61
Zoonotic infections in soil of recreational areas
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Neotropical Helminthology
Neotropical Helminthology, 2024, vol. 18 (1), 61-77
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
DIVERSITY OF METAZOAN ENDOPARASITES ASSOCIATED WITH
LIZARDS (SQUAMATA, LACERTILIA) IN THREE PROTECTED AREAS AND
THEIR SURROUNDING ZONES IN NORTHEASTERN BRAZIL
DIVERSIDAD DE ENDOPARÁSITOS METAZOARIOS ASOCIADOS
A LAGARTIJAS (SQUAMATA, LACERTILIA) EN TRES UNIDADES DE
CONSERVACIÓN Y ÁREAS ALEDAÑAS EN EL NORDESTE DE BRASIL
Elvis Franklin Fernandes de Carvalho
1*
, Ana Carolina Brasileiro
1
& Robson Waldemar Ávila
1
ISSN Versión Impresa 2218-6425 ISSN Versión Electrónica 1995-1403
DOI: https://dx.doi.org/10.62429/rnh20241811740
Este artículo es publicado por la revista Neotropical Helminthology de la Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico
Villarreal, Lima, Perú auspiciado por la Asociación Peruana de Helmintología e Invertebrados Af nes (APHIA). Este es un artículo de acceso abierto,
distribuido bajo los términos de la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) [https:// creativecommons.org/licenses/by/4.0/
deed.es] que permite el uso, distribución y reproducción en cualquier medio, siempre que la obra original sea debidamente citada de su fuente original.
ABSTRACT
T e Neotropical region har bors a rich reptile biodiversity, especially lizards. However, research on parasite richness in
Brazilian lizards still has many gaps. Parasites play a crucial role in ecosystems, and accurate studies are necessary to
describe their richness and species composition. Habitat fragmentation caused by human activities threatens biodiversity,
including parasites. In this context, protected areas play a fundamental role in biodiversity conservation. We aim to
describe the diversity of metazoan endoparasites (helminths and pentastomids) in lizards within three protected areas in
Northeast Brazil: Aiuaba Ecological Station (Caatinga), Sete Cidades National Park (Cerrado), and Ubajara National
Park (Highland marsh and Caatinga), including surrounding areas. We collected 690 lizards representing 23 species. We
recorded 34 parasite taxa, including nematodes (28), trematodes (2), cestodes (2), acanthocephalans (1), and pentastomids
(1). Among them, we recorded parasites commonly associated with lizards, such as
Strongyluris oscari
, and rare parasites,
such as
Brevimulticaecum
sp. and
Typhlonema
sp. We also observed the presence of trematodes exclusively in highland
marsh areas. T is study contributes to understanding lizard parasitism in the Neotropical region, presenting 21 new
infection records. Additionally, it suggests that trematodes may be related to environmental humidity, emphasizing the
importance of faunal surveys for parasite diversity.
Keywords
: faunal survey – Helminths – Pentastomida
1
Programa de Pós-Graduação em Ecologia e Recursos Naturais, Departamento de Biologia, Campus do Pici, Universidade
Federal do Ceará, Fortaleza - CE, CEP 60440-900, Brasil.
* Corresponding author: elvis_f c@hotmail.com
Elvis Franklin Fernandes de Carvalho:
https://orcid.org/0000-0002-6604-6154
Ana Carolina Brasileiro:
https://orcid.org/0000-0002-5929-941X
Robson Waldemar Ávila:
https://orcid.org/0000-0003-3641-8321
62
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
RESUMEN
La región Neotropical alberga una rica biodiversidad de reptiles, especialmente lagartijas. Sin embargo, la investigación
sobre la riqueza de parásitos en lagartijas brasileñas todavía tiene muchas lagunas. Los parásitos desempeñan un papel
crucial en los ecosistemas, y son necesarios estudios precisos para describir su riqueza y composición de especies. La
fragmentación del hábitat causada por actividades humanas amenaza la biodiversidad, incluidos los parásitos. En este
contexto, las áreas protegidas desempeñan un papel fundamental en la conservación de la biodiversidad. Nuestro objetivo
es describir la diversidad de endoparásitos metazoarios (helmintos y pentastomátidos) en lagartijas dentro de tres áreas
protegidas en el noreste de Brasil: la Estación Ecológica de Aiuaba (Caatinga), el Parque Nacional de Sete Cidades
(Cerrado) y el Parque Nacional de Ubajara (Brejo de altitud y Caatinga), incluidas las áreas circundantes. Recolectamos
690 lagartijas representando 23 especies. Registramos 34 taxones de parásitos, incluyendo nematodos (28), trematodos
(2), cestodos (2), acantocéfalos (1) y pentastomátidos (1). Entre ellos, registramos parásitos comúnmente asociados con
lagartijas, como
Strongyluris oscari
, y parásitos raros, como
Brevimulticaecum
sp. y
Typhlonema
sp. También observamos la
presencia de trematodos exclusivamente en áreas de brejo de altitud. Este estudio contribuye a comprender el parasitismo
en lagartijas en la región Neotropical, presentando 21 nuevos registros de infección. Además, sugiere que los trematodos
pueden estar relacionados con la humedad ambiental, enfatizando la importancia de los estudios faunísticos para la
diversidad de parásitos.
