187 Gastrointestinal Parasitism in Rescued Wild Birds Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Neotropical Helminthology Neotropical Helminthology, 2024, vol. 18 (2), 187-196 ORIGINAL ARTICLE / ARTÍCULO ORIGINAL A NEW GEOGRAPHIC DISTRIBUTION AND MORPHOLOGIC REVISION OF MASTOPHORUS MURIS (NEMATODA: SPIRURIDA), A PARASITE OF THE STOMACH OF RATTUS NORVEGICUS IN RIO DE JANEIRO, BRAZILUNA NUEVA DISTRIBUCIÓN GEOGRÁFICA Y REVISIÓN MORFOLÓGICA DE MASTOPHORUS MURIS (NEMATODA: SPIRURIDA), UN PARÁSITO DEL ESTÓMAGO DE RATTUS NORVEGICUS EN RÍO DE JANEIRO, BRASIL Ana Júlia Rapozo Dias 1 ; Beatriz Elise de Andrade Silva 2 ; Teresa Cristina Bergamo do Bomf m 1 ; Arnaldo Maldonado Júnior 3 & Raquel de Oliveira Simões 1 * ISSN Versión Impresa 2218-6425 ISSN Versión Electrónica 1995-1403 DOI: https://dx.doi.org/10.62429/rnh20242181846 Este artículo es publicado por la revista Neotropical Helminthology de la Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú auspiciado por la Asociación Peruana de Helmintología e Invertebrados Af nes (APHIA). Este es un artículo de acceso abierto, distribuido bajo los términos de la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) [https:// creativecommons.org/licenses/by/4.0/deed.es] que permite el uso, distribución y reproducción en cualquier medio, siempre que la obra original sea debidamente citada de su fuente original. 1 Universidade Federal Rural do Rio de Janeiro (UFRRJ). Km 07, Zona Rural, BR-465, 23890-000, Seropédica, RJ, Brasil. 2 Universidade do Estado do Rio de Janeiro (UERJ). Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, RJ, Brasil. 3 Instituto Oswaldo Cruz (IOC). FIOCRUZ. Avenida Brasil, 4365, 21040-360. Rio de Janeiro, RJ, Brasil.* Corresponding author: raquel83vet@gmail.comAna Júlia Rapozo Dias: https://orcid.org/0009-0002-8510-9728Beatriz Elise de Andrade Silva: https://orcid.org/0000-0001-7866-5369Teresa C. B. Bomf m: https://orcid.org/0000-0002-6741-0202Arnaldo Maldonado Júnior: https://orcid.org/0000-0003-4067-8660Raquel de Oliveira Simões: https://orcid.org/0000-0001-5130-3341 ABSTRACT T is study provides a comprehensive morphological redescription of Mastophorus muris Gmelin, 1790, a spirurid nematode, based on specimens collected from Rattus norvegicus Berkenhout, 1769 in Nova Iguaçu municipality, Rio de Janeiro, Brazil. Employing optical and scanning electron microscopy, we detailed morphological characteristics, including previously unreported features such as a pair of ad-cloacal papillae and details of pseudolabia teeth. Additionally, we report a new geographical distribution for M. muris in Brazil. T e low prevalence of M. muris observed in this study highlights the potential impact of anthropic changes on parasite distribution. Further investigations, including molecular analyses, are necessary to elucidate the taxonomic complexity and host-parasite relationships within the genus Mastophorus . Keywords: Morphology – Nematoda – Rodents – Scanning electron microscopy – Spirurida – Taxonomy
188 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Rapozo Dias et al. RESUMEN Este estudio proporciona una redescripción morfológica integral de Mastophorus muris Gmelin, 1790 , un nematodo del orden Spirurida, basada en especímenes recolectados de Rattus norvegicus Berkenhout, 1769 en el municipio de Nova Iguaçu, Río de Janeiro, Brasil. Empleando microscopía óptica y electrónica de barrido, detallamos características morfológicas, incluidas características no reportadas previamente, como un par de papilas adcloacales y detalles de dientes del pseudolabio. Además, informamos de una nueva distribución geográfca para M. muris en Brasil. La baja prevalencia de M. muris observada en este estudio resalta el impacto potencial de los cambios antropogénicos en la distribución del parásito. Se necesitan investigaciones adicionales, incluidos análisis moleculares, para dilucidar la complejidad taxonómica y las relaciones huésped-parásito dentro del género Mastophorus . Palabras clave: Microscopía electrónica de barrido – Morfología – Nemátodos – Roedores – Spirurida – Taxonomía INTRODUCTION Te Spirocercidae Chitwood & Wehr, 1932 family comprises three subfamilies with a global distribution: Spirocercinae Chitwood & Wehr, 1932, encompassing eight genera, parasitizes mammals and birds; Ascaropsinae