Kritsky, Boeger & Van Every, 1992 T. angulatus, T. elongatus BRKritsky et al. (1992) Ancistrohaptor falcatum Agarwal & Kritsky, 1998 T. elongatus BRAgarwal & Kritsky (1998) Ancistrohaptor falciferum Agarwal & Kritsky, 1998 T. albus, T. angulatus, T. elongatus, Triportheus sp. BRAgarwal & Kritsky (1998); Moreira et al . (2017) Ancistrohaptor falcunculum Agarwal & Kritsky, 1998 T. albus, T. angulatus, T. elongatus BRAgarwal & Kritsky (1998); Moreira et al. (2017) Ancistrohaptor forfcata Diniz, Sousa, Yamada & Yamada, 2025 T. signatus BRDiniz et al . (2025) Jainus iquitensi s Morey, Viana, Chota & Chero, 2025 T. angulatus PEMorey et al . (2025) Jainus loretoensis Morey, Viana, Chota & Chero, 2025 T. angulatus PEMorey et al. (2025) Jainus sardinae Morey, Viana, Chota & Chero, 2025 T. angulatus PEMorey et a l. (2025) Rhinoxenus anaclaudiae Domingues & Boeger, 2005 T. angulatus, T. nematurus, Triportheus sp.BRDomingues & Boeger (2005); Moreira et al . (2017) (Continúa Table 1)
79 New species of Rhinoxenoides Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 In continuation of the studies carried out in the Juruá River Basin in Brazil, aiming to describe the fauna of helminths parasitizing freshwater fsh, a new species of Rhinoxenoides Santos Neto, Costa, Soares & Domingues, 2018 was found infesting the gills of T. angulatus . Te new species described here enhances our understanding of the diversity of monopisthocotylan parasites in triportheid fshes, as well as ofering valuable insights into the region’s biodiversity, and underscoring the importance of expanding research across the Amazon basin. MATERIAL AND METHODS In January 2024, two specimens of T. angulatus were captured with gill nets and a hook and line from Juruá River, Acre, Brazil (7°40 34.1 S, 72°39 39.5 W) (Fig. 1). All collections obtained environmental licensing through the Biodiversity Authorization and Information System (SISBIO, 396871-1). Te gills were removed and placed in vials containing hot water (~65ºC) and they were then vigorously shaken to detach the parasites from the gill flaments. Absolute ethanol was added to reach a concentration of 70%. Te parasites were collected from the sediment and gill arches in the laboratory with the aid of a stereoscopic microscope. Te specimens were mounted unstained in Hoyer’s medium for the study of the sclerotized parts. Photomicrographs and drawings were taken using a Zeiss® Axioskop microscope micrographic system, with a diferential interference contrast (DIC) apparatus and an Olympus BX 41 microscope with phase contrast, equipped with a camera lucida. All measurements are in micrometers, and the means are followed by the range in parentheses and by the number of specimens measured when more than two. Dimensions of organs and other structures represent the greatest distance; lengths of curved or bent structures (bars and accessory piece) represent the straight-line distances between extreme ends. Te numbering of hook pairs follows Mizelle & Price (1963). Holotype and paratypes were deposited in the helminthological collection of the Instituto Oswaldo Cruz (CHIOC). Figure 1. Location of the study area, Juruá River, Acre municipality of Cruzeiro do Sul, Brazil (7°40 34.1 S, 72°39 39.5 W) Cruzeiro do Sul, Acre State, Brazil. Ethical aspects : All applicable institutional, national and international guidelines for the care and use of animals were followed. RESULTSTAXONOMY Class Monopisthocotyla Brabec, Salomaki, Kolısko, Scholz & Kuchta, 2023 Order Dactylogyridea Bychowsky, 1937 Dactylogyridae Bychowsky, 1933 Rhinoxenoides Santos Neto, Costa, Soares & Domingues, 2018 Rhinoxenoides cruzeirensis n. sp. (Fig. 2 A-G) Type-host: Triportheus angulatus (Spix & Agassiz, 1829) (Characiformes: Triportheidae).