Palabras clave
: Helmintos– levantamiento faunístico – Pentastomida
INTRODUCTION
Te Neotropical region is one of the most biodiverse
on the planet, with Brazil being a biodiversity hotspot
whiting ecosystems supporting a vast array of plant and
animal species, many of which are endemic (Myers
et
al.
, 2000; Zachos & Habel, 2011; Antonelli, 2022).
It harbors the third-largest richness of reptile species
globally, and the Northeast region is the second richest
in the country, hosting 413 species and subspecies,
including 137 lizard species (Squamata, Lacertilia)
(Guedes
et al
., 2023). However, only 56 lizard species in
the region (approximately 40%) have been investigated
in parasitological studies (Lacerda
et al.
, 2023).
Considering that parasites are important components of
ecosystems and exhibit great diversity (Poulin & Morand,
2000), taxonomic studies, geographic distribution
analyses, and host interaction investigations are crucial
(Poulin & Mouillot, 2003; Bozick & Real, 2015). To
better explore this diversity, accurate identifcations
are essential to avoid underestimating parasite richness
(Poulin, 2019). Tus, with the application of modern
microscopy techniques, faunal surveys contribute to
redescriptions and the discovery of new species (Macedo
et al.
, 2023). However, there is an estimated 75,000 to
300,000 species of helminths parasitizing vertebrates, and
up to 33% of these may be at risk of extinction (Dobson
et al.
, 2008; Carlson
et al.
, 2017).
Among the primary threats to biodiversity are
human activities, with habitat fragmentation caused
by agricultural practices afecting organisms from
microorganisms to large vertebrates (Ellis
et al.
, 2010;
Christian, 2023). Tis fragmentation can lead to both
immediate species loss and subsequent extinctions,
impacting species distribution patterns and community
composition due to environmental changes (Krauss
et al.
,
2010). For parasitic helminths, these disturbances can
infuence the structure and composition of communities,
with factors such as abundance, prevalence, and intensity
susceptible to interference (Cardoso
et al.
, 2016; Carlson
et al.
, 2017; Portela
et al
., 2020).
In this context, protected areas play a crucial role in
species preservation, serving as biodiversity refuges
(Llorente-Culebras
et al.
, 2021; Li
et al.
, 2022). Tese
areas can act as repositories of taxonomic, genetic, and
functional diversity for the surrounding areas. Terefore,
investigating the biodiversity associated with conservation
areas and their surroundings can provide valuable insights
into local biodiversity. In Brazil, fully protected areas are
a primary means of biodiversity conservation, including
national parks, ecological stations, natural monuments,
and wildlife refuges. In the Northeastern region, there are
26 fully protected areas covering diferent types of native
vegetation, such as Caatinga, Cerrado, and Highland
marshes.
63
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Considering this, studies conducted in protected areas
and their surroundings, encompassing faunal surveys,
including parasitological assessments, are valuable, as
they can unveil rich biodiversity. Tese studies are also
signifcant for reinforcing the importance of protected
areas in safeguarding native species and their ecological
relationships. Te objective of this study was to describe
the richness of metazoan endoparasite species (helminths
and Pentastomida) associated with lizards in three
protected areas and their surrounding zones in Brazilian
northeast.