Alicata & McIntosh, 1933 including ten genera infecting mammals and lastly, Mastophorinae Quentin, 1970, containing the single genus Mastophorus Diesing, 1853 found in murid and microtid rodents, as well as various accidental hosts (Souza, 1980; Anderson, 2009; Bain et al ., 2014). Actually, there is only one species belonging to this genus: Mastophorus muris Gmelin, 1790. Tis species was initially described as Ascaris muris , a parasite of the rat’s stomach, by Gmelin (1790), lacking detailed description or illustrations.Tis nematode parasitizes the stomach of the defnitive hosts and presents an indirect life cycle with insects of the order Orthoptera, Diptera, Coleoptera and Siphonaptera acting as intermediate hosts (Grzybek et al ., 2014). Insects get infected ingesting larvated eggs eliminated in the feces of the rats (Grzybek et al ., 2014). Te larva of frst stage (L1) releases and invades the insect tissues developing into larva of third stage (L3), the infective stage for the defnitive host (Laferty et al ., 2010). Te defnite host be infected by the ingestion of the intermediate host with infective larvae. Eggs eliminated in the feces of rodents are larval, ellipsoid-shaped, smooth, and thick-membraned (Rojas & Digiani, 2003). Inconsistencies in the literature regarding M. muris descriptions and classifcation motivated this study. We employed optical and scanning electron microscopy to provide a comprehensive morphological redescription of the parasite based on specimens collected from Rattus norvegicus Berkenhout, 1769. Tus, the present study enhances morphological details of M. muris reporting a new geographical distribution obtained from the stomach of R. norvegicus from Nova Iguaçu municipality, Rio de Janeiro state, Brazil. MATERIALS AND METHODS Helminths were collected from R. norvegicus during a 1999 study on intestinal protozoa biodiversity in Nova Iguaçu, Rio de Janeiro, Brazil (22º45’35’’S,43º27’6’’W), resulting in the identifcation of Eimeria nieschulzi Dieben, 1924 and E. separata Becker & Hall, 1931 (Bomfm & Lopes, 1999). Rodents were captured using Tomahawk traps (40.64 cm X 12.70 cm X 12.70 cm) and baits made with banana, sardines, peanut candy and oats. Te traps were positioned along a 50-point trail in two distinct habitats located in the Fluminense microregion of Grande Rio (FIBGE, 1985). Captured R. norvegicus specimens were transported in plastic containers with access to food and water ad libitum to the Laboratory of the Experimental Station for Parasitological Research at the Institute of Biology, Federal Rural University of Rio de Janeiro. Te rodents were euthanized in a CO 2 chamber and, following death, they were classifed by sex and age according to Calhoun (1962). After that, necropsies were performed. Nematodes recovered from the stomach were washed in saline, sodium chloride solution (NaCl 0.9%), fxed and conserved in AFA (2% acetic acid, 3% formaldehyde and 95% ethanol) and, posteriorly, clarifed in lactophenol
189 Mastophorus muris parasite of the Rattus norvegicus Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 (40% lactophenol, 20% lactic acid and 20% phenol in 100 mL q.s.p.) for analysis in this study. Images were captured using Olympus™ BX51 binocular light microscope and the Olympus cellSens Standard software. All the morphological characters were measured in millimeters otherwise stated. Measurements were based on twenty specimens, seven males and thirteen females. For scanning electron microscopy imaging, four specimens (two males and two females) were selected and fxed using 2.5% glutaraldehyde for one hour. Subsequently, the nematodes were washed and immersed in Na-cacodylate bufer solution and also washed. Te specimens were then post-fxed in 1% osmium tetroxide and 0.1M Na-cacodylate for 3 hours at room temperature (Mafra & Lanfredi, 1998). Te material was dehydrated using increasing ethanol series and dried with CO 2 using the critical point method. Finally, the mounting was performed using aluminum stubs and sputter coated with a 20 nm thick gold layer on silver cellophane. Tus, the specimens were examined using a Jeol JSM-6390 LV microscope with an accelerating voltage of 15kV at the Oswaldo Cruz Institute (Rudolf Barth Electron Microscopy Platform) in Rio de Janeiro, Brazil. Vouchers