33 Clinostomum marginatum in Poecilia reticulata Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Neotropical Helminthology Neotropical Helminthology, 2025, vol. 19 (1), 33-49 ORIGINAL ARTICLE / ARTÍCULO ORIGINAL ENDOPARASITES ASSOCIATED WITH ANURAN AMPHIBIANS IN A CONSERVATION AREA IN THE SETE CIDADES NATIONAL PARK, PIAUÍ STATE, BRAZILENDOPARÁSITOS ASOCIADOS A ANFIBIOS ANUROS EN UN ÁREA DE CONSERVACIÓN DEL PARQUE NACIONAL DE SETE CIDADES, ESTADO DE PIAUÍ, BRASIL Jacilene de Sousa Uchôa 1,4 , Cicero Ricardo de Oliveira 2,4,* , Etielle Barroso de Andrade 3 & Diva Ma-ria Borges-Nojosa 1,4 ISSN Versión Impresa 2218-6425 ISSN Versión Electrónica 1995-1403 DOI: https://dx.doi.org/10.62429/rnh20251911905 Universidad Nacional Federico Villarreal Volume 19, Number 1 (jan - jun) 2025 Este artículo es publicado por la revista Neotropical Helminthology de la Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú auspiciado por la Asociación Peruana de Helmintología e Invertebrados Af nes (APHIA). Este es un artículo de acceso abierto, distribuido bajo los términos de la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) [https:// creativecommons.org/licenses/by/4.0/deed.es] que permite el uso, distribución y reproducción en cualquier medio, siempre que la obra original sea debidamente citada de su fuente original. ABSTRACT Inventories are the basis of studies, essential for determining which and how many species are part of an ecosystem and important for understanding the diversity and functioning of organisms. Studies on parasitic fauna are based on the importance of these organisms as disease-causing agents that can inf uence the biosecurity of ecosystems and natural environments. T us, research that investigates the relationship between helminths and anurans provides information that helps in the conservation of these species and their habitats. T is study aims to describe the parasitic community associated with anuran amphibians in the Sete Cidades National Park (PNSC), an important conservation area in the north of the state of Piauí, Brazil. We analyzed 318 anuran amphibians, distributed among 21 species and four families. Of these, 142 individuals were parasitized by at least one species of endoparasite, giving an overall prevalence of 44.65%. A total of 8056 parasite specimens were counted and identif ed in 26 parasite taxa, with an average infection intensity of 56.73 and abundance of 25.33. Among the most abundant species found were Raillietnema spectans Gomes, 1964 1 Programa de Pós-Graduação em Ecologia e Recursos Naturais, Departamento de Biologia, Campus do Pici, Universidade Federal do Ceará, Fortaleza, Brasil, Av. Mister Hull, s/n, Fortaleza, CE, 60440-900, Brasil 2 Universidade Federal do Cariri, Instituto de Formação de Educadores, Laboratório de Biologia e Ecologia de Vertebrados, 63.260-000, Brejo Santo, CE, Brasil. 3 Grupo de Pesquisa em Biodiversidade e Biotecnologia do Centro-Norte Piauiense, Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Pedro II, Rua Antonino Martins de Andrade, 750, Pedro II, PI, 64255-000, Brasil. 4 Núcleo Regional de Of ologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil.* Corresponding author: riccicer@gmail.com Jacilene de Sousa Uchôa: https://orcid.org/0000-0003-3426-1391Cicero Ricardo de Oliveira: https://orcid.org/0000-0002-3194-7067Etielle Barroso de Andrade: https://orcid.org/0000-0002-5030-1675Diva Maria Borges-Nojosa: https://orcid.org/0000-0002-8696-0170
34 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. (3034), Schrankiana schranki (Travassos, 1925) (2383), and Aplectana hylambatis (Baylis, 1927) (1540). In this study, we expanded the parasite fauna of anurans in the PNSC, which previously consisted of 13 parasite taxa in just four anuran species. Here, we recorded 21 additional parasite taxa, with new records of infection in 17 anuran host species. We also added 19 new parasite taxa to the existing records for the state of Piauí, signifcantly expanding our knowledge of the region. Keywords: Anurans – Helminthes – Inventory – Nematodes – Semi-arid RESUMEN Los inventarios son la base de los estudios, esenciales para determinar cuáles y cuántas especies forman parte de un ecosistema e importantes para comprender la diversidad y el funcionamiento de los organismos. Los estudios sobre la fauna parasitaria se basan en la importancia de estos organismos como agentes causantes de enfermedades que pueden infuir en la bioseguridad de los ecosistemas y entornos naturales. Así, las investigaciones que indagan en la relación entre helmintos y anuros proporcionan información que ayuda a la conservación de estas especies y sus hábitats. El objetivo de este estudio es describir la comunidad parasitaria asociada a anfbios anuros en el Parque Nacional de Sete Cidades (PNSC), una importante área de conservación en el norte del estado de Piauí. Analizamos 318 anfbios anuros, distribuidos entre 21 especies y cuatro familias. De ellos, 142 individuos estaban parasitados por al menos una especie de endoparásito, lo que supone una prevalencia global del 44,65%. Se contabilizaron un total de 8056 ejemplares parasitados y identifcados en 26 taxones de parásitos, con una intensidad media de infección de 56,73 y una abundancia de 25,33. Entre las especies más abundantes se encontraron Raillietnema spectans Gomes, 1964 (3034), Schrankiana schranki (Travassos, 1925) (2383), y Aplectana hylambatis (Baylis, 1927) (1540). En este estudio, hemos ampliado la fauna de parásitos de anuros en el PNSC, que anteriormente constaba de 13 taxones de parásitos en sólo cuatro especies de anuros. Aquí, registramos 21 taxones de parásitos adicionales, con nuevos registros de infección en 17 especies de anuros hospedadores. También añadimos 19 nuevos taxones de parásitos a los registros existentes para el estado de Piauí, ampliando signifcativamente nuestro conocimiento de la región. Palabras clave: Anuros – Helmintos – Inventario – Nematodos – Semiárido INTRODUCTION Amphibians are the vertebrates most at risk of extinction, with 40.7% of species threatened worldwide (Luedtke et al ., 2023). Emerging infectious diseases and habitat loss are currently the main causes of amphibian decline (Luedtke et al ., 2023; Ruggeri et al ., 2023). Amphibians are intermediate, paratenic, and/or defnitive hosts for various species of parasitic helminths (Koprivnikar et al ., 2012; Campião et al ., 2014; Amorim et al ., 2019; Herczeg et al ., 2021; Mascarenhas et al ., 2021). In this way, parasites can