MATERIAL AND METHODS
Study areas
Field sampling comprised three protected areas (PAs) in
northeastern Brazil and their surroundings (Fig. 1). Te
Aiuaba Ecological Station (AES), covering an area of
11,746.60 ha, is situated in the southern part of the state
of Ceará in the municipality of Aiuaba (6°36’ to 6°44’
S - 40°07’ to 40°19’ W). Tis area features a hot-semiarid
tropical climate, an average annual rainfall of 568.4 mm,
and an average temperature ranging from 24 to 26°C.
Te predominant vegetation in the ecological station is
caatinga stricto sensu, with its interior well-preserved,
encompassing 81% of its total area covered by conserved
vegetation (Araújo
et al.
, 2017).
Te Sete Cidades National Park (SCNP, 4°06’58.8”S
41°43’41.8”W), located in the state of Piauí, between the
municipalities of Piracuruca and Brasileira, in a Cerrado
stricto sensu area, covers approximately 6,221 ha. It
experiences a tropical semi humid dry climate, with an
average annual precipitation ranging from 1,300 mm to
1,500 mm and an annual average temperature of 28.8°C,
with minimums of 23.2°C and maximums of 36.0°C
according National Institute of Meteorology (Castro &
Costa, 2007; INMET, 2024).
Ubajara National Park (UNP, 3°50’31.2”S 40°54’00.5”W),
also in the state of
Ceará, is in an area that encompasses
zones of caatinga stricto sensu and relictual moist forest
Figure 1.
Schematic map illustrating protected areas with highlighted sample points in yellow. Legend: SCNP: Sete
Cidades National Park, UNP: Ubajara National Park, and AES: Aiuaba Ecological Station.
zones, also known as highland marsh. Te park covers
6,288 ha and is situated in the northwest portion of the
state of Ceará in the Ibiapaba Plateau, spanning three
64
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
municipalities: Frecheirinha, Tianguá, and Ubajara.
Te annual rainfall reaches 1,483.5 mm, with average
temperatures ranging between 24 and 26°C.
Sample design and host collection
Lizard sampling were conducted from 2018 to 2020,
covering both dry and rainy seasons, except in 2020 when
collections were exclusively performed during the rainy
period. During the expeditions, visual encounter surveys
were carried out, exploring all possible microhabitats
used by lizards (Bernarde, 2012). Hosts were manually
collected during daytime from 8:00 to 17:00. Te total
sample efort in hours amounted to 1,110 h, calculated
by summing the number of hours in the feld multiplied
by the number of researchers conducting searches on
each expedition. Te distribution of sampling points
followed the methodology of Brasileiro
et al.
(2023). Te
lizards were euthanized following the ethical procedures
of the Federal Council of Veterinary Medicine – CFMV
(2013) with lidocaine hydrochloride 60 mg/kg, preserved
in 70% ethanol, and subsequently cataloged in the
Herpetological Collection of the Federal University of
Ceará.
Collection and Processing of Parasites
After necropsy with a longitudinal anteroposterior
ventral incision, the hosts had their coelomic cavity,
lungs, stomach, intestines, and accessory organs of the
digestive system examined for parasites. When hosts were
necropsied fresh and parasites were found, they were fxed
in boiling 70% ethanol and preserved in the same solution
for subsequent analyses. Due to the number of collected
hosts, some could not be necropsied immediately after
collection and were fxed as described earlier. In these
cases, necropsies were subsequently conducted, and the
parasites were stored in 70% ethanol.
Te nematodes, acanthocephalans, and Pentastomida
collected were clarifed using a lactic acid solution
(Andrade, 2000). Platyhelminths were colored using the
carmine technique (Amato & Amato, 2010), diaphanized
with eugenol oil, and mounted on temporary slides for
taxonomic identifcation. Identifcation was based on the
observation, counting, and morphometry of taxonomic
characters according to relevant literature (Araújo &
Gandra, 1941; Lucker, 1943; Rêgo & Ibáñez, 1965;
Rego, 1983; Vicente
et al.
, 1993; Almeida
et al
., 2008;
Anderson
et al.
, 2009; Bursey
et al.
, 2010; Fernades &
Kohn, 2014; Pereira
et al.
, 2017; Vieira
et al.
, 2020; De
Sousa
et al.
, 2022). Parasitological descriptors of mean
abundance, infection range, and infection intensity
followed by standard error, and prevalence in percentage
was calculated according to Bush
et al.