80 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Chinicz Cohen et al. Site in host: Gill lamellae. Type-locality: Juruá River, municipality of Cruzeiro do Sul, Acre, Brazil (7°40 34.1 S, 72°39 39.5 W). Parasitological indices: Total number of hosts: 2; number of infected hosts: 1; total number of parasites: 11. Deposited material: Holotype (CHIOC 40615a); Paratypes (CHIOC 40615b-i). Etymology: Te specifc name is dedicated to the municipality of Cruzeiro do Sul, in the state of Acre, Brazil, where the parasite was recovered.Description (Based on 11 specimens, mounted in Hoyer’s medium). Body fusiform, elongated, comprising cephalic region, trunk, and haptor. Tegument thin, smooth. Body 509 (415–625; n = 10) long, 74 (60–85; n = 11) wide at the level of germarium. Anterior region with four cephalic lobes well developed, two terminal, two bilateral; three pairs of head organs; cephalic glands indistinct. Two pairs of eyespots, posterior pair larger and closer together than anterior pair; accessory granules absent (Fig. 2A). Pharynx spherical 20 (18–22; n = 6) in diameter. Esophagus short. Two intestinal ceca confuent posteriorly to testis, lacking diverticula. Gonads intercecal, tandem. Germarium ventral to testis, 74 (70–80; n = 4) long. Vagina and vaginal canal slightly sclerotized; vaginal aperture sinistroventral. Seminal receptacle spherical. Mehlis’ gland, uterus, oviduct, and ootype not observed. Egg 72 long by 45 wide (n = 1). Vitellaria extends throughout the trunk, except in areas of other reproductive organs. Prostatic reservoir elongated posterior to male copulatory organ (MCO), 41 (40–42; n = 3) long. Copulatory complex comprising MCO and accessory piece. Coiled MCO with 1½ clockwise rings, 17 (15–20; n = 5) proximal ring diameter; accessory piece formed by a straight piece that expands in the middle, where it folds over itself; in the proximal portion it articulates with the base of the MCO, 40 (35–44; n = 4) long, through a copulatory ligament (Fig. 2B). Peduncle inconspicuous. Haptor subtriangular, 65 (52–73; n = 8) wide (Fig. 2A). Ventral bar short and wide, 19 (15–22; n = 9) long (Fig. 2C). Dorsal bar absent. Ventral and dorsal anchor dissimilar in size and shape. Ventral anchor with superfcial root elongated, well developed; deep root short, rounded; evenly curved shaft, point not passing from the level of the type of superfcial root, 69 (65–72; n = 16) long, base 28 (24–31; n = 13) (Fig. 2D). Dorsal anchor with a well-developed superfcial root, slender, twice the size of the deep root and a small wing-shaped extension in the distal portion; deep root elongated, rounded at the tip; straight shaft, short point hook-shaped, 55 (53–58; n = 17) long, base 10 (8–11; n = 7) (Fig. 2E). Hooks similar in shape, shank divided into two subunits, distal part of shank infated; flamentous hook (FH) loop extending close to the beginning of shank dilation, erect thumb, curved long shaft, delicate point. Hook pairs 1 and 5, 16 (15–16; n = 4) long (Fig 2G), and hook pairs 2, 3, 4, 6, and 7, 21 (20–22; n = 8) long (Fig. 2F). Remarks: Te new species was allocated in Rhinoxenoides as it shares characteristics of the genus, such as MCO formed by a coiled tube with clockwise rings articulated to the accessory piece by copulatory ligament; dorsal anchor with superfcial root twice the size of the deep root; and by the absence of dorsal bar. Rhinoxenoides cruzeirensis n. sp. is similar to Rhinoxenoides horacioschneideri Santos Neto, Costa, Soares & Domingues, 2018, the only species of the genus, by presenting a well-developed ventral anchor