also cause species decline, afecting host immunity and population dynamics (Bittencourt & Rocha, 2003; Hudson, 2005). Te parasite fauna comprises a large part of the planet’s biodiversity (Kuris, 2008), where parasitism is a complex ecological interaction that can involve ecological processes of multiple hosts (Bower et al ., 2019) and can have a long history of coevolution between hosts and their parasites (Ebert & Fields, 2020). Among other things, they represent an important modulator of biodiversity at diferent trophic levels and are models for studying parasite-host relationships (Cardoso et al ., 2016).Inventories, which are the basis of studies, are essential for determining which and how many species are part of an ecosystem and are important for understanding the diversity and functioning of organisms (Segalla et al ., 2021). Studies on parasitic fauna are based on the importance of these organisms as disease-causing agents that can infuence the biosecurity of ecosystems and natural environments (Brooks & Hoberg, 2000). Tus, research investigating the relationship between helminths and anurans provides information that helps in the conservation of these species and their habitats (Coimbra et al ., 2023). In addition to parasites having this ecological importance, anurans are also important as
35 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 environmental bioindicators (Chaukulkar et al ., 2018; Cramp & Franklin, 2018). Helminths are the most common invertebrates parasitizing amphibians (Santos & Amato, 2013). Among these, the most abundant are nematodes (Campião et al ., 2014; Oliveira et al ., 2022) due to the biological aspects of the host and environmental conditions (Sena et al ., 2018; Oliveira et al ., 2022), where changes in natural ecosystems can cause variations in the transmission patterns of these parasites, facilitating their occurrence and dispersal (Poulin, 2007). Tese parasitic aspects are also closely related to the phylogeny and life history of the hosts (Poulin, 2007; Brito et al ., 2014). Tus, many of the characteristics of the host habitat can infuence colonization by parasites (Goater et al ., 2005). Tis is due to how hosts respond to biotic factors such as temperature, humidity, precipitation, and others (Poulin & Krasnov, 2010). Amphibian parasites can be directly afected by the environment, physiology, behavior, and ecology of their host (Bower et al ., 2019). In amphibians, parasites can induce behavioral changes in their hosts that favor their establishment or transmission to their fnal host (Hernandez-Caballero et al ., 2022). Stress-induced physiological changes can increase the host’s vulnerability to parasitic infections (Herczeg et al ., 2021), such as physiological responses caused by pesticides (Rohr et al ., 2008; Hua et al ., 2017). In addition, the presence and abundance of highly lethal parasites in amphibian populations may indicate susceptibility to disease and environmental disturbances (Koprivnikar, 2012).However, according to Oliveira et al . (2023), parasites are distributed according to the dispersal of their hosts and are not directly infuenced, as they are endoparasites, by the biotic factors that commonly limit the dispersal of other species. In this case, parasites are present in most anuran species. Knowledge of the diversity and distribution of parasites is therefore important for understanding the role of parasite-host ecological relationships in ecosystem dynamics (Poulin & Krasnov, 2010; Campião et al ., 2015b).Since there is a lack of information on the parasitic fauna of anuran amphibians in Piauí (Vieira et al ., 2021), and given their impact on the ecology of populations and communities, the study of parasitism is important to understand the relationships between host and parasite, their impact on the trophic chain, and the infuence of environmental factors on these relationships (Berkhout et al ., 2019; Oliveira et al ., 2023). Furthermore, helminths can also be used as bioindicators of environmental health (Koprivnikar et al ., 2012). Tis study aims to describe the parasitic community associated with anuran amphibians in the Sete Cidades National Park (PNSC), an important conservation area in the state of Piauí, Brazil. MATERIALS AND METHODS Anuran amphibians were collected in the Sete Cidades National Park (PNSC), an environmental protection area located in the northern region of the state of Piauí (04°02-08‘S, 41°40-45’W), Brazil, which has an average altitude ranging from 100 and 290 meters (Ivanov & Lemos, 2020). Te territory has typical characteristics of a transition zone, with areas of Caatinga and Cerrado (Della-Favera, 2002; Oliveira et al ., 2010; Lopes et al ., 2011). Te anurans were collected at fve sampling points throughout the park during the region’s rainy season, using auditory and visual searches (Heyer et al ., 1994), during 19 collection days between March and May 2024, from 18:00 to 00:00. In the laboratory, the anurans were euthanized with a lethal injection of thiopental sodium (Tiopentax®), fixed in 10% formaldehyde, and preserved in 70% alcohol. They were necropsied with ventral incisions in the anteroposterior axis, and the following organs were analyzed using a stereoscopic microscope: gastrointestinal tract, lungs, liver, kidneys, and internal cavity. The parasites were collected and prepared according to Amato et al . (1991). Te parasites were identifed according to the specifc methodology for each taxonomic group, using the following literature: Yamaguti (1971), Schmidt (1986), Vicente et al . (1991), and Felix-Nascimento et al . (2020). Te infection parameters were analyzed according to Bush et al . (1997). Te endoparasites identifed were deposited in the Parasitological Collection of the Federal University of Ceará (CPUFC; voucher: 1087 – 1112), Fortaleza, Brazil, and their hosts in the Herpetological Collection of the Federal University of Ceará (CHUFC; voucher: PN7C 01 – PN7C 318), Fortaleza, Brazil. We used a linear model to verify the relationship between host size (snout-vent length-SVL) and fnal parasite abundance. Ethic aspects: All the procedures used in this work comply with the ethical standards of the relevant national and institutional guidelines on the care and use of laboratory animals. Collection authorization Chico Mendes Institute for Biodiversity Conservation - ICMBio (#92796-1) and Ethics Committee on the Use of Animals of the Federal University of Ceará (CEUA-UFC) (#CEUA 6314010321).