specimens were deposited in the Helminthology Collection of the Institute Oswaldo Cruz (CHIOC). Ethic aspects : Tis study was conducted after project approval by the Federal Rural University of Rio de Janeiro, in compliance with Brazilian legislation on Animal Experimentation, in force at the time of the study. RESULTS TAXONOMIC SUMMARY Species: Mastophorus muris Gmelin, 1971 Host : Rattus norvegicus (Berkenhout, 1769) Locality : Nova Iguaçu, Rio de Janeiro state (22º45’35’’S,43º27’6’’W) Site of infection : Stomach Prevalence : 0.5% (1 rodent infected/ 173 rodents collected) Intensity : 20 (13 females and 7 males) Deposited: CHIOC number 39679 General : Te nematodes are large, females being longer and thicker than males. Cephalic and body cuticle with transverse striation, males showing ornamentation in the posterior ventral region (Figure 2A). Anterior region composed of two lateral pseudolobias, each formed by three lobes (two submedian lobes slender and slightly rounded and one lateral larger and quadrangular in shape) (Figure 1A). A pair of cephalic papillae near to the external base of each submedian lobe and a porous structure present in submedian lobe (Figure 1B). Amphids at the base of the lateral lobe (Figure 1B). Te internal margin of each lobe of the pseudolabia is armed with teeth variable in number (5 to 9), constantly presenting a larger and developed tooth in the center (Figure 1C). Teeth with pointed ends that can be either cleft in two or three cusps in diferent sizes in the distal region located in the internal border of the pseudolo no bia (Figure 1D, 4D). A rectangular, thick-walled mouth capsule, presence of two derids anterior to excretory pore and nerve ring near excretory pore (Figure 4A, B, E, F). Te stoma elongated and cylindrical with thick walls (Figure 4C). Males. Total body length 27 - 41 (32.7) (n= 7) and wide at mid-body 0.58 – 2.86 (1.08) (n=7). Nerve ring 0.35 – 0.54 (0.42) (n=7), excretory pore 0.41 – 0.57 (0.47) (n=7) and derids 0.29 – 0.47 (0.38) (n= 4) from the anterior end. Stoma 0.15 long and 0.07 wide (n=1). Oesophagus 6.18 length (n=1). Spicules are unequal, sclerotized, fliform with diferent sizes; right 0.834 long and 0.019 wide (n=1) elongated and blunt-ended and left 0.651 long and 0.018 wide (n=1) slightly smaller and tapered-ended. Te length of the shorter spicule is 78.3 percent that of the longer one. Elongated tail with four pairs of pedunculated precloacal papillae and a single papilla at the anterior border of the cloaca (Figure 2A). One pair ad-cloacal papillae and two pairs pedunculated post-cloacal papillae (Figure 2B). Distal end of tail not ornamented with four pairs of sessile papillae and a pair of phasmid (Figure 3A). Gubernaculum present. Tail 0.31-0.51 (0.41) long (n=5). Females . Total body length 27 - 96 (63) (n=11) and wide at mid-body 0.42 – 3.28 (1.75) (n=11). Stoma 0.17 long and 0.093 wide (n=2). Oesophagus 6.2 length (n=1). Nerve ring 0.29 – 0.93 (0.49) (n=11), excretory pore 0.4 – 0.66 (0.52) (n=11) and derids 0.54 – 0.59 (0.58) (n=4) at anterior end. Vulva at 11 - 31 (24) (n=5) from the anterior end (Figure 3B). Tail 0.28 – 0.74 (0.43) (n=11). Presence of a pair of phasmid in the tip of tail (Figure 3A). Eggs are elliptic with thick shell 41 - 53 µm (44.3 µm) long and 26 - 32 µm (29 µm) wide (Figure 3C).
190 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Rapozo Dias et al. Figure 1. Scanning electron micrographs of Mastophorus muris ( A) Front view from mouth opening. two triangular lateral lobes and square shape medium lobe. (B) Amphids at the base of the lateral lobe (am), a pair of cephalic pap papillae (cp) at the base of each pseudolabia and a porous structure (p) at each median lobe. (C) Lateral lobe; denticulated margin with a central developed teeth (*); porous structure (p). (D) Teeth of diferent shapes and sizes. Figure 2. Scanning electron micrographs of Mastophorus muris showing ventral view from the posterior end. Male. (A) Four pairs of pedunculated precloacal papillae (arrows) and a single papilla anterior the cloaca (*). One pair ad-cloacal papillae (arrowhead) and two pairs pedunculated post-cloacal papillae (arrows). (B) A single papilla anterior the cloaca (arrowhead) and a pair ad-cloacal papillae (ad). (C) Posterior end female showing the anus.