with a superfcial truncated root; prostatic reservoir elongated, not divided into regions; vagina sinistral; coiled MCO with clockwise rings; accessory piece with articulation process extending within coils to the base of MCO; dorsal anchor with well-developed superfcial root comprising three times the total length, and dorsal bar with enlarged ends. Te new species difers from R . horacioschneideri by presenting a coiled MCO with 1½ clockwise rings; accessory piece formed by a straight piece that expands slightly at its center, where it bends into the shape of an elbow (2½ coils; comprising variable distal sheath in R . horacioschneideri ); ventral bar short and robust (V-shaped in R . horacioschneideri ); dorsal anchor with a well-developed superfcial root twice as long as the deep root and a small wing-shaped extension in the distal portion (three times longer than the deep root; small wing-shaped extension in the distal portion absent in R . horacioschneideri ) and by the hook size (1-3 and 5 smaller than the others in R . horacioschneideri ). In the original description, the authors stated that the species present the dorsal anchor with superfcial root twice the size of deep root, but in the original drawing the superfcial root is shown as three times as long as deep root, feature confrmed by examining the type material deposited in the Helminthological Collection of Oswaldo Cruz Institute CHIOC 39025a (holotype); 39025b-c (paratypes); 39026 (paratype), and 39027a-d (vouchers). DISCUSSION Rhinoxenoides Santos Neto, Costa, Soares & Domingues, 2018 was erected by Santos-Neto et al. (2018) to accommodate R. horacioschneideri described from Acestrorhynchus falcatus (Bloch, 1794). It is characterized
81 New species of Rhinoxenoides Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Figure 2. Rhinoxenoides cruzeirensis n. sp. from Triportheus angulatus . A, Total, ventral view (composite); B, Copulatory complex, ventral view; C, Ventral bar; D, Ventral anchor; E, Dorsal anchor; F, Hook pairs 2-4,6,7. G, Hook pairs 1,5. Scale bars: A, 100 µm, B, 20 µm, C, F, G, 10 µm, D, E, 30 µm. by the morphology of copulatory complex, composed of a coiled tube with clockwise rings articulated to the accessory piece by copulatory ligament; by the morphology of haptoral sclerites as dorsal anchor with the superfcial root twice as long as the deep root; straight shaft, curved point; and by the absence of dorsal bar (Santos-Neto et al., 2018). Te monotypic genus presents shared characteristics, such as the presence of a copulatory ligament and dorsal anchors with a straight long shaft and absence of a dorsal bar, with Rhinoxenus Kritsky, Boeger & Tatcher, 1988, but difer by the coiled MCO with counterclockwise coils, absence of superfcial and deep roots in both pairs of anchors, and dorsal anchor with elongate, straight
82 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Chinicz Cohen et al. shaft in Rhinoxenus . Protorhinoxenus Domingues & Boeger, 2002, a genus closely related to Rhinoxenus was proposed by Domingues & Boeger (2002). Both genera share morphological features such as a coiled MCO with counterclockwise coils, absence of superfcial and deep roots in both pairs of anchors, and dorsal anchors with elongated and straight shafts. Rhinoxenus and Rhinoxenoides share the character of the absence of a dorsal bar, difering from Protorhinoxenus in this feature. According to Santos-Neto et al . (2018), the absence of dorsal bar could be interpreted as an independent secondary loss in Rhinoxenoides and Rhinoxenus , or its absence could be shared by the