36 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. Table 1 . List of endoparasites found in anuran hosts of the Sete Cidades National Park (PNSC), Piauí state, northeastern Brazil, and indication of new infection records. N = number of hosts; NH = number of parasites; P% = prevalence; MII + R = mean intensity of infection + range; AB + SE = abundance + standard error. Host (N ) Parasite (NH)P%MII + AAB + SEReferenceBufonidae Rhinella diptycha (18) 66.6716.17 (1 - 84)10.78 + 0.56 Aplectana hylambatis (2)5.5620.11New record Ochoterenella sp. (1)5.5610.06Aguiar et al . (2021); Benício et al . (2022) Oswaldocruzia mazzai (157)22.2239.25 (5 - 84)8.72 + 3.29Aguiar et al . (2021); Oliveira et al . (2022) Physaloptera sp. (2)11.1110.11Amorim et al . (2019); Oliveira et al. (2022) Raillietnema spectans (5)5.5650.27Amorim et al . (2019); Oliveira et al . (2022) Rhabdias sp. (12)5.56120.67Amorim et al. (2019); Aguiar et al. (2021); Oliveira et al . (2022)Cosmocercidae female (13)38.891.86 (1 - 3)0.72 + 0.18-Ascarididae larva (4)5.5640.22- Hylidae Boana raniceps (4) 503 (1 - 5)1.5 + 0.87 Physalopteroides venancioi (6)503 (1 - 5)1.5 + 0.87Campião et al . (2016a); Oliveira et al . (2022) Dendropsophus minusculus (14) 14.294 (1 - 6)0.57 + 0.09 Brevimulticaecum sp. (6)7.1460.42New record Physocephalus sp. (1)7.1410.07New record Centrorhynchus sp. (1)7.1410.07Oliveira et al . (2022) Dendropsophus minutus (33) 3.034 (1 - 3)0.12 (Continúa Tabla 1)
37 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Centrorhynchus sp. (3)3.0330.09Oliveira et al . (2022)Nematoda larva (1)3.0310.03- Dendropsophus soaresi (3) Not parasitized Scinax fuscomarginatus (29) 17.244.8 (1 - 8)0.83 + 0.34 Cosmocerca podicipinus (1)3.4510.03Campião et al . (2014) Centrorhynchus sp. (23)13.795.75 (5 - 8)0.79 + 0.68Aguiar et al . (2021) Scinax nebulosus (3) 33.3310.33 Centrorhynchus sp. (1)33.3310.33Campião et al . (2014) Scinax similis (32) 15.633.4 (1 - 5)0.53 + 0.09 Oxyascaris caudacutus (6)9.382 (1 - 4)0.19 + 0.06New recordCosmocercidae female (11)9.383.67 (2 - 5)0.34 + 0.11- Scinax x-signatus (6) 33.331.5 (1 - 2)0.50 + 0.17 Ochoterenella sp. (2)16.6720.33New recordCosmocercidae female (1)16.6710.16- Leptodactylidae Adenomera juikitam (3) 33.3310.33 Centrorhynchus sp. (1)33.3310.33New record Leptodactylus fuscus (31) 90.3246.07 (1 - 216)41.61 + 1.12 Cosmocerca parva (14)3.23140.45Morais (2013); Campião et al . (2014) Cosmocerca podicipinus (21)12.95.25 (1 - 16)0.68 + 0.21Campião et al . (2014) Oswaldocruzia mazzai (3)3.2330.1Campião et al . (2014) Oxyascaris catingae (17)12.94.25 (2 - 8)0.55 + 0.17New record Physaloptera sp . (7)9.682.33 (2 - 3)0.23 + 0.07Morais (2013); Oliveira et al . (2022) Physalopteroides venancioi (2)3.2320.06Campião et al . (2016a) Porrocaecum sp . (2)3.2320.06Campião et al . (2016a) (Continúa Tabla 1)(Continúa Tabla 1)
38 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. Raillietnema spectans (264)22.5837.71 (16 - 57)8.52 + 2.37Silva-Neta et al. (2020); Oliveira et al . (2022) Rhabdias sp. (3)3.2330.1Cañizales (2021); Oliveira et al . (2022) Schrankiana schranki (926)48.3961.73 (2 - 216)29.87 + 6.40Morais (2013); Oliveira et al . (2022)Cosmocercidae female (30)19.354.83 (1 - 16)0.94 + 0.28-Cosmocercidae larva (3)6.451.50 (1 - 2)0.1- Leptodactylus macrosternum (7) 10019.14 (1 - 27)19.14 + 1.09 Aplectana hylambatis (5)14.2950.71New record Brevimulticaecum sp. (15)28.577.5 (2 - 13)2.14 + 1.17Goldberg et al . (2007) Cosmocerca podicipinus (15)28.577.5 (3 - 12)2.14 + 1.16Campião et al . (2014) Oswaldocruzia mazzai (4)14.2940.57Silva-Neta et al . (2020); Oliveira et al . (2022) Oxyascaris sp. (2)14.2920.29New record Physalopteroides venancioi (37)71.427.4 (2 - 10)5.28 + 1.49Morais (2013); Campião et al . (2016a) Raillietnema spectans (27)14.29273.85New recordCosmocercidae female (4)28.5720.57- Centrorhynchus sp . (2)14.2920.29Campião et al . (2014) Oligacanthorhynchus sp . (23)14.29233.28New record Leptodactylus mystaceus (4) 754 (2 - 8)3 + 0.94 Cosmocerca podicipinus (10)505 (2 - 8)2.5 + 1.38New record Oxyascaris catingae (2)2520.5New record Leptodactylus pustulatus (4) 802.5 (1 -4)2 + 0.34 Cosmocerca podicipinus (3)2030,6Campião et al . (2014) Physaloptera sp. (1)2010.2Morais (2013); Oliveira et al . (2022)Nematoda larva (2)4010.4- (Continúa Tabla 1)(Continúa Tabla 1)
39 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Centrorhynchus sp . (4)2040.8Oliveira et al . (2024); Santos et al . (2024) Leptodactylus troglodytes (16) 7515.75 (1 - 47)11.81 + 0.61 Aplectana hylambatis (13)6.25130,81New record Cosmocerca podicipinus (35)258.75 (5 - 19)2.18 + 0.82New record Oxyascaris sp . (2)6.2520.12New record Raillietnema spectans (94)31.2518.8 (5 - 47)5.87 + 2.04Oliveira et al . (2022) Physaloptera sp. (6)12.53 (1 - 5)0.37 + 0.16New record Polystoma goeldii (1)6.2510.06New recordCosmocercidae larva (19)12.59.5 (7 - 12)1.18 + 0,52-Cosmocercidae female (19)43.752.71 (1 -9)1.18 + 0.36- Leptodactylus vastus (18) 100331.61 (1 - 654)331.61 + 12.08 Aplectana hylambatis (1533)38.89219 (66 - 461)85.17 + 27.11New record Cosmocerca sp. (49)5.55492.72New record Oswaldocruzia mazzai (5)11.112.5 (1 - 4)0.28 + 0.11Silva-Neta et al . (2020); Oliveira et al . (2022) Physaloptera sp. (34)22.228.5 (2 - 19)1.89 + 0.69Oliveira et al . (2022) Physalopteroides venancioi (1)5.5610.05New record Raillietnema spectans (2570)77.78183.57 (1 - 648)142.78 + 33.90Benício et al . (2022); Oliveira et al . (2022) Rhabdias sp . (295)55.5629.5 (1 - 102)16.39 + 5.05Oliveira et al . (2022) Schrankiana schranki (1454)16.67484.67 (200 - 654)80.78 + 31.73Campião et al. (2014); Oliveira et al . (2022)Ascarididae larva (1)5.5510.05- Centrorhynchus sp. (3)5.5530.17Oliveira et al . (2022) Polystoma goeldii (8)16.662.66 (1 - 6)0.44 + 0.17New record (Continúa Tabla 1)(Continúa Tabla 1)
40 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. Physalaemus cuvieri (22) 72.739.56 (1 - 25)6.95 + 0.36 Cosmocerca podicipinus (139)59.110.70 (1 - 25)6.31 + 1.27Oliveira et al . (2022) Oswaldocruzia mazzai (1)4.5510.05Oliveira et al . (2019) Oxyascaris sp. (3)4.5530.13New record Physalopteroides venancioi (1)4.5510.05New record Strongyloides sp. (4)9.12 (1 - 3)0.18Oliveira et al . (2022)Cosmocercidae larva (4)9.120.18-Nematoda larva (1)4.5510.05- Pleurodema diplolister (31) 35.482.91 (1 - 5)1.03 + 0.05 Ochoterenella sp. (1)3.2310.03Silva-Neta et al . (2020) Oxyascaris catingae (13)22.581.85 (1 - 4)0.42 + 0.12New record Physaloptera sp. (6)9.682 (1 - 4)0.19 + 0.06New record Raillietnema spectans (1)3.2310.03Silva-Neta et al . (2020) Schrankiana schranki (3)3.2330.1New recordCosmocercidae female (2)6.4510.06- Cylindrotaenia americana (6)6.453 (1 - 5)0.19Silva-Neta et al . (2020) Pseudopaludicola mystacalis (34) 32.351.82 (1 - 3)0.59 + 0.04 Cosmocerca parva (2)5.8810.06New record Cosmocerca podicipinus (11)23.531.38 (1 - 3)0.32 + 0.18New record Oxyascaris sp. (3)5.881.50 (1 - 2)0.09New record Physaloptera sp. (1)2.9410.03Silva-Neta et al . (2020) Rhabdias sp. (1)2.9410.03New record (Continúa Tabla 1)(Continúa Tabla 1)