191 Mastophorus muris parasite of the Rattus norvegicus Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Figure 3. Light microscopy of Mastophorus muris (A) Ventral view from the distal end. Tail not ornamented with four pairs of sessile papillae (arrows) and a pair of phasmid (f). (B) Vulva. (C) Eggs. Figure 4. Light microscopy of Mastophorus muris. Anterior end of female. (A) Dorsal view. Nerve ring (nr). (B) Excretory pore (ep). (C) Dorsal view. Stoma (st). (D) Teeth of diferent sizes(arrow). (E, F) Anterior end showing left and right derids (d).
192 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Rapozo Dias et al. DISCUSSION Te species belonging to the genus Mastophorus Diesing, 1853 are found mainly infecting rats belonging to the families Muridae and Microtidae (Anderson, 2000). Tis nematode has been reported parasitizing the rats R. norvegicus in Israel, Portugal and United States of America (USA) (Firlotte, 1948; Wertheim,1962; Quintal, 2022) , R. alexandrinus Geofroy, 1803 in Israel (Wertheim, 1962), R. assimilis Gould, 1858 in Australia (Smales, 1997), R. rattus Linnaeus, 1758 in New Zealand and Portugal (Charleston & Innes, 1979; Quintal, 2022), Mus musculus Linnaeus, 1758 in Lithuania, Serbia and Germany (Mažeika et al ., 2003; Vukićević-Radić et al ., 2007; Jost et al ., 2024) , R. norvegicus (Syn. M. decumanus ) in India (Maplestone & Bhaduri, 1942), Meriones persicus Blanford, 1875 in Iran (Harandi et al ., 2016), Myodes glareolus Schreber, 1780 in Poland and Germany (Gryzbek, 2014; Jost et al ., 2024) , Arvicola amphibius Linnaeus, 1758 in southern Sweden (Neupane, 2018), Microtus miurus Osgood, 1901 in Alaska (Haukisalmi et al ., 1995), Graomys griseofavus Waterhouse, 1837 in Argentina (Rojas & Digiani, 2003), Geomys breviceps Baird, 1855, Peromyscus leucopus Rafnesque, 1818 , Sigmodon hispidus Say & Ord, 1825 and Oryzomys palustris Harlan, 1837 in USA (Erickson, 1944; Childs & Cosgrove, 1966) and Apodemus favicollis Melchior, 1834 in Germany (Jost et al ., 2024). In Brazil, M. muris was reported infecting R. norvegicus and R. rattus (Araújo, 1967, Vicente et al ., 1997). Interestingly, despite this parasite being found majority in rodent species, this nematode was also reported in marsupials Trichosurus vulpecula Kerr, 1792 and Hypsiprymnodon moschatus Ramsay, 1876 in Australia, Dactylopsila trivirgata Gray, 1858 in USA, in mustelid Meles meles Linnaeus, 1758 in Spain and in carnivores Lynx pardinus Temmink, 1827 in Spain, Vulpes vulpes Linnaeus, 1758 in Spain and China, Vulpes ferrilata Hodgson, 1842 in China and Canis latrans Say, 1823 in USA (Johnston & Mawson, 1938; Smales, 1995; Torres et al ., 1998; Barbosa et al ., 2005; Chen, 2022) and Felis silvestris Schreber, 1777 in Germany (Jost et al ., 2024). Te largest number of rodent species infected with M. muris likely acquire it through their diet. Ingestion of intermediate hosts, containing the parasite larvae, makes them susceptible. Additionally, carnivores can become infected by accidentally consuming intermediate or paratenic hosts.Te life cycle of M. muris is indirect with a great diversity of insects as intermediate hosts (Grybek et al ., 2014), likewise, a large number of mammal species can be defnitive hosts. Te worldwide distribution of the helminth and diferent host taxa suggests low host specifcity both defnitive and intermediate. Goldberg & Bursey (2002) suggest that geckos Hemidactylus turcicus Linnaeus, 1758 and H. mabouia Moreau de Jonnes, 1818 could be paratenic host , since encysted larvae not yet studied have been found in the skeletal muscles of these animals in the same place where there was a high prevalence of the nematode in rodents (Laferty et al ., 2010), in fact, further research to elucidate the specifc roles of various hosts within it is necessary.In Brazil, M. muris infecting murids was reported as Protospirura columbiana Cram, 1926 by Araújo (1967) and Chief et al. (1980) in the city of São Paulo and as P. muris by Brito et al. (1969) in the city of Rio de Janeiro. Indeed, the taxonomic classifcation of the genus Mastophorus was historically confused with that of the genus Protospirura Seurat, 1914. Te genus Mastophorus was described by Diesing in 1853, however, York & Maplestone (1926) considered that there was not enough information to create a new genus and relocated eight species of Mastophorus in the genus Protospirura. After, Chitwood (1938) considered Mastophorus a valid genus that difered from Protospirura by the arrangement of the pseudolabium teeth and, furthermore, subdivided the species M. muris into two varieties: M. muris var. muris and M. muris var. ascaroides . Read & Millemann (1953) disagreed with Chitwood’s (1938) classifcation arguing that the chosen characteristics were only valid at the subgenus level. Consequently, they re-established M. muris as a distinct species , classifying it and removing it again from the genus Protospirura . Examining the morphology of M. muris and P. muricola larvae , Quentin (1970) confrmed the distinctness of the two genera in accordance to Chitwood (1938). Key diferentiating features include the number of teeth in the pseudolabia, the shape of the stoma, the morphology and arrangement of pre- and post-cloacal papillae in males, the length of the male caudal wing, and the position of the vulva in females (Chitwood, 1938; Quentin, 1970; Smales et al ., 2009). Actually, the synonyms for M. muris found in the literature are: Protospira labiodentata Linstow, 1899 , P. gracilis Cram , 1924 , P. columbiana Cram, 1926 , P. ascaroidea Hall , 1916 , P. glareoli Soltys , 1949 , P. marsupialis Baylis , 1934 and P. bestiarum Kreis , 1953 . Te species of the present study is M. muris by the following characteristics: fve to nine teeth in each pseudolabia, long stoma, long tail and pedunculated papillae in males and a pre-equatorial vulva in females in accordance to Chitwood (1938) and Quentin (1970). Inconsistent descriptions of the anterior region, particularly regarding the highly variable tooth shapes, and inaccurate posterior region descriptions on the arrangement of pedunculated
193 Mastophorus muris parasite of the Rattus norvegicus Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 and sessile papillae, hindered the accurate classifcation of Mastophorus and Protospirura species (Jost et al ., 2024). Recently, Jost et al . (2024) investigated the morphological and molecular variation within M. muris , emphasizing the importance of dentition analysis for parasite taxonomy. Te study proposed tooth pattern formulas to diferentiate M. muris specimens based on their hosts. Mus hosts were identifed by the formula 1–(2 + n)–1–(2 + n)–1, where “n” represents the variable number of smaller denticles. Specimens from non- Mus hosts (as Myodes , Rattus , and Felis ) shared the formula 1–(2 + n)–1, with a large central tooth and a variable number of smaller denticles. Finally, Graomys specimens exhibited a unique formula of 1–3–1–3–1, characterized by three smaller denticles between larger ones in the margin of each lobe as described by Rojas & Digiani (2003). Diferently, Wertheim (1962) considered that the denticles would be serrated projections of the thin and fexible membrane covering the pseudolabium noting a high variability in both the number and shape of teeth within the lobes with no dental pattern. In most cases, was observed a centrally placed large tooth and a variable number of teeth, often bifd, juxtaposed to the large central tooth as in specimens of R. assimilis from Israel. Our fndings are in agreement with Wertheim (1962) that the tooth arrangement on the margin of each lobe is asymmetrical. Notably, a central tooth is consistently present in each lobe, smaller teeth with pointed ends that can be either bifd (divided into two) or trifurcated (divided into three) and pointed teeth of varying sizes can be observed. Wertheim (1962), Roja & Digiani (2003) and Jost et al . (2024) described four pairs of pre-anal and two post-anal pedunculated papillae along with a variable number of sessile papillae (1 to 7 pairs) at the end of the tail and a single papilla just anterior to the edge of the cloaca. Our observations confrm the presence of previously reported papillae, while we additionally identifed a pair of ad-cloacal papillae not documented before. M. muris exhibits signifcant morphological and morphometric variation among isolates from diferent host species. Furthermore, genetic diferences have also been identifed between isolates, as evidenced by Jost et al . (2024). Despite our eforts, genetic material extraction from the samples proved unsuccessful. Tis limits our ability to contribute valuable insights into the genus’ complexity. Tis study underscores the need for further investigation to clarify host-genus relationships and explore the possibility of reclassifying the parasite into distinct species or even a new genus identity.Te pathogenicity of M. muris in defnitive hosts have been evaluated as mild pathology mainly related to low parasite burdens. Tis efect is likely due to the nematodes’ consumption of gastric contents, leading to a decline in body condition (Laferty et al ., 2010). However, high parasite