157 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Neotropical Helminthology Neotropical Helminthology, 2024, vol. 18 (2), 157-175 ORIGINAL ARTICLE / ARTÍCULO ORIGINAL BIODIVERSITY OF PARASITES INFECTING BOTHROPS ERYTHROMELAS AMARAL, 1923 (SQUAMATA, VIPERIDAE): AN ENDEMIC VENOMOUS SNAKE SPECIES FROM THE BRAZILIAN NORTHEASTBIODIVERSIDAD DE PARÁSITOS QUE INFECTAN A BOTHROPS ERYTHROMELAS AMARAL, 1923 (SQUAMATA, VIPERIDAE): UNA ESPECIE DE SERPIENTE VENENOSA ENDÉMICA DEL NORESTE DE BRASIL Cicera Silvilene Leite Matias¹ , ² , *; Cristiana Ferreira-Silva³; Willianilson Pessoa-da-Silva¹ , ²; Maria Beatriz de Andrade Sousa¹ , ²; Aldenir Ferreira Silva-Neta²; Robson Waldemar Ávila³; Felipe Gobbi Grazziotin 4 & Adrian Antonio Garda¹ , ² ISSN Versión Impresa 2218-6425 ISSN Versión Electrónica 1995-1403 DOI: https://dx.doi.org/10.62429/rnh20242181808 Universidad Nacional Federico Villarreal Volume 18, Number 2 (jul - dic) 2024 Este artículo es publicado por la revista Neotropical Helminthology de la Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú auspiciado por la Asociación Peruana de Helmintología e Invertebrados Af nes (APHIA). Este es un artículo de acceso abierto, distribuido bajo los términos de la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) [https:// creativecommons.org/licenses/by/4.0/deed.es] que permite el uso, distribución y reproducción en cualquier medio, siempre que la obra original sea debidamente citada de su fuente original. ABSTRACT T e knowledge of parasitic fauna in wild animals is essential for understanding the ecological conditions that determine the occurrence and prevalence of parasites in their hosts. Except for records of one Pentastomida ( Cephalobaena tetrapoda Heymons, 1922) and two Nematoda ( Physaloptera sp. And Aspiculuris sp.), detailed information about the helminth fauna associated with the jararaca Bothrops erythromelas Amaral, 1923 is lacking. T is species has a wide distribution in the Caatinga, with records in marginal areas of the Cerrado and Atlantic Forest. Here, we describe the patterns of ¹ Programa de Pós-graduação em Ciências Biológicas (Zoologia) Universidade Federal da Paraíba - Via Expressa Padre Zé Jardim, Cidade Universitária, 58051001, João Pessoa, PB, Brazil; ² Laboratório de Anfíbios e Répteis, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Av. Senador Salgado Filho, 3000, 59078-900, Natal, RN - Brasil³ Universidade Federal do Ceará (UFC), Departamento de Biologia, Centro de Ciências, Av. Mister Hull, s/n, CEP 60455-760, Fortaleza, Ceará, Brazil 4 Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, 05503-900, SP, Brazil* Corresponding author : silvilenematias@gmail.comCicera Silvilene Leite Matias: https://orcid.org/0000-0002-2812-0106Cristiana Ferreira-Silva: https://orcid.org/0000-0002-3087-2614Willianilson Pessoa-da-Silva: https://orcid.org/0000-0002-4975-5733 Maria Beatriz de Andrade Sousa: https://orcid.org/0009-0007-9158-8928Aldenir Ferreira Silva-Neta: https://orcid.org/0000-0003-4245-5233Robson Waldemar Ávila: https://orcid.org/0000-0003-3641-8321Felipe Gobbi Grazziotin: https://orcid.org/0000-0001-9896-9722Adrian Antonio Garda: https://orcid.org/0000-0002-1178-1207
158 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. richness, abundance, and prevalence of helminths in B. erythromelas, a venomous snake from northeastern Brazil. Te parasitized snakes were collected from six Brazilian states in the Northeast region: Bahia, Ceará, Paraíba, Pernambuco, Piauí, and Rio Grande do Norte. We examined the gastrointestinal tract of 127 specimens and found 76 individuals infected with at least one endoparasite, represented by 17 taxa of helminths: two Acanthocephala, three Cestoda, and 12 Nematoda. With our results, knowledge about hidden biodiversity is expanded, particularly as this is a pioneering study regarding the helminth fauna of B. erythromelas. We also describe the occurrence of the species Physaloptera lutzi Cristofaro, Guimarães & Rodrigues, 1976, and Parapharyngodon hispidus Ferreita et al ., 2021 for the frst time in snakes. Keywords. Acanthocephala – Caatinga – Cestoda – Inventory – Nematoda – Parasites RESUMEN El conocimiento de la fauna parasitaria en animales silvestres es esencial para comprender las condiciones ecológicas que determinan la ocurrencia y prevalencia de parásitos en sus hospedadores. Con la excepción de registros de un Pentastomida ( Cephalobaena tetrapoda Heymons, 1922) y dos Nematoda ( Physaloptera sp. y Aspiculuris sp.), falta información detallada sobre la fauna de helmintos asociada con la jararaca Bothrops erythromelas Amaral, 1923 . Esta especie tiene una amplia distribución en la Caatinga, con registros en áreas marginales del Cerrado y la Mata Atlántica. Aquí, describimos los patrones de riqueza, abundancia y prevalencia de helmintos en B. erythromelas , una serpiente venenosa del noreste de Brasil. Las serpientes parasitadas fueron recolectadas en seis estados brasileños de la región Nordeste: Bahia, Ceará, Paraíba, Pernambuco, Piauí y Rio Grande do Norte. Examinamos el tracto gastrointestinal de 127 especímenes y encontramos 76 individuos infectados con al menos un endoparásito, representado por 17 taxones de helmintos: dos Acanthocephala, tres Cestoda y 12 Nematoda. Con nuestros resultados, se amplía el conocimiento sobre la biodiversidad oculta, especialmente porque este es un estudio pionero sobre la fauna de helmintos de B. erythromelas. También describimos por primera vez la ocurrencia de las especies Physaloptera lutzi Cristofaro, Guimarães & Rodrigues, 1976 y Parapharyngodon hispidus Ferreira et al ., 2021 en serpientes. Palabras clave: Acanthocephala – Caatinga – Cestoda – Inventario – Nematoda – Parásitos INTRODUCTION Parasitological studies in reptiles have expanded in recent years, particularly those involving snakes (Ávila et al., 2013; Kuzmin et al., 2016; Mati et al., 2015; Matias et al., 2018; Quirino et al., 2018; Oliveira et al., 2020, 2023; Araújo et al., 2020; Halán & Kottferová, 2021; Oliveira et al. , 2023; Conga et al., 2024), which can serve as defnitive or intermediate hosts for various groups of parasites (Araújo et al., 2020; Oliveira et al., 2021; Ferreira-Silva et al., 2022). Understanding the parasitic fauna of wild animals is crucial for comprehending ecological interactions of parasites and their hosts, including natural history, life cycles, and evolutionary aspects of this relationship (Silva, 2008; Matias et al., 2018). Detrimental efects of parasites on host ftness include, among others, the alteration of coloration patterns and, consequently, negative impacts on reproductive success (Schall & Dearing, 1987; Dunlap & Schall, 1995; Levri, 1999). Given the importance and biological diversity of the genus Bothrops, which comprises approximately 63 species worldwide (Uetz et al., 2023), only 14 species of the genus have been studied in the Neotropical Region to understand their helminth fauna: B. alternatus Duméril, Bibron & Duméril, 1854, B. asper Garman, 1883, B. atrox Linnaeus, 1758, B. barnetti Parker, 1938 , B. cotiara Gomes, 1913 , B. erythromelas Amaral, 1923, B. insularis Amaral, 1922, B. jararaca Wied-Neuwied, 1824, B. jararacussu Lacerda, 1884 , B. lanceolatus Bonnaterre, 1790 , B. mattogrossensis Amaral, 1825 , B. moojeni Hoge, 1966 , B. neuwiedi Wagler, 1924 , B. pradoi Hoge, 1948 (Conga et al., 2024), however, these studies are essential for understanding interspecifc relationships.In this study, we present for the frst time, a comprehensive analysis of the helminth fauna associated with Bothrops erythromelas , the Caatinga lancehead (jararaca-da-seca in Portuguese). Bothrops erythromelas is widely distributed in the Caatinga, throughout the Brazilian states of