(1997). After
identifcation, all parasites were deposited in the
Parasitological Collection of the Federal University of
Ceará
Ethics aspects:
All procedures used in this work follow
the ethical standards of the relevant national and
institutional guides on the care and use of laboratory
animals. Collection permit Instituto Chico Mendes de
Conservação da Biodiversidade - ICMBio (process n°
68 031–1 and n° 72 762) and the Ethics Committee on
Animal Use of the Federal University of Ceará (CEUA-
UFC) (#CEUA 6314010321).
RESULTS
A total of 690 hosts were collected, distributed across 23
lizard species, with 237 at Aiuaba Ecological Station (AES,
10 spp.), 239 at Sete Cidades National P\ark (SCNP, 14
spp.), and 214 at Ubajara National Park (UNP, 18 spp.).
Among these, parasitic infections were documented in
20 species, except for
Copeoglossum nigropunctatum
Spix,
1825,
Colobosaura modesta
Reinhardt and Lütken, 1862,
and
Vanzosaura multiscutata
Amaral, 1933. Regarding
hosts, the largest sample size was for
Ameivula pyrrhogularis
Silva and Avila-Pires, 2013 (AES: 67, SCNP: 60, and
UNP: 36), and
Tropidurus hispidus
Spix, 1825 (AES: 67,
SCNP: 49, and UNP: 66), which are also the species with
the highest recorded parasitic richness (Table 1).
Te total abundance of parasite individuals was
21,289.00. Specifc-level identifcation was not possible
in some cases due to the difculty in visualizing important
morphological characters or due to the ontogenetic
developmental stage. In these cases, a more conservative
approach was adopted, and a higher taxonomic level was
recorded. Terefore, the richness of recorded parasite taxa
in this study was 34 taxonomic groups (24 at the specifc
level, seven at the genus level, two at the family level, and
one at the phylum level), with 11 for AES, 24 for SCNP,
and 25 for UNP (Table 1).
From the records made in this study, 21 are new infection
records for the host species. Sete Cidades National Park
(SCNP) had the highest number of new records (13),
followed by Ubajara National Park (UNP) with seven
and Aiuaba Ecological Station (AES) with one (Table
1). For Ameivula pyrrhogularis, six new records were
documented, fve in SCNP (
Brevimulticaecum
sp.,
Capillaria freitaslenti
Araujo & Gandra, 1941,
Cruzia
lauroi
Vieira
et al
., 2020,
Falcaustra
sp.,
Spinicauda
65
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
spinicauda
Olfers, 1819 and one in UNP (
Pharyngodon
travassosi
Pereira, 1935), making it the host species with
the highest number of new records. In the UNP, a single
individual of
Typhlonema
sp. infecting
Norops fuscoauratus
d’Orbigny, 1837, was recorded. Tis was also the only
area where the trematodes
Mesocoelium monas
Rudolphi,
1819, and
Paradistomum parvissimum
Travassos, 1918,
were registered, occurring only at collection points within
the protected area and infecting
Coleodactylus meridionalis
Boulenger, 1888,
Norops fuscoauratus
,
Enyalius bibronii
,
Tropidurus hispidus
, and
Tropidurus semitaeniatus
Spix,
1825.
Host specie
s
NParasite taxonAMA ± SEAPP%MII ±SE
Life
cycle
Aiuaba
Ecological
Station
Ameivula
pyrrhogularis
Silva & Avila-
Pires, 2013
67
Acanthocephala
Unidentifed Cystacanth2–21.49–M
Cestoda
Oochoristica travassosi
Rêgo
& Ibáñez, 1965
1–11.59–H
Nematoda
Pharyngodon cesarpintoi
Pereira, 1935
69310.34±3.65 1–16538.8026.65±8.55M
Strongyluris oscari
Travassos,
1923
21–1–202.99–M
Gymnodactylus
geckoides
Spix,
1825
15
Nematoda
Parapharyngodon largitor
Alho & Rodrigues, 1963
231.53±0.491–553.332.87±0.58M
Hemidactylus
agrius
Vanzolini,
1978
1Not parasitized
Hemidactylus
brasilianus
Amaral, 1935
17
Nematoda
Parapharyngodon alvarengai
Freitas, 1957
1–10.06–M
Skrjabinellazia galliardi
Chabaud, 1973*
1–10.06–H
Spauligodon oxkutzcabiensis
Chitwood, 1938
94–22–7211.76–M
Lygodactylus
klugei
Smith,
Martin &
Swain, 1977
8
Nematoda
Spauligodon oxkutzcabiensis
1–116,77–M
Table 1.