loads could result in regurgitation, signs of gastritis, obstruction of the gastrointestinal tract, and severe weight loss (Grzybek et al. , 2014).Te nematode M. muris is worldwide distributed and found in Eurasia, America, and Oceania (Rausch, 1951; Neupane et al. , 2018). Study of the prevalence of M. muris in R. rattus in an island with extensive vegetation cover and coconut trees Palmyra Atoll in the central Pacifc Line Islands from North America showed a high prevalence with 59% (97/165) of hosts infected (Laferty et al ., 2010). In contrast, a low prevalence of 3.7% (21/567) was observed in Mus musculus collected in Germany (Jost et al ., 2024). In Brazil, the prevalence of this stomach spirurid in studies of the helminth fauna of synanthropic rodents is very low with 2% (4/205) (Chief et al ., 1980) or non-observed in some areas (Simões et al ., 2016; Carvalho-Pereira et al ., 2018). In fact, a low prevalence of 0.5% (1/173) was also observed in the present study. Probably, due to the low prevalence of this nematode in Brazil, it is difcult to fnd infected defnitive hosts, moreover, anthropic changes could modify the natural habitats of the intermediate hosts leading to disappearance of parasites. Reinforcing the infuence of habitat, Roberts et al . (1992) demonstrated a strong correlation between helminth infections and specifc environments. Teir study on Rattus exulans Peale, 1848 in forests, pastures, and farms found the highest infection rates of the trematode Brachylaima sp . Dujardin, 1843 and the nematode Calodium hepaticum Bancroft, 1893 (syn. Capillaria hepatica ), and M. muris in forested areas. Tis suggests that the greater abundance of arthropods, particularly those that create favorable microhabitats for intermediate host survival and reproduction, contributes to higher infection levels in these environments. Te prevalence of M. muris infection in rodents can be infuenced by several factors, such as age, sex, and reproductive status (e.g., adult rodents, mature or lactating females), can play a role (Laferty et al ., 2010; Grzybek et al ., 2014). Additionally, extrinsic factors like season, local temperature, feeding habits, and food availability in the host’s environment can also infuence infection rates (Laferty et al ., 2010; Burlet et al . 2011).Tis study provided a detailed morphological analysis adding new taxonomic features as a pair of adcloacal papillae and details of pseudolabia teeth for M. muris
194 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Rapozo Dias et al. from R. norvegicus in Nova Iguaçu municipality, Rio de Janeiro state. Additionally, contributing with a new geographical distribution to M. muris. Tis refned characterization may contribute to future identifcations and improve our understanding of the species. To gain a deeper understanding of diversity within the genus Mastophorus , integrating molecular characterization analysis would be highly suggested. Author contributions: CRediT (Contributor Roles Taxonomy)AJRD = Ana Júlia Rapozo Dias BEAS = Beatriz Elise de Andrade Silva TCBB = Teresa Cristina Bergamo do Bomfm AMJ = Arnaldo Maldonado Júnior ROS = Raquel de Oliveira Simões Conceptualization: AJRD, TCBB, ROS Data curation: AJRD, TCBB, ROS Formal Analysis: AJRD, BEAS, AMJ Funding acquisition: ROS Investigation: AJRD, BEAS, TCBB, AMJ, ROS Methodology: AJRD, BEAS, TCBB, ROS Project administration: AJRD, TCBB, ROS Resources: AJRD, BEAS, TCBB, AMJ, ROS Software: AJRD, BEAS, TCBB, AMJ, ROS Supervision: BEAS, AMJ, ROS Validation: AJRD, BEAS, TCBB, AMJ, ROS Visualization: AJRD, BEAS, ROS Writing – original draft: AJRD, BEAS, ROS Writing – review & editing: AJRD, BEAS, TCBB, AMJ, ROS BIBLIOGRAPHIC REFERENCES Anderson, R. C. (2000). Nematode parasites of vertebrates: their development and transmission. 2 nd ed. CABI digital Library. Araujo, P. (1967) . Helmintos de Rattus norvegicus (Berkenhout, 1769) da cidade de São Paulo. Revista de Farmácia e Bioquimica, 5, 141-159. Bain, O., Mutafchiev, Y., & Junker, K. (2014). Order Spirurida. pp. 661–732 in Schmidt-Rhaesa, A ( Ed .) Handbook of zoology: Gastrotricha, Cycloneuralia and Gnathifera . Volume 2. Nematoda. De Gruyter.Barbosa, A.M., Segovia, J.M., Vargas, J.M., Torres, J., Real, R., & Miquel, J. (2005). Predictors of red fox ( Vulpes vulpes ) helminth parasite diversity in the provinces of Spain. Wildlife Biology in Practice, 1 , 3–14.Bomfm, T., & Lopes, C.W.G. (1999). Species of the genus Eimeria (Apicompexa: Eimeriidae) parasites of Rattus norvergicus in Rio de Janeiro, Brasil. Revista Universidade Rural Ciências da Vida, 21 , 