41 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Cosmocercidae female (1)2.9410.03- Centrorhynchus sp. (1)2.9410.03New record Microhylidae Elachistocleis piauiensis (3) Not parasitized Odontophrynidae Proceratophrys cristiceps (3) 33.3310.33 Cosmocerca sp. (1)33.3310.33New record RESULTS We analyzed 318 anuran amphibians, distributed among 21 species and four families. Of these, 142 individuals were parasitized by at least one endoparasite species, with an overall prevalence of 44.65% (see Table 1). A total of 8,056 parasite specimens were counted and identifed in 26 parasite taxa, with an average infection intensity of 56.73 and abundance of 25.33. Among the most abundant species found were Raillietnema spectans Gomes, 1964 (3,034 individuals), Schrankiana schranki (Travassos, 1925) (2,383 individuals), and Aplectana hylambatis Baylis, 1925 (1,540 individuals).Leptodactylidae was the family with the largest number of parasites, with an average of seven parasite species per host analyzed. Leptodactylus fuscus (Schneider, 1799) was the species with the greatest diversity of parasite species identifed (12 spp.). Te parasitic fauna of anurans in the SCNP was previously composed of 13 parasite taxa, in only four anuran species. Here, we recorded 21 additional parasite taxa, with new infection records in 17 anuran host species. In addition, we added 19 new parasite taxa to the existing records for the state of Piauí, signifcantly expanding knowledge about the region. Also analyzing the infuence of the SVL on parasite abundance, identifying that for the endoparasitic community, the size of the host is an infuential factor in the expected fnal richness (R2 = 0.37; p < 0,001). DISCUSSION Amphibians are excellent models for studies investigating the diversity of parasitic communities (Aho, 1990; Campião et al ., 2015b). Te fauna of endoparasites associated with anurans is rich and diverse, being characterized by a wide distribution and low host specifcity (Campião et al ., 2014). It has a strong tendency to increase considerably as new areas and new available hosts are sampled (Campião et al ., 2015b).According to Campião et al . (2014), around 90% of Brazilian anurans have not yet been studied regarding their parasite fauna, with anurans from the Hylidae and Leptodactylidae families being the most frequently studied hosts. Commonly, nematodes and trematodes are the most recorded in these amphibians (Campião et al ., 2014). Campião et al . (2015b) claim that leptodactylids have rich parasite communities, with a great taxonomic diversity, mainly composed of nematodes. In our results, leptodactylid species presented the highest prevalence, (Continúa Tabla 1)
42 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. diversity, and parasite richness. We also observed that most that infections were caused by nematodes, which seems to be a pattern common to species of this family, corroborated by several other studies (see Teles et al ., 2015; Oliveira et al ., 2019, 2022). As for the low parasite prevalence found in some host species, Chandra & Gupta (2007) highlight that habitat characteristics can infuence the composition and structure of the helminth fauna associated with amphibians, which are generally associated with two types of environments (aquatic and terrestrial). Tus, terrestrial species are more likely to come into direct contact with infective larvae than arboreal species, which allows a greater variety of parasites to settle in these animals (Chandra & Gupta, 2007). Tus, one factor that may explain this low prevalence is the host’s use of the habitat and the direct transmission of the parasite subcutaneously. Another point is the fact that some species show aestivation behavior and have explosive reproduction, which may have made it difcult for the species to fnd infective larvae and thus infuenced these results. Overall, the PNSC showed a high diversity of parasitic species infecting anurans (26 taxa). Te richness found in this study is similar to other studies dealing with the helminth community associated with anurans (Campião et al ., 2016a; Graça et al ., 2017), as well as in other conservation areas such as the Environmental Protection Area (APA) of Serra de Maranguape (Oliveira et al ., 2022) and the APA of Bica do Ipu (Silva-Neta et al ., 2020). However, this richness may still be underestimated due to unidentifed species, such as the occurrence of cryptic species, such as in Rhabdiasidae (Müeller et al ., 2018), or species that were not feasible to identify. In the last decade, several studies on parasitism in Brazilian amphibians have been carried out (Teles et al ., 2015; Graça et al ., 2017; Silva et al ., 2019; Mascarenhas et al ., 2021; Oliveira et al ., 2024; Santos et al ., 2024). Even so, for the PNSC only the species Dermatonotus muelleri (Boettger, 1885), Leptodactylus vastus Lutz, 1930, Rhinella diptycha (Cope, 1862), and Trachycephalus typhonius (Linnaeus, 1758) have their helminth fauna known (Benício et al ., 2022). According to Aguiar et al . (2014), with the increase in parasitological studies, especially in areas that have not yet been sampled and hosts that have not been studied much, it is common to fnd new records of parasites that have not yet been reported for host species. A good example is Physalaemus cuvieri (Fitzinger, 1826 ) , a species widely distributed throughout Brazil (Segalla et al ., 2021) and well-known for parasite studies throughout its distribution (see Santos & Amato, 2013; Aguiar et al ., 2015; Graça et al ., 2017; Oliveira et al ., 2019; Silva-Neta et al ., 2020; Aguiar et al ., 2021; Sani et al ., 2021; Oliveira et al ., 2022). We still present in our results the frst record of infection of Physalopteroides venancioi Lent, Freitas & Proença, 1946 and Oxyascaris sp. for this host. We also presented 33 new records of parasite infection for 14 species of new hosts and added 19 taxa to the records already known for the state of Piauí. Our study corroborates the results of Aguiar et al . (2014), that it is common to fnd new records of parasites in widely studied species, and highlights the need for more parasitological work with host species throughout their distribution and in areas that are still little known since parasite diversity and the parasite-host relationship are still far from being truly known.Nematodes are diverse, abundant, generalist, and well-distributed in the environment. Tey have a direct life cycle and reach their hosts through oral ingestion or active penetration of infective larvae through the skin (Anderson, 2000). In this study, 69% of the parasites identifed were Nematoda, following the same pattern of infection found in other neotropical anurans (Campião et al ., 2016a; Graça et al ., 2017; Oliveira et al ., 2019; Silva-Neta et al ., 2020; Mascarenhas et al ., 2021; Oliveira et al ., 2022). Monoxenous parasites such as R. spectans , S. schranki , and A. hylambatis were the most abundant species. However, Cosmocerca podicipinus Baker & Vaucher, 1984, R. spectans , and Oswaldocruzia mazzai Travassos, 1935 were the species that most infected diferent hosts. According to Anderson (2000), parasites with direct life cycles have low specifcity and a simple mode of transmission, which can occur through the ingestion of eggs or penetration of larvae through the host’s skin. Te high abundance of some parasite species may be associated with parasite self-infection due to the reproduction of these parasites in their hosts (Anderson, 2000). In addition, these species have been recorded infecting several Neotropical anurans (Campião et al ., 2014; Teles et al ., 2015; Alcantara et al ., 2018; Oliveira et al ., 2019). Possibly the wide distribution of these parasites and their generalist habitats in terms of host selection (Campião et al ., 2014, 2015b; Oliveira et al ., 2019, 2023) are also responsible for the high infection rates. A signifcant number of parasitic larvae have been found in the small and/or large intestines of various host species. Larvae of this type are commonly found in amphibian species (Campião et al ., 2014; Oliveira et al ., 2022),