159 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Alagoas, Bahia, Ceará, Maranhão, Minas Gerais, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, and Sergipe; with records in marginal areas along the Cerrado and Atlantic Forest ecotones (Campbell & Lamar, 2004; Nogueira et al., 2019; Costa et al., 2023). Bothrops erythromelas is the most important species from an epidemiological perspective, as it causes most of the life-threatening snake bites in the Brazilian semi-arid region (Lira-da-Silva et al., 2009). Additionally, the species has a key ecological role, contributing to the population size equilibrium of several small vertebrates in the ecosystem (e.g., rodents, amphibians, lizards; Martins et al., 2002). Currently, only three records of endoparasites were registered for B. erythromelas , one Pentastomida ( Cephalobaena tetrapoda Heymons, 1922; Oliveira et al., 2015) and two Nematoda ( Physaloptera sp., Oliveira et al., 2018; Aspiculuris sp., Batista et al., 2021). Terefore, a proper appreciation of the species interaction with parasites is crucial for understanding the occurrence and abundance patterns of endoparasites associated with this venomous snake, as well as the resulting medical and ecological implications (Jorge et al., 2015). MATERIALS AND METHODS Tese parasitized snakes were sourced from four northeastern brazilian states: Bahia (N = 7), Ceará (N = 33), Paraíba (N = 3), Pernambuco (N = 11), Piauí (N = 1), and Rio Grande do Norte (N = 21). Specimens utilized in this investigation were retrieved from Biological Collections: specifcally, the Herpetological Collection of the Regional University of Cariri - URCA (N = 20), the Herpetological Collection of the Semiarid - UFERSA (N = 8), the Herpetological Collection of the Federal University of Ceará - NUROF/UFC (N = 23), and the Herpetological Collection of the Federal University of Paraíba - UFPB (N = 25). We carefully examined the presence of parasites in the gastrointestinal tract (esophagus, stomach, small and large intestines), liver, kidneys, lungs, gallbladder, and celomic cavity of the snakes under a stereomicroscope. Helminths were identifed to the lowest possible taxonomic level. To achieve this, we stained Cestodes and Acanthocephala with alcoholic chloride carmine solution, and cleared with eugenol, while species of and Nematoda were cleared in lactic acid (Amato & Amato, 2010). To visualize the internal and external morphological characters of the helminths, we utilized an optical microscope. Following identifcation, all helminths were deposited in the Parasitological Collection of the Federal University of Ceara (UFC-P). We calculated the parasitological parameters of abundance, richness, and prevalence following the method outlined by Bush et al. (1997), using the software Quantitative Parasitology 3.0. Richness was determined as the total number of parasite species, while abundance represented the total count of parasite individuals found in each of the 76 specimens of B. erythromelas. To assess whether parasite richness is infuenced by the linear measure of host size (snout-vent length: SVL), sex, and whether abundance is infuenced by SVL, sex, and host maturity, we employed a Generalized Linear Model (GLM). In this analysis, predictor variables were included with interaction terms. Given that richness and abundance data are count data, we incorporated a Poisson error structure into the model. Tese statistical analyses were conducted using R version 4.3.1 (R Core Team, 2023). Ethic aspects : Te specimens used in this study were collected under the approved authorization (29613-1) conceived by Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/SISBIO) from the Ministério do Meio Ambiente (MMA) of Brazil. Te collecting, hold and storage were previously revised by the Ethics and Animal Welfare Committee from the Universidade Regional do Cariri (#00026/2015). RESULTS Out of the 127 snakes analyzed, 76 specimens were found to harbor parasites, comprising 17 helminth taxa: two Acanthocephala (cystacanths of Centrorhynchus sp. and Oligacanthorhynchidae gen. sp.) with a prevalence of 46.90%, three Cestoda (specimens of Oochoristica sp. and larvae of Plerocercoid and Cysticercoid) with a prevalence of 2.76%, and 12 Nematoda ( Brevimulticaecum sp., Cosmocercidae gen. sp., Hexametra boddaertii Baird, 1860, Oswaldocruzia sp., Parapharyngodon hispidus Ferreita et al., 2021, Physaloptera lutzi Cristofaro, Guimarães & Rodrigues, 1976, Physaloptera nordestina Matias, Morais & Ávila , 2020, Physaloptera sp., Physalopteroides venancioi Lent et al . 1946, Physocephalus sp., Strongyloides ophidiae Pereira, 1929, and unidentifed nematode larvae) with a prevalence of 50.34%. Te overall parasite prevalence in B. erythromelas was 59.84%, with a mean infection intensity of 13.88 ± 7.0 (range: 1–350) (Table 1, Fig. 1).
160 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. (Continued Figure 1)
161 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 (Continued Figure 1)(Continued Figure 1)
162 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. Figure 1. Helminth species parasitizing Bothrops erythromelas - Acanthocephala: a - Centrorhynchus sp., b - Oligacanthorhynchidae gen. sp., Cestoda: c - Oochoristica sp. (mature proglottids), d - Plerocercoid Larvae, e - Cisticercoid Larvae, Nematoda: f - Brevimulticaecum sp. (anterior end of the larvae), g - Cosmocercidae gen. sp. (female adult), h and I - Hexametra boddaertii (anterior end and tail of the male, respectively), j and k - Oswaldocruzia sp. (anterior end and posterior end of the female, respectively), l and m - Parapharyngodon hispidus (anterior end and tail of the male, respectively), n and o - Physaloptera lutzi (anterior end and tail of the male, respectively) and p - Physaloptera nordestina (male’s tail), q - Physaloptera sp., r - Physalopteroides venancioi (anterior end of the female), s and t - Physocephalus sp. (anterior end and posterior end of the larvae, respectively), u and v - Strongyloides ophidiae (panoramic view and eggs of the female, respectively), w and x - Nematoda not identifed (anterior end and posterior end of the larvae, respectively). (Continued Figure 1)
163 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Among the parasites found, the cystacanth of Oligacanthorhynchidae was the most abundant, with 350 individuals, followed by Physaloptera sp., with 239. Te rarest species, with only one individual found, were Brevimulticaecum sp., Oswaldocruzia sp., and Physocephalus sp. Parasite richness was positively infuenced by the SVL of the hosts, with no efect of sex or interaction between them (Table 2, Fig. 2). Parasite abundance was also positively infuenced by SVL. Additionally, females tended to have higher parasite abundance than males, and both sexes tended to have higher abundance with increasing SVL (Table 3, Fig. 3). Table 1. Parasitological indices of endoparasites in Bothrops erythromelas (equivalent to hosts infected with at least one species of parasite). Development stage (DS), Larvae (L), Adut (A), Prevalence values (P%), number of endoparasites (NE), mean intensity of infection and standard deviation (MII ± SD), mean abundance (MA), site of infection (SI) Sto= stomach; Igi= large intestine; Smi= small intestine, Per= Peritoneum. Northeastern Brazilian state where the host was collected: Bahia (BA), Ceará (CE), Paraíba (PB), Pernambuco (PE), Piauí (PI), and Rio Grande do Norte (RN). * New record for B. erythromelas and ** new record for snakes. EndoparasitesDSP%NEMII±SDMASIStates Acanthocephala Centrorhynchus sp.*L13.2565.6 ± 2.525Per, Sto CE, PE, RN Oligacanthorhynchidae gen. sp.* L75.0350 6.1 ± 4.046 Per, Sto, Igi, SmiBA, CE, PB, PE, PI, RN Cestoda Oochoristica sp.*A2.6 31.5 ± 1.5 1 Igi, SmiBA, CE Plerocercoid larvae*L 1.3 22.0 ± 2.0 - PerRN Cisticercoid larvae*L1.3 1313.0 ± 13.0 - Sto CE Nematoda Brevimulticaecum sp.*L 1.3 1 1.0 ± 1.0-PerCECosmocercidae gen. sp.*A 2.6 94.5 ± 4.5 7 Smi, Per CE, RN Hexametra boddaertii* A9.2223.1 ± 1.09Per, Sto, IgiCE, RN Oswaldocruzia sp.*A1.311.0 ± 1.0-StoCE Parapharyngodon hispidus ** A1.388.0 ± 8.0-StoCE Physaloptera lutzi ** A13.2414.1 ± 3.513Per, Igi, Sto, SmiCE, RN Physaloptera nordestina* A2.631.5 ± 1.51Per, StoPE, RN Physaloptera sp.L22.423914.1 ± 9.065Smi, Sto, Per,IgiBA, CE, PE, RN Physalopteroides venancioi* A2.6168.0 ± 8.06Igi, StoBA, CE Physocephalus sp.*L1.311.0 ± 1.0-StoPE Strongyloides ophidiae* A7.921736.2 ± 30.580Sto, Per, Smi, CE, RNNematoda (not identifed)L22.4734.3 ± 2.017Per, Smi, IgiBA, CE, PE, RN Table 2. GLM model testing how parasite richness varies as a function of host body condition index (SVL), sex, and their interactions. Variables EstimateStandard errorvalue ZValue P Intercepto-0.4680.555-0.8440.398SVL0.0030.0012.188 0.028 Sex0.3641.0090.3610.718SVL:Sex-0.0010.002-0.4460.655
164 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. Table 3. GLM model testing how parasite abundance varies as a function of host body condition index (SVL), sex, and their interactions. VariablesEstimateStandard errorValue ZValue P Intercept 0.5640.2022.7880.005 SVL 0.0050.00011.849<0.001 Sex-0.0340.438-0.0780.938SVL: Sex0.0000.001-0.2550.798 Figure 2. Species richness of parasites in relation to the body condition index (SVL) of Bothrops erythromelas specimens. Figure 3 . Parasite abundances in relation to the body condition index (SVL) for males and females of B othrops erythromelas species.