Helminths and Pentastomida associated with lizards (Squamata, Lacertilia) in Aiuaba Ecological Station, Sete
Cidades National Park, Ubajara National Park and their surroundings, including the number of examined hosts (N)
and parasite taxa, along with total abundance (A), mean abundance (MA) ± standard error (SE), infection range (IR),
prevalence in percentage (P%), mean infection intensity (MII) ± standard error (SE), and the life cycle of the parasite,
whether monoxenous (M) or heteroxenous (H). New parasitism records are indicated with “*”.
(Continued Table 1)
66
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Phyllopezus
pollicaris
Spix,
1825
13
Nematoda
Pharyngodon cesarpintoi
24–247,69–M
Spauligodon oxkutzcabiensis
25919.92±7.475–9669.2328.78±9.44M
Tropidurus
hispidus
Spix,
1825
74
Acanthocephala
Unidentifed cystacanth3–31.35–H
Cestoda
Oochoristica travassosi
30.04±0.0214.051±0H
Nematoda
Ascarididae1–11.35–M
Cosmocercidae1–11.35–M
Parapharyngodon largitor
971.31±0.311–1537.843.46±0.62M
Pharyngodon cesarpintoi
9–1–82.70–M
P
hysaloptera lutzi
Cristofaro,
Guimarães & Rodrigues, 1976
2072.78±0.511–1656.764.92±0.75H
Skrjabinellazia galliardi
3–31.35 –H
Strongyluris oscari
550.74±0.301–1516.214.48±1.48M
Tropidurus
jaguaribanus
Passos, Lima &
Borges-Nojosa,
2011
15
Acanthocephala
Unidentifed cystacanth1–16.67–H
Nematoda
Parapharyngodon largitor
382.53±1.625–232012.67±5.36M
Physaloptera lutzi
352.33±1.911–2933.337±5.50H
Strongyluris oscari
785.2±2.302–294013±4.10M
Vanzosaura
multiscutata
Amaral, 1933
4Not parasitized
Sete Cidades National Park
Host speciesNParasite taxonAAM ± EPAPP%IM±EP
Life
cycle
Ameiva ameiva
Linnaeus, 1758
5
Nematoda
Capillaria freitaslenti
Araujo
& Gandra, 1941
18–1820–M
Spinicauda spinicauda
Olfers, 1819*
3–320–M
Parapharyngodon sceleratus
Travassos, 1923
*
1–120–M
Ameivula
pyrrhogularis
60
Acanthocephala
Unidentifed cystacanth280.46±0.291–168.205.6±2.91H
(Continued Table 1)
(Continued Table 1)
67
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Cestoda
Oochoristica vanzolinni
Rêgo
& Rodrigues, 1965
7–71.64 –H
Nematoda
Brevimulticaecum
sp
.*
1–11.64–H
Capillaria freitaslenti*
360.59±0.341–188.197.2–3.22M
Cruzia lauroi
Vieira
et al
. 2020
5–51.64–H
Falcaustra
sp
.*
5–51.64–H
Pharyngodon travassosi
Pereira, 1935
*
3115.09±2.641–13211.4744.43–17.77M
Piratuba
sp
.
4–1–33.28–
Spinicauda spinicauda*
3–31.64–M
Brasilisincus
heathi
Schmidt
& Inger, 1951
7
Nematoda
Oswaldocruzia
sp
.
2–214.28–M
Parapharyngodon sceleratus
*
1–114.28–M
Strongyloides
sp.