43 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 and this larval stage may be associated with the parasite’s monoxenic cycle (Anderson, 2000), as well as a possible recent infection and/or reproduction of the adult parasites in the host. As for the large number of unidentifed female specimens, this is due to the lack of taxonomic characters that would enable identifcation, often caused during the fxation of the hosts previously. In addition, the lack of taxonomic studies is also a limiting factor for the accurate identifcation of some parasite species distributed in the region studied (Felix-Nascimento et al ., 2020). Te species of Centrorhynchus and Oligacanthorhynchus are heteroxenous and generally have mammals and/or birds as defnitive hosts (Smales, 2007; Richardson et al ., 2014), with amphibians being paratenic hosts (Yamaguti, 1963). In South America, Oligacanthorhynchus sp. has been recorded infecting Odontophrynus americanus (Duméril & Bibron, 1841) (Campião et al ., 2014), Pleurodema diplolister (Peters, 1870) (Silva-Neta et al ., 2020), and L. vastus (Oliveira et al ., 2022). In the present study, Oligacanthorhynchus sp. was recorded parasitizing Leptodactylus macrosternum Miranda-Ribeiro, 1926. I n amphibians, only the ascarid species Brevimulticaecum sp. and Porrocaecum sp. are recorded for these hosts (González & Hamann, 2013; Campião et al ., 2016a). We identifed 21 individuals of Brevimulticaecum sp. parasitizing the species L. macrosternum and Dendropsophus minusculus (Rivero, 1971), and two individuals of Porrocaecum sp. infecting L. fuscus . Ascarids of this type have been reported parasitizing fsh, reptiles, and amphibians (Vieira et al ., 2010). However, these parasites have crocodilians, freshwater rays, and teleosts as their defnitive hosts in the life cycle (Goldberg et al., 2007; Reyda, 2008), while amphibians function as intermediate hosts. Tis is the frst record of Brevimulticaecum sp. infection in D. minusculus (Rivero, 1971), however, due to the larval stage of this parasite, it was not possible to identify it at the species level. Te Strongyloides Grassi, 1879 genus has a low specifcity and has already been reported for a variety of anurans such as Boana raniceps (Cope, 1862), Physalaemus albonotatus (Steindachner, 1864), Physalaemus cuvieri Fitzinger, 1826, Pithecopus gonzagai Andrade, Haga, Ferreira, Recco-Pimentel, Toledo & Bruschi, 2020, Pristimantis relictus Roberto, Loebmann & Ávila, 2022, Scinax x-signatus (Spix, 1824), T. typhonius , Leptodactylus gracilis (Duméril & Bibron, 1841), Rhinella dorbignyi (Duméril & Bibron, 1841), Rhinella icterica (Spix, 1824), and Proceratophrys ararype Mângia, Koroiva, Nunes, Roberto, Ávila, Sant’Anna, Santana & Garda, 2018 (Campião et al ., 2014; Mascarenhas et al ., 2021; Oliveira et al ., 2022). Although its biology is not detailed, it is known that these parasites commonly have a direct life cycle; infection occurs through dermal penetration and ingestion of infected prey (Mati & Melo, 2014; Sulieman et al ., 2015). However, even though these parasites are capable of infecting several anuran species (Campião et al ., 2014), they generally show low infection rates, as observed in this study for P. cuvieri . Te Cestoda Cylindrotaenia americana Jewell, 1916 has been recorded in several amphibians in Brazil (Toledo et al ., 2013; Oliveira et al ., 2019, Silva-Neta et al ., 2020; Oliveira et al ., 2022). In the Caatinga, the frst record of C. americana was made for Physalaemus cicada Bokermann, 1966 (Oliveira et al ., 2019), later in P. diplolister in high-altitude swamps inserted in the Caatinga (Silva-Neta et al ., 2020). In our results, we recorded C. americana parasitizing P. diplolister in Cerrado areas. In Brazil, there are few records of monogeneans, the majority being reported for the genus Polystoma Zeder, 1800 (Santos & Amato, 2012). Tis is the best-known genus among the Polystomatidae (Sinnappah et al ., 2001), with a direct life cycle that can be completed in the gills of young tadpoles or inside the urinary bladder of adult frogs (Bentz et al ., 2006). Here, we report specimens of Polystoma goeldii Sales, Du Preez, Verneau & Domingues, 2023 infecting Leptodactylus troglodytes A. Lutz, 1926 and Leptodactylus vastus A. Lutz, 1930, this being the frst record for the host species and the expansion of the parasite’s distribution area (Pará state) to the state of Piauí. Several studies report that host body size can infuence the establishment of parasite communities (Campião et al ., 2015a; Silva-Neta et al ., 2020). Larger individuals generally ofer larger colonization areas, providing adequate resources for parasite development and reproduction (Campião et al ., 2015a; 2016b). However, Oliveira et al . (2023) report that host size is only infuential when there is signifcant size variation among individuals. In the present study, the size of anuran hosts was a determining factor in parasite abundance; this fact may be related to the larger surface area available for colonization (Toledo et al ., 2017).In our study, we demonstrated that the endoparasites composition of anurans from the PNSC follows the common pattern described for Neotropical amphibians, presenting high species richness and prevalence, with a strong relationship between abundance and host size. We also expanded the parasitological knowledge for
44 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. the region and added new parasite taxa to the existing records for the Piauí state, highlighting the importance of amphibians as models for parasite studies. In addition, we reafrm the importance of parasite inventories for host species in poorly studied regions, considering the need to signifcantly expand knowledge about parasitism in amphibians. ACKNOWLEDGMENTS We would like to thank the Fundac ̧ a ̃ o Cearense de Apoio ao Desenvolvimento Cienti ́ fco e Tecnolo ́ gico for a postdoc fellowship granted to CRO (FUNCAP/CNPq FPD-0213-00385.01.00/23). JSU thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes for the master’s scholarship. Author contributions: CRediT (Contributor Roles Taxonomy)JSU = Jacilene de Sousa Uchôa CRO = Cicero Ricardo de Oliveira EBA = Etielle Barroso de Andrade DMBN = Diva Maria Borges-Nojosa Conceptualization : JSU Data curation : CRO, DMBN Formal Analysis : JSU, CRO Funding acquisition : DMBN, EBA Investigation : JSU, CRO, EBA, DMBN Methodology : JSU, CRO, EBA, DMBN Project administration : JSU Resources : DMBN, EBA Software : JSU, CRO, EBA, DMBN Supervision : DMBN, EBA Validation : JSU, CRO, EBA, DMBN Visualization: JSU, CRO Writing – original draft : JSU, CRO, EBA, DMBN Writing – review & editing : JSU, CRO, EBA, DMBN BIBLIOGRAPHIC REFERENCES Aguiar, A., Morais, D.H., Pyles-Cicchi, P.J., & Da Silva, R.J. (2014). Evaluation of helminths associated with 14 amphibian species from a Neotropical island near the southeast Coast of Brazil. Herpetological Review, 45 , 227. Aguiar, A., Morais, D.H., Silva, L.A.F., Dos Anjos, L.A., Foster, O.C., & Da Silva, R.J. (2021). Biodiversity of anuran endoparasites from a transitional area between the Atlantic Forest and Cerrado biomes in Brazil: new records and remarks. Zootaxa, 4948 , 1-41.Aguiar, A., Toledo, G.M., Anjos, L.A., & Silva, R.J. (2015). Comunidade de helmintos parasitos de duas populações de Physalaemus cuvieri Fitzinger, 1826 (Anura: Leiuperidae) sob diferentes condições de integridade de habitat da Mata Atlântica, Brasil. Brazilian Journal of Biology, 75, 963-968.Aho, J.M. (1990). Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. In Esch, G. W.; Busch, A. O. and Aho, J. M. (Eds) Parasite Communities: Patterns and Processes. Chapman & Hall, pp.157-195.Alcantara, E.P., Ferreira-Silva, C., Silva, L.A.F., Lins, A.G.S., Ávila, R.W., Morais, D.H., & Da Silva, R.J. (2018). Helminths of Dermatonotus muelleri (Anura: Microhylidae) from Northeastern Brazil. Journal of Parasitology , 104 , 550-556.Amato, J.F.R., Boeger, W.A., & Amato, S.B. (1991). Protocolos para laboratório-coleta e processamento de parasitos de pesca . Imprensa Universitária, Universidade Federal Rural do Rio de Janeiro.