165 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 DISCUSSION Bothrops erythromelas exhibited a high prevalence of helminths (59.84%), similar to other species of snakes in the Viperidae family: Bothrops moojeni N = 50 (68%; Barrella & Silva, 2003) and Crotalus durissus terrifcus Linnaeus, 1758 N = 12 (66%; Dias et al., 2004), but contrasting with Crotalus tzabcan Klauber, 1952 N = 50 (14%; Carbajal-Márquez et al., 2018). Tese comparative data support the idea that describing the helminths of a particular species is crucial to achieve a more complete comprehension of hidden patterns of parasite biodiversity.Te phylum Acanthocephala exhibits an indirect life cycle, engaging in trophic interactions with both invertebrates and vertebrates (Crompton & Nickol, 1985). Incidentally, snakes act as paratenic hosts for acanthocephalans (Travassos, 1917; Pizzatto & Madi, 2002; Pizzatto & Marques, 2006; Smales, 2007a; Matias et al., 2018). In these cases, encysted larvae reside in the body cavity of snakes until they are ingested by the defnitive host (Nickol, 1985). Typically, birds and mammals serve as defnitive hosts, arthropods act as intermediate hosts, and snakes serve as paratenic hosts of the family Oligacanthorhynchidae (Schmidt, 1972; Nickol & Dunagan, 1989; Kennedy, 2006). Birds and mammals are potential predators of snakes, (Cardoso & Santos, 2012; Fraga et al., 2013; Marques & Medeiros, 2018), including those of the genus Bothrops (Sazima, 1922; Oliveira & Santori, 1999; Martins et al., 2003), Tus, we suggest that parasites may use snakes to reach their defnitive hosts. Representatives of Oligacanthorhynchidae are known to infect snakes such as Boa constrictor Linnaeus, 1758 , Boiga dendrophila Boie, 1827 , Bothrops jararacussu, Bothrops neuwiedi, Clelia clelia Daudin, 1803 , Erythrolamprus aesculapii Linnaeus,1758 E. miliaris Linnaeus,1758 , E. poecilogyrus Wied-Neuwied, 1824 , Macrovipera lebetina obtusa Linnaeus, 1758, Mastigodryas bifossatus Raddi,1820, Micrurus corallinus Merrem, 1820 , Philodryas olfersii Lichtenstein, 1823 , P. patagoniensis Girard, 1858, Xenodon merremii Wagler, 1824 , and X. histricus Jan, 1863 (Travassos, 1917; Pizzatto & Madi, 2002; Pizzatto & Marques, 2006; Smales, 2007a; Smales et al ., 2020). Besides species of Oligacanthorhynchidae, we also found Centrorhynchus sp. in B. erythromelas , an acanthocephalan from family Centrorhynchidae. Te genus Centrorhynchus infects birds of the Falconiformes and Strigiformes orders as defnitive hosts and has invertebrates as intermediate hosts, with reptiles and amphibians serving as paratenic hosts (Torres & Puga, 1996). Cystacanths of Centrorhynchus have been recorded in snakes of the genera Ahaetulla, Bothrops, Clelia, Chironius, Dipsa, Echinanthera, Imantodes, Helicops, Leptophis, Liophis, Mastigodryas, Tropidonotus, and Philodryas (Travassos, 1926; Vizcaíno, 1993; Smales, 2007a; Smales, 2007b; Lamas & Lunaschi, 2009; Silva & Muller, 2012; Araújo-Filho et al., 2018; Araújo et al., 2020; Yudhana et al., 2023; Conga et al., 2024). In the present study, we only found cystacanths, suggesting that B. erythromelas acts as paratenic hosts, and the acanthocephalans use them to reach their defnitive hosts, since Falconiformes and Strigiformes have already been reported preying on snakes (Martins et al., 2003; Costa et al., 2009; Cardoso & Santos, 2012). Species-level identifcation of the acanthocephalans was not possible due to the immature condition of the specimens (cystacanths), which have not yet developed the reproductive system that is fundamental for species identifcation.For Cestoda, we identifed the presence of Oochoristica sp. and Plerocercoid larvae and cysticercoid. Diferent species of snakes have been recognized as hosts of Cestoda, such as Bothrops alternatus, B. jararaca, B. moojeni, Coluber sp., Corallus caninus Linnaeus, 1758, Erythrolamprus miliaris, Micrurus corallinus, Philodryas olfersii, Pseudoboa nigra Duméril, Bibron & Duméril, 1854 , and Tamnophis sp. (Silva et al., 2001; Silva et al., 2006; Chambrier et al., 2010; Matias et al., 2018; Araújo et al., 2020). Te genus Oochoristica has been reported in Echis carinatus Schneider, 1801, another Viperidae (Farooq et al., 1983). In B. erythromelas , Cestoda were found only in early developmental stages, making species-level identifcation impossible.We were able to identify most of the nematodes only at the Phylum level (Nematoda, 17 hosts), excepting one identifcation at the family level (Cosmocercidae gen. sp., 2 hosts), four at the genus level ( Brevimulticaecum sp., Oswaldocruzia sp., Physocephalus sp., and Physaloptera sp.), due to the immature stage of the parasites, and six at the species level ( Hexametra boddaertii, Parapharyngodon hispidus, Physaloptera lutzi, Physaloptera nordestina, Physalopteroides venancioi, and Strongyloides ophidiae ). In terrestrial snakes, the richness of Nematoda tends to be higher, as observed in Crotalus durissus terrifcus (7 spp.; Dias et al., 2004) and Crotalus mitchelli Cope, 1861 (5 spp.; Goldberg et al., 2013), and Pseudoboa nigra (3 spp.; Matias et al., 2018). Our results corroborate this tendency, since the nematode fauna in B. erythromelas includes at least 12 nematode taxa, encompassing distinct species and larval stages. Tese results support previous studies (Brouat et al., 2007), indicating that the dominance of nematodes in terrestrial snakes may be related to the habitat of their hosts.