*
10–1014.28–M
Strongyluris oscari
*1–114.28–M
Colobosaura
modesta
Reinhardt &
Lütken, 1862
1Not parasitized
Hemidactylus
agrius
43
Acanthocephala
Unidentifed cystacanth30.07±0.0416.981±0H
Nematoda
Parapharyngodon largitor
160.37±0.161–513.952.67±0.56M
Physaloptera lutzi
1–12.33–H
Strongyluris oscari
*1–12.33 –M
Pentastomida
Raillietiela mottae
Almeida
& Lopes, 2008
1–12.33 –H
Hemidactylus
mabouia
Moreau
de Jonnès, 1818
1
Acanthocephala
Unidentifed cystacanth1–1100–
Iguana iguana
Linnaeus, 1758
1
Nematoda
Alaeuris vogelsangi
Lent &
Freitas, 1948
19–19100–M
Micrablepharus
maximiliani
Reinhardt &
Lütken, 1862
14
Acanthocephala
Unidentifed cystacanth2–27.14–H
Nematoda
Physalopteroides venancioi
Lent,
Freitas & Proença, 1946 *
2–27.14–H
(Continued Table 1)
(Continued Table 1)
68
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Skrjabinodon campia
oae De
Sousa, Silva De Oliveira,
Morais, Da Silva Pinheiro
& Ávila
*
60.07±0.07221.422±2M
Phyllopezus
pollicaris
7
Nematoda
Parapharyngodon largitor
71±0.691–542.862.33±0.69M
Spauligodon oxkutzcabiensis
446.29±5.172–3742.8614.67±5.17M
Polychrus acutiros
-
tris
Spix, 1825
1Not parasitized
Tropidurus
hispidus
49
Acanthocephala
Unidentifed cystacanth2–14.08–H
Cestoda
Oochoristica
travassosi2–22.04–H
Nematoda
Falcaustra
sp
.
7–2–54.08–H
Parapharyngodon alvarengai
26–7–194.08–M
Parapharyngodon largitor
180.37±0.121–318.372±0.24M
Parapharyngodon sceleratus
340.70±0.403–1810.206.08±2.85M
Physaloptera lutzi
901.84±1.561–5620.419±5.27H
Piratuba
sp
.
5–52.04–H
Strongyloides
sp
.
3–1–24.08–M
Strongyluris oscari
701.42±0.441–1330.614.67±1.05M
Tropidurus
semitaeniatus
Spix, 1825
48
Acanthocephala
Unidentifed cystacanth5–1–44.17–H
Nematoda
Capillaria freitaslenti*
7–3–44.17–M
Parapharyngodon alvarengai
410.85±0.462–1810.418.2±2.97M
Parapharyngodon largitor
150.31±0.132–410.423±0.32M
Parapharyngodon sceleratus
2–22.08–M
Physaloptera lutzi
2–22.08–H
Physaloptera retusa
Rudolphi,
1819
1–12.08–H
Rhabdias
sp
.
6–62.08–H
Strongyluris oscari
220.46±0.151–420.832.2±0.4M
Ubajara National Park
Host speciesNParasite taxonAAM ± EPAPP%IM±EP
Life
cycle
Ameiva ameiva
5
Nematoda
Cosmocercidae27–2720–M
Pharyngodon cesarpintoi
22–2220–M
Pharyngodon travassosi
3–320–M
Physaloptera lutzi
1–120–H
Physaloptera retusa
5–4–520–H
Skrjabinellazia galliardi
1–120–H
(Continued Table 1)
(Continued Table 1)
69
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Ameivula
pyrrhogularis
36
Cestoda
Oochoristica travassosi
1–12.78–H
Nematoda
Pharyngodon cesarpintoi
501.38±0.929–318.3316.67±7.17H
Pharyngodon travassosi*
1–12.78–H
Brasilisincus
heathi
17
Acanthocephala
Unidentifed cystacanth14–3–1111.76–H
Cestoda
Oochoristica vanzolinni
6–65.88–H
Nematoda
Strongyluris oscari
2–25.88–M
Coleodactylus
meridionalis
Boulenger, 1888
16
Acanthocephala
Unidentifed cystacanth2–112.5–H
Trematoda
Mesocoelium monas
Rudolphi, 1819
80.50±0.381–618.752.67±1.67H
Cestoda
Oochoristica vanzolinni
3–36.25–H
Copeoglossum
arajara
Rebouças-
Spieker, 1981
4
Nematoda
Rhabdias
sp
.