45 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Amorim, D.M., Oliveira, R.H., Dyna, C.S., Sousa, D.M., Santos, M.E.P., Lima, L.S., Pinto, L.C., & Ávila, R.W. (2019). Nematodes parasites of Rhinella jimi (Stevaux, 2002) (Anura: Bufonidae) in areas of Caatinga, Northeastern Brazil. Neotropical Helminthology , 13 , 265-271. Anderson, R.C. (2000). Nematode parasites of vertebrates, their development and transmission . 2° Ed. CABI Publishing. Benício, R.A., dos Santos, R.S., Freire, S.M., Ávila, R.W., da Silva, R.J., & Fonseca, M.G. (2022). Diversity of helminth parasites in amphibians from northeastern Brazil . Biologia, 77 , 2571-2579. Bentz, S., Sinnappah Kang, N.D., Lim, L.H.S., Lebedev, B., Combes, C., & Verneau, O. (2006). Historical biogeography of amphibian parasites, genus Polystoma (Monogenea: Polystomatidae). Journal of Biogeography , 33 , 742-749. Berkhout, B.W., Borregaard, M.K., Brandl, R., Brändle, M., Dehling, D.M., Hof, C., Poulin, R., & Tieltges, D.W. (2019). Host assemblage and environment shape β -diversity of freshwater parasites across diverse taxa at a continental scale. Global Ecology and Biography , 29 , 38-40.Bittencourt, E.B., & Rocha, C.F.D. (2003). Host-ectoparasite specifcity in a small mammal community in an area of Atlantic Rain Forest (Ilha Grande, State of Rio de Janeiro), Southeastern Brazil. Memórias do Instituto Oswaldo Cruz , 98 , 793-798. Bower, D.S., Brannelly, L.A., McDonald, C., Webb, R.J., Greenspan, S.E., Vickers, M., Gardner, M.G., & Greenlees, M.J. (2019). A review of the role of parasites in the ecology of reptiles and amphibians . Austral Ecology , 44 , 433-448. Brito, S.V., Ferreira, F.S., Ribeiro, S.C., Anjos, L.A., Almeida, W.O., Mesquita, D.O., & Vasconcellos, A. (2014). Spatial-temporal variation of parasites in Cnemidophorus ocellifer (Teiidae) and Tropidurus hispidus and Tropidurus semitaeniatus (Tropiduridae) from Caatinga areas in northeastern Brazil. Parasitology Research , 113 , 1163-1169.Brooks, D.R., & Hoberg, E.P. (2000). Triage for the Biosphere: Te Need and Rationale for Taxoiiomic Inventories and Phylogeiietic Studies of Parasites. Comparative Parasitology, 67 , 1-25.Bush, A.O., Laferty, K.D., Lotz, J.M., & Shostak, A.W. (1997). Parasitology meets ecology on its own terms: Margolis et al . revisited. Journal of Parasitology , 83 , 575-583.Campião, K.M., Morais, D.H., Dias, O.T., Aguiar, A., Toledo, G., Tavares, L.E.R., & Silva, R.J. (2014). Checklist of helminth parasites of amphibians from South America . Zootaxa , 3843 , 1-93. Campiao, K.M., Ribas, A.C.D.A., Morais, D.H., Dias, O.T., Silva, R.J., & Tavares, L.E.R. (2015b). How many parasites species a frog might have? Determinants of parasite diversity in South American anurans. PLOS ONE , 10 , e0140577. Campião, K.M., Ribas, A.C.A., Silva, I.C.O., Dalazen, G.T., & Tavares, L.E.R. (2016b). Anuran helminth communities from contrasting nature reserve and pasture sites in the Pantanal wetland, Brazil. Journal of Helminthology , 91 , 91-96. Campião, K.M., Ribas, A., & Tavares, L.E.R. (2015a). Diversity and patterns of interaction of an anuran–parasite network in a neotropical wetland. Parasitology , 142 , 1751-1757.Campião, K.M., Silva, I.C.O., Dalazen, G.T., Paiva, F., & Tavares, L.E.R. (2016a). Helminth parasites of 11 anuran species from the Pantanal Wetland, Brazil. Comparative parasitology , 83 , 92-100.