166 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. Te family Cosmocercidae is frequently reported infecting species of amphibians and reptiles (Rizvi, 2009; Ávila & Silva , 2010; Rizvi & Bursey, 2014; Bursey et al., 2015; Araújo et al., 2020; Draghi et al., 2020). Immature individuals of Brevimulticaecum sp. have been reported in fsh, amphibians, and reptiles (Sprent, 1979; Moravec & Kaiser, 1994; Moravec et al. , 1997; Vieira et al., 2010; Silva et al., 2018; Souza et al., 2020). Te genus Oswaldocruzia is commonly found in amphibians, although it has also been reported in reptiles, with some records for snakes (Durette-Desset et al., 2006; Goldberg & Bursey, 2007; Anderson et al., 2009; Campião et al., 2014; Teles et al., 2015; Oliveira et al., 2017; Oliveira et al., 2019; Flowers & Beane, 2023). Physocephalus uses snakes as paratenic hosts, coleopteran insects as intermediate hosts, and mammals as defnitive hosts (Ryzhikov, 1952; Kirillov & Kirillova, 2021). Te genus Physocephalus has been found in the following North American species of Viperidae: Crotalus atrox Baird & Girard, 1853 , C. molossus Baird & Girard, 1853 , C. Pyrrhus Cope 1866 , C. scutulatus Kennicott, 1861 , and Sistrurus tergeminus Say, 1823 (Goldberg et al., 2001; Goldberg et al., 2002; McAllister et al., 2004; Goldberg et al., 2013). Morphologically, it was not possible to identify Brevimulticaecum sp. and Physocephalus sp. at the species level due to the immature developmental stage of the larvae. Only female specimens were recorded for Cosmocercidae gen. sp. and Oswaldocruzia sp., consequently, the identifcation at species level was not possible because the main morphological characteristics for Cosmocercidae species identifcation are only present in males.Nematodes of the genus Physaloptera are common in birds, amphibians, mammals, and reptiles (Ortlepp, 1922; Chabaud, 1975; Anderson et al., 2009; Pereira et al., 2012a; Maldonado Jr. et al., 2019). Nine species of Physaloptera are known to occur in Brazilian reptiles, with four reported for snakes: P. monodens Molin, 1860, P. liophis Vicente & Santos, 1974, P. obtusissima Molin, 1860 , and P. nordestina (Matias et al., 2020). Until now, Physaloptera lutzi was described only in lizards (Brito et al., 2014; Maia-Carneiro et al., 2018), and this is the frst record of the species occurring in a snake. Bothrops erythromelas is a generalist in terms of diet, feeding mainly on lizards, frogs, centipedes and mammals (Martins et al., 2002; Silva-Soares et al., 2022). Given that nematodes possess a cuticle resistant to stomach acids, we suggest that these helminths are associated with the ingestion of the host. Physaloptera nordestina was already described for the following northeastern Brazilian snakes: Oxybelis aeneus Wagler, 1824 , Xenodon merremii , and Pseudoboa nigra (Matias et al., 2020). Hexametra boddaertii is a common nematode in Squamata (Ávila & Silva, 2010; Bursey & Brooks, 2011), known to infect Bothrops sp., Crotalus durissus, Oxyrhopus trigeminus Duméril, Bibron & Duméril, 1854, Philodryas baroni Berg, 1895, P. patagoniensis, and Pseudoboa nigra (Skrjabin, 1916; Sprent, 1978; Hartdegen & Gamble, 2002; Pinto et al., 2010; Matias et al., 2018). Te genus Parapharyngodon has a close association with lizards, mainly of the genus Tropidurus , with only one species described for amphibians (Ávila & Silva, 2010; Anjos et al., 2013; Araújo-Filho et al., 2015; Ferreira et al., 2021). Parapharyngodon hispidus was described in Tropidurus hispidus Spix, 1825 (Ferreira et al., 2021), and the present record is the frst for snakes. Since only one specimen of B. erythromelas was found with P. hispidus, we suggest that the infection is accidental, likely due to ingestion during the snake feeding. Physalopteroides venancioi is the only species of the genus recorded in South America, found mainly in lizards and amphibians (Ávila & Silva, 2010; Campião et al., 2014). We recorded P. venancioi in the small intestine of two snakes, suggesting that the infection occurred accidentally, as suggested for the snakes Platyceps ventromaculatus Gray 1834, P. nigra , and P. olfersii (Al-Moussawi, 2016; Matias et al., 2018; Araújo et al., 2020).Te genus Strongyloides parasitizes birds, mammals, amphibians, and reptiles (Graham et al., 2024). In response to infection, animals may exhibit diarrhea, bronchopneumonia, alveolar hemorrhage, interstitial infammation, altered breathing, enterocyte hyperplasia, and ulceration or squamous metaplasia of mucosal epithelium, depending on the worm life stage (Uzal et al., 2016; Tamsborg et al., 2017; Graham et al., 2024). In reptiles, including snakes, Strongyloides infections cause respiratory difculties and pneumonia (Walden et al., 2020; Graham et al., 2024). Five species of Strongyloides are documented in snakes: S. gulae Little, 1966 , S. serpentis Little, 1966 , S. ophidiae, S. natricis Navarro & Lluch, 1993, and S. mirzai Singh, 1954 (Graham et al., 2024). Strongyloides ophidiae has been observed in the following Brazilian snakes: Crotalus durissus, Erythrolamprus miliaris, Oxyrhopus guibei Hoge & Romano, 1977, and Philodryas olfersii (Pereira, 1929a; Santos et al., 2009; Mati & Melo, 2014; Mati et al., 2015; Araújo et al., 2020). Transmission of S. ophidiae occurs through cutaneous or oral routes, signs of infection are visible after 7 days, and the species has a direct life cycle (Mati & Melo, 2014). Tis is the frst record of S. ophidiae acting as a parasite of the species B. erythromelas.
167 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Te establishment of parasite populations and communities can be infuenced by phylogenetic factors or host characteristics (Poulin, 2004; Kamiya et al., 2014a, 2014b). In the present study, the body condition index (SVL) of the snake B. erythromelas was positively related to the richness and abundance of helminths. Te host’s body is considered the habitat of the parasite, such that a larger specimen can provide a greater area for exploration, colonization, and nutrients to endoparasites (Aho, 1990). Another relevant factor is that individuals with greater longevity experience prolonged exposure to parasitic agents (Aho, 1990; Korallo et al., 2007; Pereira et al., 2012b). Tis same pattern has been documented for other reptiles (Brito et al., 2014; Araújo-Filho et al., 2016; Silva-Neta & Ávila, 2018; Amorim & Ávila, 2019; Teixeira et al., 2018; 2021; Silva et al. , 2023). Of the 30 species of the genus Bothrops that occur in Brazil (Costa et al., 2023), 12 (40%) species have been studied regarding their parasites (Conga et al., 2024). Te most studied species were: B. jararaca (10 studies: Pereira, 1929b; Rodrigues, 1968; Santos & Rolas, 1973; Fabio, 1979; Correa et al., 1990; Vicente et al., 1993; Scherer et al., 1996; Grego et al., 2004; Silva, 2005; Siqueira et al., 2009), B. moojeni (7 studies: Travassos, 1926; Pereira, 1929b; Caubisens Poumarau, 1965; Sprent, 1979; Pinto et al., 2012; Müller et al., 2021), and B. neuwiedi (6 studies) (Travassos & Freitas, 1941; Ruiz & Leão, 1942; Silva et al., 2001; Barrella & Silva 2003; Pinto et al., 2012; Morais et al., 2017; Müller et al., 2021). Tis is the third study on the helminth fauna of B. erythromelas. Our fndings indicate that among all helminth species found in our analysis, only Physaloptera sp. is not a new record for B. erythromelas, while the species P. lutzi and P. hispidus are described for the frst time in snakes. Tus, our results expand the knowledge of parasite hidden biodiversity, particularly as this study represents pioneering research on the helminth fauna of B. erythromelas, a venomous snake species endemic to the Caatinga. ACKNOWLEDGEMENTS We thank Conselho Nacional de Desenvolvimento Científco e Tecnológico (CNPq) for granting a doctoral scholarship, modality GD to CSLM (#141143/2021-5). CFS and RWA thank to CNPq (#150125/2023-2; 307722/2021-0) and thank Fundação Cearense de Apoio ao Desenvolvimento Científco e Tecnológico (FUNCAP #FC3-0198-00006.01.00/22) for research funding. FGG is supported by grants from CNPq (312016/2021–2 and 405518/ 2021–8) and from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2022/12660–4). AAG thanks CNPq for fnancial support through his productivity research grant (307643/2022-0). Te research was permitted under license from the Chico Mendes Institute for Biodiversity Conservation (ICMBio) SISBIO (#82300-1). Author contributions: CRediT (Contributor Roles Taxonomy)CSLM = Cicera Silvilene Leite Matias CFS = Cristiana Ferreira-Silva WPS = Willianilson Pessoa-da-Silva MBAS = Maria Beatriz Andrade de Sousa AFSN = Aldenir Ferreira Silva-Neta RWA = Robson Waldemar Ávila FGG = Felipe Gobbi Grazziotin AAG = Adrian Antonio Garda Conceptualization: CSLM, CFS, FGG, AAG Data curation: CSLM, CFS, RWA Formal Analysis: CSLM, WPS, MBAS, AFSN Funding acquisition: CSLM, FGG, AAG Investigation: CSLM, CFS, WPS Methodology: CSLM, CFS Project administration: CSLM, AAG Resources: CSLM, AAG Software: CSLM, MBAS, AFSN Supervision: AAG Validation: CSLM, RWA, FGG, AAG Visualization: CSLM, CFS, RWA, FGG, AAG Writing – original draft: CSLM Writing – review & editing: CSLM, CFS, WPS, MBAS, AFSN, RWA, FGG, AAG