three genera as a synapomorphy with secondary acquisition in Protorhinoxenus . Tese authors proposed a cladistic hypothesis, in which species of Protorhinoxenus , Rhinoxenoides , and Rhinoxenus share the presence of a copulatory ligament and dorsal anchors with a straight long shaft. Tese features are also observed in the new species of Rhinoxenoides proposed herein. Te authors stated that species of Protorhinoxenus , Rhinoxenoides , and Rhinoxenus seem to be exclusively found infecting characiform fshes from South America. According to our results, by proposing another species of Rhinoxenoides parasitizing a characiform fsh belonging to Triportheidae, while the previously reported species of the genus was collected from Acestrorhynchidae, propose that members of these three other genera are not restricted to members of one host family within Characiformes. Te fnding shows that the parasite faunas of fshes need to be further characterized through additional sampling for monopisthocotylan of species of all characiform families, and that cladistics studies are necessary, to elucidate host-parasite relationships in the freshwater fshes of the Neotropical Region. Author contributions: CRediT (Contributor Roles Taxonomy)SCC = Simone Chinicz Cohen WMOM = Williane Maria de Oliveira Martins MCNJ = Marcia Cristina Nascimento Justo Conceptualization: SCC Data curation: SCC, WMOM, MCNJ Formal Analysis: SCC, WMOM, MCNJ Funding acquisition: SCC Investigation: SCC, WMOM, MCNJ Methodology: WMOM, MCNJ Project administration: SCC Resources: SCC, WMOM, MCNJ Software: MCNJ Supervision: SCC Validation: SCC, WMOM, MCNJ Visualization: SCC, WMOM, MCNJ Writing – original draft: SCC, WMOM, MCNJ Writing – review & editing: SCC, MCNJ BIBLIOGRAPHIC REFERENCES ACRE Secretaria de Estado de Meio Ambiente. (2012). Plano estadual de recursos hídricos do Acre. SEMA, 243 p.Agarwal, N., & Kritsky, D.C. (1998). Neotropical Monogenoidea. 33. Tree new species of Ancistrohaptor n.g. (Dactylogyridae, Ancyrocephalinae) on Triportheus spp. (Teleostei, Characidae) from Brazil, with checklists of ancyrocephalines recorded from Neotropical characiform fshes. Systematic Parasitology, 39 , 59-69.Cajado, R.A., Silva, F.K.S., Oliveira, L.S., Santos, Z., Bialetzki, A., & Zacardi DM. (2023). Early life history of two Neotropical Triportheidae fsh (Characiformes). Neotropical Ichthyology, 2 , e220102.Costa, A.C.S., Souza, L.P., Delgado, R.C., & Gomes, F.A. (2012). Períodos de cheia e vazante do rio Juruá na região de Cruzeiro do Sul, Acre. Enciclopédia Biosfera, Centro Científco Conhecer, 8, 1343.Diniz, M.F.B.G., de Souza, W.B.B., Yamada, P.D.O.F., & Yamada, F.H. (2025). Ancistrohaptor forfcata sp. n. (Monopisthocotyla, Dactylogyridae): A New Parasite of Triportheus signatus (Characiformes, Triportheidae) from the Salgado River, Brazil. Parasitologia, 5 , 3.
83 New species of Rhinoxenoides Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Domingues, M.V., & Boeger, W.A. 2005. Neotropical Monogenoidea. 46. Phylogeny and coevolution of species of Rhinoxenus (Monogenoidea, Ancyrocephalinae) and their Characiformes hosts (Teleostei, Ostariophysi) with description of four new species. Zoosystema, 27 , 441-467.Froese, R. & Pauly, D. (2024). FishBase . World Wide Web electronic publication. www.fshbase.orgIBGE - Instituto Brasileiro de Geografa e Estatística. (2019). IBGE lança mapa inédito de Biomas e Sistema Costeiro-Marinho. In: Agência IBGE Notícias. https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/ 25798-ibge-lanca-mapa-inedito-de-biomas-e-sistema-costeiro-marinho. Justo, M.C.N., Martins, W.M.O., & Cohen, S.C. (2023). A new species of Unibarra (Monogenoidea, Dactylogyridae) parasite of Oxydoras niger from Juruá River, State of Acre, Brazil and new data for U. paranoplatensis . Acta Parasitologica, 68 , 439-446.Kritsky, D.C., Boeger, W.A., & Van Every, L.R. (1992). Neotropical Monogenoidea. 