1–125–H
Physaloptera Lutzi
1–125–
Copeoglossum
nigropunctatum
Spix, 1825
1Not parasitized
Enyalius bibronii
Boulenger, 1885
6
Acanthocephala
Unidentifed cystacanth *1–116.64–H
Trematoda
Mesocoelium monas
145–14516.64–H
Nematoda
Physaloptera
sp
.*
1–116.64–H
Hemidactylus
agrius
18
Acanthocephala
Unidentifed cystacanth1–15.56–H
Nematoda
Parapharyngodon alvarengai
1–15.56–M
Parapharyngodon largitor
2–211.11–M
Skrjabinellazia galliardi
9–1–716.67H
Hemidactylus
mabouia
8
Nematoda
Parapharyngodon largitor
3–325–M
(Continued Table 1)
(Continued Table 1)
70
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Physaloptera
sp
.
1–112.50–
Iguana iguana
2
Nematoda
Alaeuris vogelsangi
2756–275650–M
Capillaria freitaslenti*
1–150–M
Cosmocercidae18–1850–M
Ozolaimus cirratus
Linstow,
1906
1935–193550–M
Lygodactylus
klugei
1
Not parasitized
--
Micrablepharus
maximiliani
4
Not parasitized
Norops
fuscoauratus
d’Orbigny, 1837
12
Trematoda
Mesocoelium monas
13–1–1218.18–H
Nematoda
Cosmocercidae2–29.09–M
Rhabdias
sp
.
1–19.09–H
Typhlonema
sp
.
*1–19.09–M
Phyllopezus
pollicaris
1
Nematoda
Spauligodon oxkutzcabiensis
6–6100–
Polychrus
acutirostris
2
Nematoda
Gynaecometra bahienses
Araujo, 1978
13005–1300550–M
Salvator
merianae
Duméril &
Bibron, 1839
2
Nematoda
Cruzia lauroi
46–4650–H
Diaphanocephalus galeatus
Rudolphi, 1819
128–17–111100–M
Physaloptera retusa
4–450–H
Tropidurus
hispidus
66
Acanthocephala
Unidentifed cystacanth140.21±0.151–104.554.67±2.73H
Trematoda
Mesocoelium monas
1–11.52–H
Paradistomum parvissimum
Travassos, 1918
5–51.51–H
Cestoda
Oochoristica travassosi
2–21.52–H
Nematoda
Oswaldocruzia
sp
.
240.36±0.161–915.152.04±0.78M
Parapharyngodon largitor
1382.09±0.531–2739.395.30±1.10M
(Continued Table 1)
(Continued Table 1)
71
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Physaloptera lutzi
1752.65±0.811–4039.396.73±1.79H
Rhabdias
sp.50.07±0.051–34.541.67±0.67H
Spauligodon oxkutzcabiensis
15–151.52–M
Strongyluris oscari
410.62±0.301–1715.154.1–1.67M
Tropidurus
semitaeniatus
38
Acanthocephala
Unidentifed cystacanth30.16±0.1012.63–H
Trematoda
Mesocoelium monas
1–12.63–H
Nematoda
Parapharyngodon alvarengai
2–25.26 –M
Parapharyngodon largitor
6–62.63–M
Physaloptera lutzi
1–12.63–H
Physalopteroides venancioi*
9–2–95.26 H
Skrjabinellazia galliardi
2–22.61–H
Strongyluris oscari
751.97±1.231–4321.059.36±4.37M
(Continued Table 1)
DISCUSSION
In this study, 34 taxa of parasites were recorded, including
Nematoda, Cestoda, Acanthocephala, and Pentastomida,
infecting 20 species of lizards (Squamata, Lacertilia) with
21 new infection records. Aiuaba Ecological Station (AES)
is one of the three protected areas studied, where most
studies on lizard parasites have been conducted, thus, most
of the records from this study had already been reported
previously (see Brasileiro & Carvalho, 2023; Lacerda
et
al.,
2023). Among the three protected areas, Sete Cidades
National Park (SCNP) is the least represented in the
literature regarding studies on lizard parasites. Similarly,
Ubajara National Park (UNP) is also underrepresented,
with
Norops fuscoauratus
and
Tropidurus hispidus
being
investigated for parasites in previous studies (Santos-
Mesquita
et al.
, 2020; Brasileiro & Carvalho, 2023).
As Protected areas represent the local fauna (Zachos &
Habel, 2011), the low number of studies in these areas,
coupled with the species of hosts not yet investigated
for parasites, contributed to the increasing number of
new parasitic records in SCNP and UNP compared to
AES. Te AES has been the focus of numerous studies
on herpetological fauna and their parasites by research
groups from nearby universities such as the Regional
University of Cariri (URCA) and the Federal University
of Cariri (UFCA). In comparison, SCNP and UNP
have been relatively less explored by researchers studying
parasites of reptiles and amphibians. However, with the
rise in research centered on conservation units, the trend
is for biodiversity records in these areas to increase as
well, underscoring the importance of these regions for
biodiversity protection.