168 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. BIBLIOGRAPHIC REFERENCES Aho, J.M. (1990). Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. In Esch, G. W.; Busch, A. O. and Aho, J. M. (Eds) Parasite Communities: Patterns and Processes . New York, Chapman & Hall, pp.157–195.Al-Moussawi, A.A. (2016). Te Parasitic Nematode Physalopteroides venancioi in the Snake Platyceps ventromaculatus (Gray, 1834) in Baghdad City, Central Iraq . International Journal of Current Microbiology and Applied Sciences, 5, 350–357. Amato, J.F.R., & Amato, S.B. (2010). Técnicas gerais para coleta e preparação de helmintos endoparasitos de aves. In S. Von Matter et al. (eds). Ornitologia e conservação: ciência aplicada, técnicas de pesquisa e levantamento, 1ª ed. Technical Books , pp. 369–393.Amorim, D.M., & Ávila, R.W. (2019). Infection patterns of helminths in Norops Brasiliensis (Squamata, Dactyloidae) from a Humid Forest, Northeastern Brazil and their relation with body mass, sex, host size, and season. Helminthologia, 56 , 168–174.Anderson, R.C., Chabaud, A.G., & Willmott, S. (eds) (2009 ). Keys to the Nematode Parasites of Vertebrates: archival Volume. UK. Anjos, L.A., Avila, R.W.A., Ribeiro, S.C., Almeida, W.O., & Silva, R.J. (2013). Gastrointestinal nematodes of the lizard Tropidurus hispidus (Squamata: Tropiduridae) from a semi-arid region of north-eastern Brazil. Journal of Helminthology, 87, 443–449. Araújo-Filho, J.A., Brito, S.V., Almeida, W.D.O., Morais, D.H., & Ávila, R.W. (2015). A new species of Parapharyngodon (Nematoda: Pharyngodonidae) infecting Dermatonotus muelleri (Anura: Microhylidae) from Caatinga, Northeastern Brazil. Zootaxa, 4012 , 386–390. Araújo-Filho, J. A., Brito, S. V., Lima, V. F., Pereira, A. M. A., Mesquita, D. O., Albuquerque, R. L., & Almeida, W. O. (2016). Infuence of temporal variation and host condition on helminth abundance in the lizard Tropidurus hispidus from north-eastern Brazil. Journal of Helminthology, 91 , 312–319. Araújo-Filho, J.A., Teles, D.A., Teixeira, A.A.M., Sakamoto, A.C.F.L., Pinto, C.L.M., Silva, E.G., & Almeida, W.O. (2018). Philodryas nattereri (Run - Snake) Endoparasites. Herpetological Review, 49 , 526. Araújo, K.C., Silva, C.S., Machado, H.T.S., Oliveira, C.R., & Ávila, R.W. (2020). Endoparasites of Philodryas olfersii (Lichtenstein, 1823) In restinga environments of the Parnaíba River Delta, Northeastern Brazil. Neotropical Helminthology, 14, 129–141. Ávila, R.W., Morais, D.H., Anjos, L.A., Almeida, W.O., & Silva, R.J. (2013). Endoparasites infecting the semiaquatic coral snake Micrurus surinamensis (Squamata: Elapidae) in the southern amazonian region, Mato Grosso state, Brazil . Brazilian Journal of Biology, 73, 645–647.Ávila, R.W., & Silva, R.J. (2010). Checklist of helminths from lizards and amphisbaenians (Reptilia, Squamata) of South America. Journal of Venomous Animals and Toxins including Tropical Diseases, 16, 543–572.Barrella, T.H., & Silva, R.J. (2003). Digenetic trematodes infection in a Bothrops moojeni (Viperidae) population from a fauna rescue in Porto Primavera, São Paulo State. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 55, 243–245.Batista, A.I.V., Lucena, G.V.C., Nery, T.F.L., Batista, C.C.N., Batista, J.S., Winkeler, I.E., Rolim, C.M. de M., Coelho, W.A.C., Rocha, E.L.B., Lima, V.F.S., & Pereira, J.S. (2021). Gastrointestinal parasites in wild and exotic animals from a Zoobotanical Park in Northeast of Brazil. Research, Conservation, Education, 10, 13, e486101321255. Brito, S.V., Corso, G., Almeida, A.M., Ferreira, F.S., Almeida, W.O., Anjos, L.A., Mesquita, D.O., & Vasconcellos, A. (2014). Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. Parasitology Research, 113, 3963–3972.
169 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Brouat, C., Kane, M., Diouf, M., Bâ, K., Sall-Drame, R., & Duplantier, J.M. (2007). Host ecology and variation in helminth community structure in Mastomys rodents from Senegal. Parasitology, 134 , 437–450.Bush, A.O., Laferty, K.D., Lotz, J.M., & Shastak, A.W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83 , 575–583.Bursey, C.R., Brooks, D.R. (2011): Nematode parasites of Costa Rican snakes (Serpentes) with description of a new species of Abbreviata (Physalopteridae). Comparative Parasitology, 78 , 333–358.Bursey, C.R., Goldberg, S.R., & Grismer, L.L. (2015). New specie of Cosmocercoides (Nematoda: Cosmocercidae) and other helminths in Gonocephalus liogaster (Squamata; Agamidae) from Peninsular Malaysia. Acta Parasitologica, 60 , 631–637.Campbell, J.A., & Lamar, W.W. (2004). Te Venomous Reptiles of the Western Hemisphere , Comstock (Cornell University Press).Campião, K.M., Morais, D.H., Dias, O.T., Aguiar, A., Toledo, G., Tavares, L.E.R., & Silva, R.J. (2014). Checklist of helminth parasites of amphibians from South America. Zootaxa, 3843 , 1–93. Carbajal-Márquez, R.A., González-Solís, D., & Cedeño-Vázquez, J.R. (2018). Endoparasites of Crotalus tzabcan (Serpentes: Viperidae), with a checklist in rattlesnakes. Journal of Parasitic Diseases, 42 , 303–314. Cardoso, S.R.T. & Santos, S.M.A. (2012). Observações sobre predação da serpente Philodryas patagoniensis por aves. Biologia Geral e Experimental, 12 , 7–9. Caubisens Poumarau, E.M. (1965). Catadiscus longicoecalis nueva especie parasita de ofdios (Trematoda, Paramphistomidae) con una lista de especies del genero Catadiscus Cohn, 1904. Physis, 25 , 277–282.Chabaud, A.G. (1975). Keys to genera of the order Spirurida . In Anderson, R.C. et al. (Eds.) keys to the nematode parasites of vertebrates : Commonwealth Agricultural Bureaux, Farnham Royal. UK.Chambrier, A., Ammann, M., & Scholz, T. (2010). First species of Ophiotaenia (Cestoda: Proteocephalidea) from Madagascar: O. georgievi n. sp., a parasite of the endemic snake Leioheterodon geayi (Colubridae). Folia Parasitologica, 57 , 197–205.Conga, D., Carlos, S., Oliveira, G., Bezerra, A., Almeida, B., & Pereira, W. (2024). New Records of Helminth Infection in Bothrops Atrox Linnaeus, 1758 from Marajó Island-Brazil and a Survey of Parasitic Helminths in Bothrops Species (Squamata, Viperidae) from Neotropical Region. Veterinary Parasitology: Regional Studies and Reports, 53 , 101060.Costa, H.C., Assis, C.L., Werneck, H.A., Nunes, A.V. & Feio, R.N. (2009). Ataque de um falcão acauã (Herpetotheres cachinnans) sobre a serpente boipeva ( Xenodon merremii ) na Mata Atlântica de Minas Gerais, sudeste do Brasil. Revista brasileira de Zoociências, 11 , 171–173. Costa, H.C., Guedes, T.B., & Bérnils, R.S. (2023). Lista de répteis do Brasil: padrões e tendências. Herpetologia Brasileira, 12 , 1–108. Correa, F.M., Paulino, R.C., Buononato, M.A., & Federsoni, P.A. (1990). Ochetosoma heterocoelium (Travassos, 1921) (Trematoda: Digenea: Ochetosomatidae) em novo hospedeiro. Memórias do Instituto Butantan, 52 , 11–16.Crompton, D.W.T., & Nickol, B.B. (1985). Biology of the Acanthocephala . Cambridge University Press.Dias, R.J.P., Almeida, S.J.B., Prieto, D.B., & Lima, S.S. (2004). Aspectos ecológicos dos nematoides parasitos de Crotalus durissus terrifcus Laurenti, 1768 (Ophidia, Viperidae), em Juiz de Fora, Minas Gerais, Brasil. Revista Brasileira de Zoociências, 6 , 231–235.Draghi, R., Drago, F.B., & Lunaschi, L.I. (2020). A new species of Cosmocercoides (Nematoda; Cosmocercidae) and other helminths in Leptodactylus latrans (Anura; Leptodactylidae) from Argentina. Anais da Academia Brasileira de Ciências, 92 , 1–14. e20180499