17. Anacanthorus Mizelle and Price, 1965 (Dactylogyridae, Anacanthorinae) from Characoid fshes of the Central Amazon. Journal of the Helminthological Society of Washington, 59 , 25-51.Luque, J.L., Pereira, F.B., Alves, P.V., Oliva, M.E., & Timi, J.T. (2017). Helminth parasites of South American fshes: current status and characterization as a model for studies of biodiversity. Journal of Helminthology, 91 , 150-164.Malabarba, M.C.S.L. (2004). Revision of the neotropical genus Triportheus Cope, 1872 (Characiformes: Characidae). Neotropical Ichthyology, 2 , 167-204.Mizelle, J.D. & Price, C.E. (1963) Additional haptoral hooks in the genus Dactylogyrus . Journal of Parasitology, 49 , 1028-1029. Moreira, A.C., Oliveira, T.T.S., Morey, G.A.M., & Malta, J.C.O. (2017). Metazoários parasitos de Triportheus angulatus (Spix & Agassiz, 1829) do lago Catalão, Rio Solimões, Amazonas, Brasil. Folia Amazonica, 26 , 9-16.Morey, G.A.M., Viana, D.C., Chota, H.R., Chero, J.D. (2025) Tree new species of Jainus (Monogenoidea: Dactylogyridae) from the gills of Triportheus angulatus (Characiformes: Triportheidae) collected in the Peruvian Amazonia. Systematic Parasitology, 102 , 1.Mota da Silva, P.J. (2020) Channel Pattern and Flow Rate Analyses of the Juruá River, Northwest of Brazil. Revista de Geologia, 33 , 103-110.Oliveira, M.S.B., Gonçalves, R.A., & Tavares-Dias, M. (2016). Community of parasites in Triportheus curtus and Triportheus angulatus (Characidae) from a tributary of the Amazon River system (Brazil). Studies on Neotropical Fauna and Environment, 51 , 29-36.Santos, P.H.N., & Tavares-Dias, M. (2017). First study on communities of parasites in Triportheus rotundatus , a Characidae fsh from the Amazon River system (Brazil). Brazilian Journal Veterinary Parasitology, 26 , 28-33.Santos-Neto, J.F., Costa, N.G.S., Soares, G.B., & Domingues, M.V. (2018). Monogenoidean parasites of Acestrorhynchus falcatus (Characiformes: Acestrorhynchidae) from Pará, Brazil: species of Diaphorocleidus and Rhinoxenoides n. gen. (Monogenoidea: Dactylogyridae). Journal Helminthology, 93 , 208-219.Silva, A.L.S., de Meneses, Y.C., Martins, W.M.O., Cohen, S.C, da Costa, A.P. & Justo, M.C.N. (2023). Dactylogyrids (Platyhelminthes, Monogenea) from the gill lamellae of doradids (Siluriformes) with description of fve new species of Cosmetocleithrum and new geographical distribution for known species from the Neotropical Region, Brazil. Parasite, 30 , 53.Silva, C.A.F., & Bampi, A.C. (2019). Regional Dynamics of Brazilian Amazon: between Modernization and Land Conficts. Cuadernos de Geografía: Revista Colombiana de Geografía, 28 , 340-356. Souza, M.M., & Oliveira, W. (2016). Identifcação de feições anômalas dos sistemas de drenagem na região do Alto Juruá – AC/AM, utilizando dados de sensoriamento remoto. Revista Brasileira de Geografa Física, 9 , 1254-1267.Tosta, A.L., & Coutinho, E.F. (2015). Brazil , ABC-CLIO. 414 pp.
84 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Chinicz Cohen et al. Virgilio, L.R., Silva-Lima, F., Takemoto, R.M., Aranha, L.M.C. & Oliveira, M.D.U. (2021). Endofauna of helminth parasites of fsh in the amazonic basin. South American Journal of Basic Education, Technical and Technological, 8 , 102-116.Received February 10, 2025.Accepted April 10, 2025.