11-23.Burlet, P., Deplazes, P. & Hegglin, D. (2011). Age, season and spatio-temporal factors afecting the prevalence of Echinococcus multilocularis and Taenia taeniaformis in Arvicola terrestris . Parasites and Vectors , 4 , 1-9. Calhoun, J. B. (1962). Te ecology and sociology of Norway rat. United States Government. Print Of, 210. Carvalho-Pereira, T., Souza, F., Santos, L., Walker, R., Pertile, A., de Oliveira, D., Pedra, G., Minter, A., Rodrigues, M., Bahiense, T., Reis, M., Diggle, P., Ko, A., Childs, J., da Silva, E., Begon, M., & Costa, F. (2018). Te helminth community of a population of Rattus norvegicus from an urban Brazilian slum and the threat of zoonotic diseases. Parasitology , 145 , 797-806. Charleston, W., & Innes, J. (1979). Seasonal trends in the prevalence and intensity of spiruroid nematode infections of Rattus rattus . New Zealand Journal of Zoology , 7 , 141–145. Chen, Q., Wang, X., Li, C., Wu, W., Zhang, K., Deng, X., Xie, Y., & Guan, Y. (2022). Investigation of parasitic nematodes detected in the feces of wild carnivores in the eastern Qinghai-Tibet Plateau, China. Pathogens , 11 , 1520.
195 Mastophorus muris parasite of the Rattus norvegicus Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Chief, P., Grispino, D., Mangini, A., Dias, R., Villanova, A., Guidugli, N. & de Souza, A. (1980). Helmintos parasitas do aparelho digestivo de murídeos capturados no município de São Paulo, S.P., Brazil. Prevalência, intensidade de parasitismo e importância em saúde pública. Revista do Instituto Adolfo Lutz , 401 , 35-41.Childs, H. & Cosgrove, G. (1966). A study of pathological conditions in wild rodents in radioative areas. Te American Midland Naturalist , 76 , 309–324. Chitwood, B.G. (1938). Te status of Protospirura vs. Mastophorus with a consideration of the species of these genera. Livro Jubilar do Professor Lauro Travassos , 115–118.Erickson, A. (1944). Helminths of Minnesota Canidae in relation to food habits, and a host list and key to the species reported from North America. Te American Midland Naturalist, 32 , 358–372.FIBGE. (1985). Censo Agropecuário Rio de Janeiro, IBGE. 20, 370.Firlotte, W. (1948). Parasites of the Norway rat. Canadian journal of comparative medicine and veterinary Science , 12 , 187-191. Gmelin, J.F. (1791). Caroli a Linné. Systema naturae. Tom. I. Pars VI , 3021-3910. Goldberg, S.R., & Bursey, C.R. (2002). Gastrointestinal helminths of seven Gekkonid Lizard species (Sauria: Gekkonidae) from Oceania. Journal of Natural History 18 , 2249–2264. Grzybek, M., Bajer, A., Behnke-Borowczyk, J., Al-Sarraf, M., & Behnke, J. (2014). Female host sex-biased parasitism with the rodent stomach nematode Mastophorus muris in wild Bank Voles ( Myodes glareolus ). Parasitology Research , 114 , 523-533. Harandi, M.F., Madjdzadeh, S.M., & Ahmadinejad, M. (2016). Helminth parasites of small mammals in Kerman province, southeastern Iran. Journal of Parasitic Diseases, 40 , 106-9. Haukisalmi, V., Henttonen, H., & Batzli, G. (1995). Helminth parasitism in the voles Microtus oeconomus and M. miurus on the North Slope of Alaska: host specifcity and the efects of host sex, age and breeding status. Annales Zoologici Fennici , 32 , 193-201. Johnston, T.H. & Mawson, P.M. (1938). Some nematodes from Australian marsupials. Records of the South Australian Museum , 6 , 187–198.Jost, J., Hirzmann, J., Ďureje, L., Maaz, D., Martin, P., Stach, T., Heitlinger, E., & Jarquín-Díaz, V.H. (2024). Parasitology Research , 123 , 237. Laferty, K., Hathaway, S., Wegamann, A.S, Shipley, F., Backlin, A.R., Helm, J., & Fisher, R. (2010). Stomach nematodes ( Mastophorus muris ) in rats ( Rattus rattus ) are associated with coconut ( Cocos nucifera ) habitat at Palmyra Atoll. Journal of Parasitology , 96 , 16-20. Mafra, A.C., & Lanfredi, R.M. (1998). Reevaluation of Physaloptera bispiculata (Nematoda: Spiruroidea) by light and scanning electron microscopy. Journal of Parasitology , 84 , 582-588. Maplestone, P., & Bhaduri, N. (1942). Helminth parasites of certain rats in India. Records of Te Indian Museum , 44 , 201-206. Mažeika, V., Algimantas-Paulauskas, A., & Balčiauskas, L. (2003). New data on the helminth fauna of rodents of Lithuania. Acta Zoologica Lituanica , 13 , 41-47. Neupane, B., Miller, A.L., Evans, A.L., Olsson, G., & Hoglund, J. (2018). Seasonal variation of Mastophorus muris (Nematoda: Spirurida) in the water vole Arvicola amphibious from Southern Sweden. Journal of Helminthology , 94, 1-4. Quentin, J.C. (1970) Morphogénèse larvaire du Spiruride Mastophorus muris (Gmelin, 1790). Annales de Parasitologie Humaine et Comparée , 45 , 839–855.