170 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. Dunlap, K.D., & Schall, J.J. (1995). Hormonal alteration and reproductive inhibition in male fence lizards ( Sceloporus occidentalis ) infected with the malarial parasite Plasmodium mexicanum . Physiological Zoology, 68 , 608–621. Durette-Desset, M.C., Anjos, L.A., & Vrcibradic, D. (2006). Tree new species of the genus Oswaldocruzia Travassos, 1917 (Nematoda, Trichostrongylina, Molineoidea) parasites of Enyalius spp. (Iguanidae) from Brazil. Parasite, 13, 115–125.Fabio, S.P. (1979). Considerações sistemáticas sobre algumas espécies do gênero Styphlodora Looss, 1899 (Trematoda). Revista Brasileira de Biologia, 39, 229–232.Farooq, M., Khanum, Z., & Ansar, R. (1983). Helminth parasites of fresh water tortoise and poisonous snake from Sind, Pakistan. Pakistan Journal of Zoology, 15, 31–37.Ferreira, A.C.S., Vieira, F.M., Da Silva, D.C.S.N., Ribeiro, L.B., Ferreira, J.A., & Muniz-Pereira, L.C. (2021). Parapharyngodon hispidus n. sp. (Nematoda: Pharyngodonidae) in Tropidurus hispidus (Spix) (Squamata: Tropiduridae) from Caatinga Biome of the Vale do São Francisco, state of Pernambuco, Brazil with a key for the Neotropical species of the genus Parapharyngodon Chatterji. Zootaxa, 4980, 195200. Ferreira-Silva, C., Alcantara, E.P., Ávila, R.W., & Silva, R.J . (2022). First record of Cosmocerca podicipinus (Nematoda: Cosmocercidae) parasitizing Leptodeira annulata (Serpentes: Dipsadidae) in northeastern Brazil. Brazilian Journal of Biology, 82, e265583. Flowers, J.R., & Beane, J.C. (2023). Endoparasites of the Corn Snake, Pantherophis guttatus (Linnaeus) (Squamata: Colubridae) from North Carolina, U.S.A. Comparative Parasitology, 90, 89–94.Fraga, R., Lima, A.P., Prudente, A.L.C., & Magnusson, W.E. (2013). Guia de cobras da região de Manaus - Amazônia Central = Guide to the snakes of the Manaus region - Central Amazonia . Inpa.Goldberg, S.R., & Bursey, C.R. (2007). Cercosaura argulus endoparasites. Herpetological Review, 38, 451. Goldberg, S.R., Bursey, C.R., & Holycross, A.T . (2001). Sistrurus catenatus edwardsii (Desert Massasauga). Endoparasites. Herpetological Review, 32, 265.Goldberg, S.R., Bursey, C.R., & Painter, C.W. (2002). Helminths of the western diamondback rattlesnake, Crotalus atrox, from southeast New Mexico rattlesnake roundups. Southwestern Naturalist , 47, 307–310.Goldberg, S.R., Bursey, C.R., & Glaudas, X. (2013). Helminths of the Speckled Rattlesnake, Crotalus mitchellii (Squamata: Viperidae). Western North American Naturalist, 73, 533–535. Graham, E.A., Kamp, E.W.L., Tompson, N.M., Tillis, S.B., Childress, A.L., Wellehan, J.F.X., Walden, H.D.S., & Ossibof. R.J. (2024). Proliferative strongyloidiasis in a colony of colubrid snakes. Veterinary Pathology, 61, 109–118. Grego, K.F., Gardiner, C.H., & Catão-Dias, J.L. (2004). Comparative pathology of parasitic infections in free-ranging and captive pit vipers ( Bothrops jararaca ). Veterinary Record, 154, 559–562.Halán, M., & Kottferová, L. (2021). Parasitic helminths in snakes from the global legal trade. Helminthology, 58, 415–419.Hartdegen, R.W., & Gamble, K.C. (2002): Philodryas baroni baroni (Baron’s racer). Endoparasitism. Herpetological Review, 33, 141.Jorge, R.J.B., Monteiro, H.S.A., Gonçalves-Machado, L., Guarnieri, M.C., Ximenes, R.M., Borges-Nojosa, D.M., Luna, K.P.O., Zingali, R.B., Corrêa-Netto, C., Gutiérrez, J.M., Sanz, L., Calvete, J.J., & Pla, D. (2015). Venomics and antivenomics of Bothrops erythromelas from fve geographic populations within the Caatinga ecoregion of northeastern Brazil. Journal of Proteomics, 114, 93–111.Kamiya, T., O’dwyer, K., Nakagawa, S., & Poulin, R. (2014a). What determines species richness of parasitic organisms. A meta analysis across animal, plant and fungal hosts. Biological Reviews, 89, 123–134.
171 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Kamiya, T., O’dwyer, K., Nakagawa, S., & Poulin, R. (2014b). Host diversity drives parasite diversity: meta analytical insights into patterns and causal mechanisms . Ecography, 37, 689–697. Korallo, N.P., Vinarski, M.V., Krasnov, B.R., Shenbrot, G.I., Mouillot, D., & Poulin, R. (2007). Are there general rules governing parasite diversity? Small mammalian hosts and gamasid mite assemblages. Diversity and Distributions, 13, 353–360.Kennedy, C.R. (2006). Ecology of the Acanthocephala. Cambridge University Press. 1–240. Kirillov, A.A., & Kirillova, N.Y. (2021). First fnding of spirurid larva (Chromadorea, Spirurida) in the common European viper Vipera berus (Linnaeus, 1758) of the Russian fauna. IOP Conference Series: Earth and Environmental Science , 818, 012017.Kuzmin, Y., Giese, E.G., Melo, F.T.V., Costa, P.A.F.B., Maschio, G.F., & Santos, G.N.S. (2016). Description of Serpentirhabdias atroxi n. sp. (Nematoda: Rhabdiasidae), a parasite of Brothrops atrox (Linnaeus) (Reptilia: Serpentes: Viperidae) in Brazilian Amazonia. Systematic Parasitology, 93, 37–45.Lamas, M.F., & Lunaschi, L.I. (2009). Primer registro de Centrorhynchus sp. (Acanthocephala: Centrorhynchidae) en Leptophis ahaetulla marginatus (Colubridae) de Argentina. Cuadernos de herpetología, 23, 45–49.Levri, E.P. (1999). Parasite-induced change in host behavior of a freshwater snail: parasitic manipulation or by product of infection? Behavioral Ecology, 10, 234–241.Lira-da-Silva, R.M., Mise, Y.F., Casais-e-Silva, L.L., Ulloa, J., Hamdan, B., & Brazil, T.K. (2009). Snakes of medical importance in northeastern of Brazil. Gazeta Médica da Bahia, 79, 7–20.Maia-Carneiro, T., Motta-Tavares, T., Ávila, R.W., & Rocha, C.F.D. (2018). Helminth infections in a pair of sympatric congeneric lizard species. Parasitology Research, 117, 89–96.Maldonado Jr, A., Simões, R.O., Luiz, J.S., Costa-Neto, S.F., & Vilela, R.V. (2019). A new species of Physaloptera (Nematoda: Spirurida) from Proechimys gardneri (Rodentia: Echimyidae) from the Amazon rainforest and molecular phylogenetic analyses of the genus. Journal of Helminthology, 94, e68 . Marques, O.A.V. & Medeiros, C.R. (2018). Nossas incríveis serpentes: caracterização, biologia, acidentes e conservação. Cotia: Ponto A. Martins, M., Marques, O.A.V., & Sazima, I. (2002). Ecological and phylogenetic correlates of feeding habits in Neotropical pitvipers of the genus Bothrops, in Schuett, G.W. et al. (eds) Biology of the Vipers , Eagle Mountain Publishing, pp. 307–328.Martins, M., Spina, F., Monteiro, C., Sawaya, R.J., & Ariedi-Junior, V.R. (2003): Bothrops alternatus (Urutu). Predacion. Herpetological Review, 34, 147–148. Mati, V.L.T., & Melo, A. (2014). Some aspects of the life history and morphology of Strongyloides ophidiae Pereira, 1929 (Rhabditida: Strongyloididae) in Liophis miliaris (Squamata: Dipsadidae). Neotropical Helminthology, 8, 203–216.Mati, V.L.T., Pinto, H.A., & Melo, A.L. (2015). Helminths of Liophis miliaris (Squamata: Dipsadidae): a list of species and new records. Helminthology, 52, 159–166. Matias, C.S.L., Ferreira-Silva, C., Sousa, J.G.G., & Ávila, R.W. (2018). Helminths infecting the black false boa Pseudoboa nigra (Squamata Dipsadidae) in northeastern Brazil. Acta Herpetologica, 13, 171–175.Matias, C.S.L., Morais, D.H., & Avila, R.W. (2020). Physaloptera nordestina n. sp. (Nematoda: Physalopteridae) parasitizing snakes from Northeastern Brazil. Zootaxa, 4766, 173–180. McAllister, C.T., Bursey, C.R., & Roberts, J.F. (2004). Physocephalus sexalatus (Nematoda: Spirurida: Spirocercidae) in three species of rattlesnakes, Crotalus atrox, Crotalus lepidus and Crotalus scutulatus , from southwestern Texas. Journal of Herpetological Medicine and Surgery, 14, 10–12.