46 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. Cañizales, I. (2021). Helmintos endoparásitos en anuros de Venezuela: revisión sistemática y análisis de diversidad. Acta Biologica Venezuelica , 40 , 109-127.Cardoso, T.D.S., Simões, R.O., Luque, J.L.F., Maldonado, A., & Gentile, R. (2016). Te infuence of habitat fragmentation on helminth communities in rodent populations from a Brazilian Mountain Atlantic Forest . Journal of Helminthology , 90 , 460-468.Chandra, P., & Gupta, N. (2007). Habitat preference and seasonal fuctuations in the helminthofauna of amphibian hosts of Rohilkhand Zone, India. Asian Journal of Experimental Science , 21 , 69-78.Chaukulkar, S., Sulaeman, H., Zink, A.G., & Vredenburg, V.T. (2018). Pathogen invasion and non-epizootic dynamics in Pacifc newts in California over the last century. PLOS ONE , 13 , e0197710.Coimbra, M.A.A., Mascarenhas, C.S., Henzel, A.B.D., Wolter, J.H., da Silva, R.R.C., da Silveira, F.L., & Müller, G. (2023). Parasite-host relations and new reports of helminths for Rhinella dorbignyi (Duméril & Bibron, 1841) (Anura: Bufonidae) from Neotropical region. Parasitology International , 96 , 102766.Cramp, R.L., & Franklin, C.E. (2018). Exploring the link between ultraviolet B radiation and immune function in amphibians: implications for emerging infectious diseases. Conservation physiology , 6 , coy035.Della-Fávera J.C. (2002). Parque Nacional de Sete Cidades, PI: Magnífco monumento natural. In: Schobbenhaus, C., Campos, D.A., Queiroz, E.T., Winge, M., & Berbert-Born, M.L.C. (eds.) Sítios Geológicos e Paleontológicos do Brasil , 1ª ed. DNPM/CPRM, Brasília, pp 335-342.Ebert, D., & Fields, P.D. (2020). Host–parasite co-evolution and its genomic signature. Nature Reviews Genetics , 21 , 754-768.Felix-Nascimento, G., Vieira, F.M., Muniz-Pereira, L.C., & Moura, G.J.B. (2020). Two new species of Cosmocercidae (Nematoda: Cosmocercoidea) of Leptodactylus macrosternum Miranda-Ribeiro (Anura: Leptodactylidae) from caatinga biome, Brazil. Zootaxa , 4877 , 274-290.Goater, C.P., Baldwin, R.E., & Scrimgeour, G.J. (2005). Physico-chemical determinants of helminth component community structure in whitefsh ( Coregonus clupeaformes ) from adjacent lakes in Northern Alberta, Canada . Parasitology , 131 , 713-722. Goldberg, S.R., Bursey, C.R., Caldwell, J.P., Vitt, L.J., & Costa, G.C. (2007). Gastrointestinal helminths from six species of frogs and three species of lizards, sympatric in Pará State, Brazil . Comparative Parasitology , 74 , 327-342. González, C.E., & Hamann, M.I. (2013) . First record of Brevimulticaecum larvae (Nematoda, Heterocheilidae) in amphibians from northern Argentina. Brazilian Journal of Biology , 73, 451-452.Graça, R.J., Oda, F.H., Lima, F.S., Guerra, V., Gambale, P.G., & Takemoto, R.M. (2017). Metazoan endoparasites of 18 anuran species from the mesophytic semideciduous Atlantic Forest in southern Brazil. Journal of Natural History , 51 , 705-729.Herczeg, D., Ujszegi, J., Kásler, A., Holly, D., & Hettyey, A. (2021). Host–multiparasite interactions in amphibians: a review. Parasites & Vectors , 14 , 1-20.Hernandez-Caballero, I., Garcia-Longoria, L., Gomez-Mestre, I., & Marzal, A. (2022). Te adaptive host manipulation hypothesis: parasites modify the behaviour, morphology, and physiology of amphibians . Diversity , 14 , 739.Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.A.C., & Foster, M.S. (1994). Measuring and monitoring biological diversity: standard methods for amphibians . Smithsonian Institution Press.
47 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Hua, J., Wuerthner, V.P., Jones, D.K., Mattes, B., Cothran, R.D., Relyea, R.A., & Hoverman, J.T. (2017). Evolved pesticide tolerance infuences susceptibility to parasites in amphibians. Evolutionary Applications , 10 , 802-812.Hudson, P. (2005). Parasites, diversity, and the ecosystem. In: Tomas, F., Reanud, T.F., & Guegan, J.F. (Eds). Parasitism and Ecosystems . Oxford University Press, New York, pp 1-12.Ivanov, M.M.M., & Lemos, J.R. (2020). Unidades de conservação do estado do Piauí . EDUFPI.Koprivnikar, J., Marcogliese, D.J., Rohr, J.R., Orlofske, S.A., Rafel, T.R., & Johnson, P.T. (2012). Macroparasite infections of amphibians: what can they tell us? EcoHealth , 9 , 342-360.Kuris, A.M. (2008). Ecosystem energetic implications of parasite and free-living biomass in three estuaries . Nature , 454 , 515-518.Lopes, S.D.F., Vale, V.D., Oliveira, A.D., & Schiavini, I. (2011). Comparative analysis of the structure and foristic composition of cerrado vegetation in central Brazil. Interciencia, 36 , 8-15.Luedtke, J.A., Chanson, J., Neam, K., Hobin, L., Maciel, A.O., Catenazzi, A, ... & Stuart, S.N. (2023). Ongoing declines for the world’s amphibians in the face of emerging threats. Nature, 622 , 308-314.Mascarenhas, W., Oliveira, C.R., Benício, R.A., Ávila, R.W., & Ribeiro, S.C. (2021). Nematodes of Proceratophrys ararype (Anura: Odontophrynidae), an endemic frog from the Araripe Plateau, northeastern Brazil. Biota Neotropica , 21 , e20201164. Mati, V.L.T., & Melo, A.L. (2014). Some aspects of the life history and morphology of Strongyloides ophidiae Pereira, 1929 (Rhabditida: Strongyloididae) in Liophis miliaris (Squamata: Dipsadidae). Neotropical Helminthology , 8 , 203-216. Morais, D.H. (2013). Aspectos ecológicos da helmintofauna de anfíbios Leptodactylidae (ANURA) no Estado do Mato Grosso, Brasil. [ Doctorate thesis , UNESP—Campus de Botucatu].Mueller, M.I., Morais, D.H., Costa Silva, G.J., Aguiar, A., Avila, R.W., & Silva, R.J. (2018). Diversity in the genus Rhabdias (Nematoda, Rhabdiasidae): evidence for cryptic speciation. Zoologica Scripta , 47 , 595-607. Oliveira, C.R., Ávila, R.W., & Morais, D.H. (2019). Helminths associated with three Physalaemus species (Anura: Leptodactylidae) from Caatinga biome, Brazil . Acta Parasitologica , 64 , 205-212.Oliveira, C.R., Gonçalves-Sousa, J.G., Carvalho, E.F.F., Ávila, R.W., & Borges-Nojosa, D.M. (2023). Efect of altitude and spatial heterogeneity on the host-parasite relationship in anurans from a remnant humid forest in the brazilian semiarid. Parasitology Research , 122 , 2651-2666.Oliveira, C.R., Mascarenhas, W., Batista-Oliveira, D., de Castro Araújo, K., Ávila, R.W., & Borges-Nojosa, D.M. (2022). Endoparasite community of anurans from an altitudinal rainforest enclave in a Brazilian semiarid area. Journal of Helminthology , 96 , e62.Oliveira, M., Castro, A.A.J.F., & Martins, F.R. (2010). Classifcação e caracterização dos tipos vegetacionais do Parque Nacional de Sete Cidades, Piauí, Brasil . Biodiversidade e Ecótonos da Região Setentrional do Piauí. Teresina: Editora Gráfca da UFPI, pp. 66-89.Oliveira, R.J., Mascarenhas, C.S., & Müller, G. (2024). Centrorhynchus spp. (Acanthocephala) in South America: new anuran record and checklist of vertebrate hosts. Revista Brasileira de Parasitologia Veterinária , 33 , e015823.Poulin, R. (2007). Are there general laws in parasite ecology?. Parasitology , 134 , 763-776.