196 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Rapozo Dias et al. Quintal, L.T.F. (2022). Helmintofauna gastrointestinal de Rattus rattus e Rattus norvegicus nas áreas portuárias de Lisboa e Ponta Delgada. (Dissertação de Mestrado Integrado em Medicina Veterinária). Universidade de Lisboa.Rausch, R. (1951). Distribution and specifcity of helminths in Microtine rodents: Evolutionary Implications. Evolution , 11 , 361-368. Read, C.P., & Milleman, R.E. (1953). Helminth parasites in Kangaroo rats. University of California Publications in Zoology , 59 , 61-80.Roberts, M., Rodrigo, A., Mcardle, B., & Charleston, W. (1992). Te efect of habitat on the helminth parasites an Island population of the Polynesian rat ( Rattus exulans ). Journal of Zoology , 227 , 109-125. Rojas, M., & Digiani, Mc. (2003). First Record of Mastophorus muris (Gmelin, 1790) (Nematoda: Spiruroidea) from a wild host in South America. Parasite , 10 , 375-378.Seurat, L.G. (1914). Sur um noveau Spiroptera du Chat gante. Comptes Rendus de la Sociéte ́ de Biologie , 77 , 344-347.Simões, R.O., Luque, J.L., Gentile, R., Rosa, M.C.S., Costa-Neto, S., & Maldonado, A. (2016). Biotic and abiotic efects on the intestinal helminth community of the brown rat Rattus norvegicus from Rio de Janeiro, Brazil. Journal of Helminthology , 90 , 21-27, Smales, L. (1995). Mastophorus muris (Nematoda: Spirocercidae) from the musky rat-kangaroo, Hypsiprymnodon moschatus . Transactions of the Royal Society of South Australia, 119, 95–96. Smales, L. (1997). A Review of the helminth parasites of Australian rodents. Australian Journal of Zoology , 45 , 505-521. Smales, L.R., Harris, P.D. & Behnke, J.M. (2009). A redescription of Protospirura muricola Gedoelst, 1916 (Nematoda: Spiruridae), a parasite of murid rodents. Systematic Parasitology , 72, 15–26. Souza, A. (1980). Helmintos parasitas do aparelho digestivo de murídeos capturados no município de São Paulo: prevalência, intensidade de parasitismo e importância em Saúde Pública. Revista do Instituto Adolfo Lutz , 1 , 35-41.Torres, J., Garcia-Perea, R., Gisbert, J., & Feliu, C. (1998). Helminth fauna of the Iberian lynx , Lynx pardinus . Journal of Helminthology , 72 , 221–226.Vicente, J., Rodrigues, H., Gomes, D., & Pinto, R. (1997). Nematóides do Brasil. Parte V: Nematóides de Mamíferos. Revista Brasileira de Zoologia , 14, 1-452. Vukićević-Radić, O., Kataranovski, D., & Kataranovski, M. (2007). First record of Mastophorus muris (Gmelin, 1790) (Nematoda: Spiruroidea) in Mus musculus from the suburban area of Belgrade, Serbia. Archives of Biological Sciences , 59 , 1-2. Wertheim, G. (1962). A study of Mastophorus muris (Gmelin, 1790) (Nematoda: Spiruridae). Transactions of the American Microscopical Society , 81 , 274-279.Yorke, W., & Maplestone, P. A. (1926). Te nematode parasites of vertebrates . P. Blakiston. 536 p.Received September 2, 2024.Accepted October 11, 2024.