172 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. Morais, D., Aguiar, A., Müller, M., Narciso, R., Da Silva, L., & Da Silva, R. (2017). Morphometric and phylogenetic analyses of Serpentirhabdias viperidicus n. sp. (Nematoda: Rhabdiasidae) from the lancehead snake Bothrops moojeni Hoge, 1966 (Reptilia: Serpentes: Viperidae) in Brazil. Journal of Helminthology, 91, 360–370.Moravec, F., & Kaiser, H. (1994). Brevimulticaecum sp. larvae (Nematoda: Anisakidae) from the frog Hyla minuta Peters in Trinidad. Journal of Parasitology, 80, 154-156.Moravec, F., Prouza, A., & Royero, R. (1997). Some nematodes of freshwater fshes in Venezuela. Folia Parasitologica, 44, 33–47.Müller, M.I., Emmerich, E., de Alcantara, E.P., Ungari, L.P., Ebert, M.B., Morais, D.H., O’Dwyer, L.H., & Silva, R.J. (2021). First molecular assessment of two digenean parasites of the lancehead snake Bothrops moojeni Hoge, 1966 (Serpentes, Viperidae) in Brazil. Parasitology Research, 120, 971–977.Nickol, B.B. (1985). Epizootiology, in Crompton, D.W.T & Nickol, B.B. Biology of the Acanthocephala , (eds). Cambridge University Press, pp. 307–346.Nickol, B.B., & Dunagan, T. (1989). Reconsideration ot the acanthocephalan genus Echinopardalis, with a description of adult E. atrata and a key to genera of the Oligacanthorhynchidae. Proceedings of the Helminthological Society of Washington, 56, 8–13.Nogueira, C.C., Argôlo, A.J.S., Arzamendia, V., Azevedo, J.A., Barbo, F.E., Bérnils, R.S., & Martins, M.C.M. (2019). Atlas of Brazilian snakes: verifed point-locality maps to mitigate the Wallacean shortfall in a megadiverse snake fauna. South American Journal of Herpetology, 14, 1–274. Oliveira, B.H.S., Teixeira, A.A.N., Queiroz, R.N.M., Araújo-Filho, J.A., Teles, D.A., Brito, S.V., & Mesquita, D.O. (2017). Nematodes infecting Anotosaura vanzolinia (Squamata: Gymnophthalmidae) from Caatinga, northeastern Brazil. Acta Herpetologica, 12, 103–108.Oliveira, M.C., Lima, V.F., Camilo, I.S., & Almeida, W.O. (2020). Philodryas olfersii (Green Snake). Endoparasites. Herpetological Review, 51, 357.Oliveira, M.C., Duarte, R.G., Araújo-Filho, J.A., Teles, D.A., & Almeida, W.O. (2021). Erythrolamprus poecilogyrus (Green Ground Snake). Endoparasites. Herpetological Review, 52, 665–666.Oliveira, M.C., Lima, V.F., Pinto, C.L.M., Silva, É.G., Teles, D.A., Silva, C.F., & Almeida, W.O. (2019). New record of Physaloptera sp. (Nematoda: Physalopteridae) parasitizing Philodryas nattereri (Ophidia: Dipsadidae) in Brazil. Herpetology Notes, 12, 1031–1034.Oliveira, M.C., Lima, V.F., Teles, D.A., Araújo-Filho, J.A., & Almeida, W.O. (2018). Bothrops erythromelas (Caatinga Lancehead). Endoparasites. Herpetological Review, 49, 542-543.Oliveira, M.C., Martins, A.A., Teles, D.A., Araújo-Filho, J.A., Brito, S.V., & Almeida, W.O. (2015). Bothrops erythromelas (Jararaca Dry). Endoparasite. Herpetological Review, 46, 444.Oliveira, M.C., Ferreira-Silva, C., Silva, R.J., Almeida, W.O., França, F.G.R., & Lourenço-de-Moraes, R. (2023). First record of Sebekia oxycephala (Pentastomida: Sebekidae) infecting Helicops angulatus (Reptilia: Colubridae) in Northeast Brazil. Brazilian Journal of Biology, 83, e275302.Oliveira, M.E., & Santori, R.T. (1999). Predatory behavior of the opossum Didelphis albiventris on the pitviper Bothrops jararaca . Studies on Neotropical Fauna and Environment, 34, 72–75. Ortlepp, R.J. (1922). Te nematode genus Physaloptera Rudolphi. Proceedings of the Zoological Society of London, 4, 999–1107. Pereira, C. (1929a). Strongyloides ophidiae . Boletim Biológico de São Paulo, 15, 16–17.Pereira, C. (1929b). Revisão do gênero Opisthogonimus (Trematoda). Revista do Museu Paulista, 16, 995–1014.
173 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Pereira, F.B., Alves, P.V., Rocha, B.M., Souza-Lima, S., & Luque, J.L. (2012a). A new Physaloptera (Nematoda: Physalopteridae) parasite of Tupinambis merianae (Squamata: Teiidae) from southeastern Brazil. Journal of Parasitology, 98, 1227–1235. Pereira, F.B., Sousa, B.M., & Lima, S.S. (2012b). Helminth community structure of Tropidurus torquatus (Squamata: Tropidurus ) in a rocky outcrop area of Minas Gerais state, Southeastern Brazil. Journal of Parasitology, 98, 6–10.Pinto, H.A., Mati, V.L., & Melo, A.L. (2012). New hosts and localities for trematodes of snakes (Reptilia: Squamata) from Minas Gerais state, Southeastern Brazil. Comparative Parasitology, 79, 238–246.Pinto, R.M., Muniz-Pereira, L.C., Panizzutti, M.H.M., & Noronha, D. (2010). Nematode parasites of the Neotropical Rattlesnake, Crotalus durissus Linnaeus, 1758 (Ophidia, Viperidae) from Brazil: new records and general aspects. Neotropical Helminthology, 4, 137–147.Pizzatto, L., & Madi, R.R. (2002). Micrurus corallinus (Coral Snake). Endoparasites. Herpetological Review, 33, 215.Pizzatto, L., & Marques, O.A.V. (2006). Interpopulational variation in sexual dimorphism, reproductive output, and parasitism of the water snake Liophis miliaris (Colubridae), in the Atlantic Forest of Brazil. Amphibia-Reptilia, 27, 37–46.Poulin, R. (2004). Macroecological patterns of species richness in parasite assemblages. Basic and Applied Ecology, 5, 423–434.Quirino, T.F., Ferreira, A.J.M.G., Silva, M.C., Silva, R.J., Morais, D.H., & Ávila, R.W. (2018). New records of Helminths in Reptiles from fve states of Brazil. Brazilian Journal of Biology, 78(4), 750–754. Rizvi, A.N. (2009). Two new species of amphibian nematodes from Bhadra Wildlife Sanctuary, Western Ghats, India. Zootaxa, 2013, 58–68. Rizvi, A.N., & Bursey, C.R. (2014). Cosmocercoides himalayan sp. nov. (Nematoda, Cosmocercidae) in Duttaphrynus himalayanus (Amphibia, Anura) from Dehradun (Uttarakhand), India. Acta Parasitologica, 59, 80–84.R, Development Core Team R. (2023). A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Rodrigues, H.O. (1968). Novos hospedeiros de Paradistomum parvissimum (Travassos. 1918) Travassos, 1919 (Trematoda, Dicrocoellidae). Atas da Sociedade de Biologia do Rio de Janeiro. Rio de Janeiro, 11, 167–168.Ruiz, J.M., & Leão, A.T. (1942). Notas helmintológicas: Três novas espécies de Opisthogonimus parasitas de ofídeos brasileiros (Trematoda: Plagiorchiidae). Memórias do Instituto Butantan, 16, 171–185.Ryzhikov, K.M. (1952). On the question of reservoir parasitism of Physocephalus sexalatus (Molin, 1860) – nematode of swines. Proceedings of Helminthological Laboratory of А cademy of Sciences of the USSR, 6, 139–141.Santos, J.C., & Rolas, F.J. (1973). Sobre alguns cestoides de Bothrops e de Liophis miliaris. Atas da Sociedade de Biologia do Rio de Janeiro. Rio de Janeiro, 17, 35–40.Santos, K., Carlos, B., Paduan, K., Kadri, S., Barrella, T., Amarante, M., & Da Silva, R. (2009). Morphological and molecular characterization of Strongyloides ophidiae (Nematoda, Strongyloididae). Journal of Helminthology, 84, 136–142.Sazima, I. (1992). Natural History of the Pitviper, Bothrops jararaca , in Southeastern Brazil, in: Campbell, J. A., & Brodie, E.D. (Eds.) Biology of the pitvipers. 1 ed Tyler, Texas, EUA: Selva.Schall, J.J., & Dearing, M.D. (1987). Malarial parasitism and male competition for mates in the western fence lizard, Sceloporus occidetalis . Oecologia, 73, 389–392.Scherer, P.O., Desiderio, M.H., Serra-Freire, N.M., Cristalli, R., & Freire, L. (1996). Travassosascaris araujoi (Sprent, 1978): Um novo hospedeiro. Parasitology, 66–67.