48 Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Uchôa et al. Poulin, R., & Krasnov, B.R. (2010). Similarity and variability of parasite assemblages across geographical space. In. Morand, S., & Krasnov, B.R. (Eds). Te biogeography of host–parasite interactions , OUP. pp. 115-127. Reyda, F.B. (2008). Intestinal helminths of freshwater stingrays in southeastern Peru, and a new genus and two new species of cestode. Journal of Parasitology , 94 , 684-699.Richardson, D.J., Gardner, S.L., & Allen, J.W. (2014). Redescription of Oligacanthorhynchus microcephalus (Rudolphi, 1819) Schmidt 1972 (syn. Oligacanthorhynchus tortuosa (Leidy, 1850) Schmidt 1972) (Acanthocephala: Oligacanthorhynchidae) . Comparative Parasitology , 81 , 53-60.Rohr, J.R., Rafel, T.R., Sessions, S.K., & Hudson, P.J. (2008). Understanding the net efects of pesticides on amphibian trematode infections. Ecological Applications , 18 , 1743-1753.Ruggeri, J., Pontes, M.R., Ribeiro, L.P., Gendreau, K.L., Sousa, R.L.M., & Toledo, L.F. (2023). Predominant prevalence of Ranavirus in southern Brazil, a region with widespread occurrence of the amphibian chytrid. Animal Conservation , 27 , 338-349 . Sani, A.A., Rangel, G.T., Dos Santos, L.C., & Frezza, T.F. (2021). Parasitic helminths of reptiles and amphibians in the state of São Paulo, Brazil. Interfaces Científcas-Saúde e Ambiente , 8 , 32-59. Santos, B.R., Teixeira, A.A.M., do Nascimento, J.M., & Brito, S.V. (2024). Pattern of anuran infection by acanthocephalans from the Cerrado, Northeastern Brazil with a summary for South America. Journal of Helminthology , 98 , e15. Santos, V.G.T., & Amato, S.B. (2012). Polystoma cuvieri (Monogenea, Polystomatidae) in Physalaemus cuvieri (Anura, Leiuperidae) in southern Brazil. Neotropical Helminthology , 6 , 1-8.Santos, V.G., & Amato, S.B. (2013). Species of Cosmocerca (Nematoda, Cosmocercidae) in Anurans from Southern Santa Catarina State, Brazil. Comparative Parasitology , 80 , 123-129.Schmidt, G.D. (1986). CRC handbook of tapeworm identifcation . CRC Press.Segalla, M.V., Berneck, B., Canedo, C., Caramaschi, U., Cruz, C.A.G., Garcia, P.C.A., & Langone, J.A. (2021). Brazilian amphibians: list of species. Herpetologia Brasileira , 10 , 121-216.Sena, P.A., Conceição, B.M., Silva, P.F., Silva, W.G.O., Ferreira, W.B., Silva Júnior, V.A. da, Moura, G.J.B., & Oliveira, J.B. (2018). Helminth communities of Pithecopus nordestinus (Anura: Phyllomedusidae) in forest remnants, Brazil. Herpetology Notes , 11 , 565-572.Silva, C.S., de Alcantara, E.P., da Silva, R.J., Ávila, R.W., & Morais, D.H. (2019). Helmintos Parasitas de Proceratophrys Aridus Cruz, Nunes, and Juncá, 2012 (Anura: Odontophrynidae) em uma Região Do Semiárido, Brasil. Neotropical Helminthology , 13 , 169-179.Silva-Neta, A.F.D., de Alcantara, E.P., de Oliveira, C.R., de Carvalhoł, E.F.F., Morais, D.H., da Silva, R.J., & Ávila, R.W. (2020). Helminths associated with 15 species of anurans from the Ibiapaba Plateau, northeastern Brazil. Neotropical Helminthology , 14 , 197-206.Sinnappah, N.D., Lim, L.H.S., Rohde, K., Tinsley, R., Combes, C., & Verneau, O. (2001). A paedomorphic parasite associated with a neotenic amphibian host: phylogenetic evidence suggests a revised systematic position for Sphyranuridae within anuran and turtle polystomatoineans. Molecular Phylogenetics and Evolution , 18 , 189-201.Smales, L.R. (2007). Acanthocephala in amphibians (Anura) and reptiles (Squamata) from Brazil and Paraguay with description of a new species. Journal of Parasitology , 93 , 392-398.
49 Endoparasites of anurans in the seven cities national park Neotropical Helminthology, Vol. 19, Nº1, jan - jun 2025 Sulieman, Y., Aff, A., Awad, H.M., & Pengsakul, T. (2015). Helminth parasites of the subdesert toad, Amietophrynus (Bufo) xeros (Anura: Bufonidae). International Journal of Research–Granthaalayah , 3 , 75-83.Teles, D.A., Sousa, J.G.G., Teixeira, A.A.M., Silva, M.C., Oliveira, R.H., Silva, M.R.M., & Ávila, R.W. (2015). Helminths of the frog Pleurodema diplolister (Anura, Leiuperidae) from the Caatingain Pernambuco State, Northeast Brazil. Brazilian Journal of Biology , 75 , 251-253.Toledo, G.M., Aguiar, A., Silva, R.J., & Anjos, L.A. (2013). Helminth fauna of two species of Physalaemus (Anura: Leiuperidae) from an undisturbed fragment of the Atlantic Rainforest, Southeastern Brazil . Te Journal of Parasitology , 99 , 919-922. Toledo, G.M., Fonseca, M.G., Iannacone, J., Cárdenas-Callirgos, J., Vidaurre, C.M., & da Silva, R.J. (2017). Helmintos parásitos de Rhinella marina (linnaeus, 1758) (anura bufonidae) de tarapoto, Perú . Te Biologist (Lima), 15 , 459-468. Vicente, J.J., Rodrigues, H.O., Gomes, D.C., & Pinto, R.M. (1991). Nematóides do Brasil, 2ª parte: Nematóides de anfíbios. Revista Brasileira de Zoologia , 7 , 549-626.Vieira, E.F., Lima, V.D., Félix, A.J.S., Costa, M.A.T., de Moura Pires, S., Santos, B.M.R., Freire, S., & de Andrade, E.B. (2021). Fauna parasitária de Leptodactylus macrosternum (Anura: Leptodactylidae) no município de União–PI . Brazilian Journal of Development , 7 , 49679-49692.Vieira, K.R.I., Vicentin, W., Paiva, F., Pozo, C.F., Borges, F.A., Adriano, E.A., Costa, F.E.S., & Tavares, L.E.R. (2010). Brevimulticaecum sp. (Nematoda: Heterocheilidae) larvae parasitic in freshwater fsh in the Pantanal wetland, Brazil. Veterinary Parasitology , 172 , 350-354.Yamaguti, S. (1963). Systema Helminthum: Acanthocephala . Interscience Publishers.Yamaguti, S. (1971). Systema Helminthum - Trematodes . Vol. I. Interscience Publishers.Received February 2, 2025.Accepted February 22, 2025.