174 Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Leite Matias et al. Schmidt, G.D . (1972). Revision of the class Archiacanthocephala Meyer, 1931 (Phylum Acanthocephala), with emphasis on Oliganthorhynchidae Southwell et Macfe, 1925. Journal of Parasitology, 58, 290–297.Siqueira, L.R., Panizzutti, M.H., Muniz-Pereira, L.C., & Pinto, R.M. (2009). Gross lesions induced by nematodes of Bothrops jararaca and Bothrops alternatus in Brazil with two new records. Neotropical Helminthology, 3, 29–34.Silva-Neta, A. F., & Ávila, R. W. (2018). Helminth of the lizard Colobosauroides cearensis (Squamata, Gymnophthalmidae) in an area of Caatinga, northeastern Brazil. Acta Herpetologica, 13 , 95–100.Silva, C.S., Ávila, R.W., & Morais, D.H. (2018). Helminth community dynamics in a population of Pseudopaludicola pocoto (Leptodactylidae: Leiuperinae) from Northeast-Brazilian. Helminthology, 55, 292–305.Silva, D.S., & Müller, G. (2012). Primeiro registro de Opisthogonimus lecithonotus (Trematoda: Plagiorchiidae) em Philodryas olfersii (serpentes: Dipsadidae) e primeiro registro de P. olfersii como hospedeiro paratênico de Centrorhynchus sp. (Acanthocephala: Centrorhynchidae. Te Biologist (Lima), 10, 91.Silva, G.D., Teixeira, A.A.M., Franzini, L.D., Mesquita, D.O., & Brito, S.V. (2023). A Temporal variation in diet and helminth abundance in the spiny-tailed lizard, Strobilurus torquatus Wiegmann, 1834 (Squamata: Tropiduridae) from the Brazilian Atlantic Forest. Acta Herpetologica, 18, 105–114.Silva, R.J., (2005). Copulation of Opisthogonimus fonsecai Ruiz & Leão, 1942 (Trematoda, Digenea, Plagiorchiidae), parasite of Bothrops moojeni Hoge, 1966 (Serpentes, Viperidae). Journal of Venomous Animals and Toxins including Tropical Diseases, 11, 68–75.Silva, R.J. (2008). Contribuição ao conhecimento da helmintofauna de serpentes da região do Pantanal e entorno, Estado do Mato Grosso do Sul e revisão sobre helmintos parasitas de serpentes no Brasil. [Tese (Livre-docência)]. Instituto de Biociências de Botucatu, Universidade Estadual Paulista , São Paulo, Brazil.Silva, R.J., Karasawa, A.S., Cherubini, A.L., Barrella, T.H., Lopes, C.A., & Amarante, A.F . (2001). Te occurrence of Crepidobothrium sp . (Cestoda, Proteocephalidae) in Bothrops moojeni (Hoge) (Serpentes, Viperidae). Brazilian Journal of Biology, 18, 375–379.Silva, R.J., Portela, R.C., & Santos, F.J.M. (2006). Corallus caninus (Serpentes, Boidae): a new host for Ophiotaenia sp. (Cestoda, Proteocephalidae). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 98, 961–963.Silva-Soares, T., Watanabe, L.K., & Segadilha, J. (2022). Predation of Scolopendra viridicornis (Newport 1844) (Chilopoda, Scolopendridae) by Bothrops erythromelas (Amaral 1923) (Squamata, Viperidae) in the caatinga, northeast Brazil. Oecologia Australis, 26, 60–63. Skrjabin, K.I. (1916). Contribution a 1’etude de la faune helminthologique du Paraguay. Zoologicheskii Viestnik, 1, 705–757.Smales, L.R. (2007a). Acanthocephala in amphibians (Anura) and reptiles (Squamata) from Brazil and Paraguay with description of a new species . Journal of Parasitology, 93, 392–398.Smales, L.R. (2007b). Acanthocephalans of Amphibians and Reptiles (Anura and Squamata) from Ecuador, with the description of Pandosentis napoensis n. sp. (Neoechinorhynchidae) from Hyla fasciata. Zootaxa, 1445, 49–56. Smales, L., El-Emarah, G.Y., Essa, I.A.M., Abdulzahra, H.K., & Al-Azizz, S.A. (2020). First Records of Oligacanthorhynchus (Oligacanthorhynchidae) from the Honey Badger, Mellivora capensis wilsoni (Mustelidae) and the West-Asian Blunt-Nosed Viper Macrovipera lebetina obtusa (Viperiidae) from North Basrah, Iraq. Comparative Parasitology, 87, 44–48. Souza, A.C.F., Gama, C.S., Costa, J.F., Costa, A.L.P., & Viana, D.C. (2020). Índices parasitários de Brevimulticaecum sp. (Nematoda: Heterocheilidae) em Potamotrygon motoro (Chondrichthyes: Potamotrygonidae) capturados no Arquipélago do Bailique, Macapá. Ensino de Ciências, 24, 511–515. Sprent, J.F.A. (1978). Ascaridoid nematodes of amphibians and reptiles: Polydelphis , Travassosascaris n.g. and Hexametra. Journal of Helminthology, 52, 355–384.
175 Biodiversity of parasites infecting Bothrops erythromelas Neotropical Helminthology (Lima). Vol. 18, Nº2, jul - dec 2024 Sprent, J.F.A. (1979). Ascaridoid nematodes of amphibians and reptiles: Multicaecum and Brevimulticaecum . Journal of Helminthology, 53, 91–116.Teixeira, A.A.M., Franzini, L.D., Brito, S.V., Almeida, A.M., & Mesquita, D.O. (2018). Very low prevalence of infection by Physaloptera lutzi (Nematoda: Physalopteridae) parasitizing Kentropyx calcarata (Squamata: Teiidae), from fragments of Atlantic Forest in Northeast Brazil with a summary of nematodes infecting congeneric species. Herpetology Notes, 11, 799–804. Teixeira, A.A.M., Sampaio, N.K.S., Araujo-Filho, J.A., Teles, D.A., Almeida, W.O., Mesquita, D.O., & Brito, S.V. (2021). Parasitic infection patterns in Coleodactylus meridionalis (Squamata: Sphaerodactylidae) from Atlantic Forest fragments, northeast of the Neotropical Region. Helminthologia, 58, 356.Teles, D.A., Sousa, J.G.G., Teixeira, A.A.M., Silva, M.C., Oliveira, R.H., Silva, M.R.M., & Ávila, R.W. (2015). Helminths of the frog Pleurodema diplolister (Anura, Leiuperidae) from the Caatinga in Pernambuco State, Northeast Brazil . Brazilian Journal of Biology, 75, 251–253. Tamsborg, S.M., Ketzis, J., & Horii, Y. (2017). Strongyloides spp. infections of veterinary importance. Parasitology, 144, 274–284.Torres. P., & Puga, S. (1996). Occurrence of cystacanths of Centrorhynchus sp. (Acanthocephala: Centrorhynchidae) in toads of the genus Eupsophus in Chile. Memórias do Instituto Oswaldo Cruz, 91, 717–719. Travassos, L. (1917). Contribuições para o conhecimento da fauna helmintolojica brazileira. VI. Revisão dos acantocefalos brazileiros. Parte I. Fam. Gigantorhynchidae Hamman, 1892. Memórias do Instituto Oswaldo Cruz, 9, 5–62.Travassos, L. (1926). Contribuições para o conhecimento da fauna helminthologica brasileira. XX. Revisão dos Acanthocephalos brasileiros. Parte II. Familia Echinorhynchidae Hamann, 1892, Sub-fam. Centrorhynchinae Travassos, 1919. Memórias do Instituto Oswaldo Cruz, 19, 33–125.Travassos, L., & Freitas, J.F. (1941). Relatório da quarta excursão do Instituto Oswaldo Cruz, realizada a zona da Estrada de Ferro Noroeste do Brasil, em agosto e setembro de 1940 Pesquisas parasitologicas. Memórias do Instituto Oswaldo Cruz, 35, 705–721.Vicente, J.J., Rodrigues, H.O., Gomes, D.C., & Pinto, R.M. (1993). Nematóides do Brasil III. Nematóides de Répteis. Revista Brasileira de Zoologia, 10, 19–168.Vieira, K.R.I., Vicentina, A.W., Paiva, F., Pozo, C.F., Borges, F.A., Adriano, E.A., Costa, F.E.S., & Tavares, L.E.R. (2010). Brevimulticaecum sp. (Nematoda: Heterocheilidae) larvae parasitic in freshwater fsh in the Pantanal wetland, Brazil. Veterinary Parasitology, 172, 350–354. Vizcaíno, S.I. (1993). Presencia del género Centrorhynchus Lühe, 1911, (Acanthocephala: Centrorhynchidae) en la República Argentina. Neotropica, 39, 77–78.Uetz, P., Freed, P., Aguilar, R. & Hošek, J. (2023). Te Reptile Database (Accessed July 23, 2023). Electronic database available at http://www.reptile-database.org/.Uzal, F.A., Plattner, B.L., & Hostetter, J.M. (2016). Alimentary system, in Grant, M, et al. Pathology of Domestic Animals. Philadelphia, PA: Saunders, pp. 211–212.Walden, H.D., Greiner, E.C., & Jacobson, E.R. (2020). Parasites and parasitic diseases of reptiles, in Jacobson, E.R. et al . Infectious Diseases and Pathology of Reptiles, (eds) 2 nd . Boca Raton, FL: CRC Press, pp. 859–968. Yudhana, A., Praja, R.N., & Edila, R. (2023). First report of acanthocephalan parasite in wild-caught Asian vine snake ( Ahaetulla prasina ) in Indonesia. Veterinary World, 16, 317–321. Received August 9, 2024.Accepted September 22, 2024.