With a total of 690 analyzed lizards distributed among
23 host species, the richness of parasites found can be
explained by the richness of the hosts, their ecological
aspects and also by the sample size, since the sampling
efort is related to the richness of the species sampled
(Guegan
et al.
2007; Poulin, 2019). Hosts with more
recorded parasite species, such as
T. hispidus
, exhibit
generalist feeding habits and are well-distributed in
the sampling locations (Kolodiuk
et al
., 2009). Te
combination of these factors contributes to contact with
diferent parasite species (Leung & Koprivnikar, 2019).
For the species
Colobosaura modesta
,
Copeoglossum
nigropunctatum
, and
Vanzosaura multiscutata
, we
did not record any parasitic infections in this study.
Representatives of the family Gymnophthalmidae are
characterized by fossorial and semifossorial habits, and
for this reason, they are expected to be parasitized by
helminths with heteroxenous life cycles, as discussed by
Teixeira
et al.
(2018). For the family Scincidae, whose
representatives exhibit intermediate foraging behavior,
a rich parasitic fauna is expected, including both
monoxenous and heteroxenous species (Cooper, 1995;
Rocha
et al.
, 2003). In addition, in previous studies
that included
C. nigropunctatum
and
V. multiscutata
,
parasites such as
Physaloptera retusa
Rudolphi, 1819,
and Cosmocercidae,
Parapharyngodon alvarengai
Freitas, 1957,
Pharyngodon cesarpintoi
Pereira, 1939,
Physaloptera lutzi
Cristofaro, Guimarães & Rodrigues,
1976,
Spauligodon oxkutzcabiensis
Chitwood, 1938, and
Skrjabinodon campiaoae
De Sousa, Silva De Oliveira,
Morais, Da Silva Pinheiro & Ávila, 2022, respectively,
were recorded (Araujo-Filho
et al.
, 2020; Teixeira
et al.
,
72
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
2020; Sousa
et al.
, 2022). Te parasites found in the
cited studies are commonly associated with lizards (Ávila
& Silva, 2010; Lacerda
et al.
, 2023). For
C. modesta
, no
records of parasitism were found up to the writing of this
work. Terefore, we assume that low sample size may
have contributed to this result.
Sete Cidades National Park (SCNP) had the highest
number of new parasitism records. For the state of
Piauí, where the park is located, only the species
Iguana
iguana
Linnaeus, 1758,
T. hispidus
,
T. semitaeniatus
, and
Phyllopezus pollicaris
Spix, 1825, had been investigated
for parasites in previous studies (Ávila
et al.
, 2012; Otávio
et al.
, 2018; Brasileiro & Carvalho, 2023). Most of the
species analyzed in SCNP had already been the subject
of parasitism studies in other locations in the country;
however, the associated species were diferent (Ávila &
Silva, 2010; Lacerda
et al.
, 2023). Tis park is located
in a Cerrado stricto sensu area, and this ecoregion is
considered an important biodiversity hotspot in Brazil
(Zachos & Habel, 2011). Given this, as a rich biodiversity
environment, the Cerrado can also harbor a great
diversity of parasite species. Additionally, as understudied
species are included in research, new data are obtained,
and parasites not yet recorded for host species can be
discovered.
Te species with the highest number of new records was
A. pyrrhogularis
, the majority of which were parasites
with a heteroxenous life cycle. Many parasites with this
type of life cycle use arthropods as intermediate hosts
(Anderson, 2000) and lizards of the genus
Ameivula
spp. has a diverse diet, including mainly arthropods and
insect larvae, with active foraging habits (Mesquita &
Colli, 2003ab). In an environment rich in biodiversity,
ecological connections can become more complex,
allowing for numerous interactions. Tis complexity may
lead to more parasite species utilizing a variety of species
as intermediate hosts, thereby increasing their success in
reaching their fnal hosts (Poulin, 2014). Tis richness
may have contributed to the number of new records in
this study area, given that arthropods are part of the diet
of several lizard species. Additionally,
A. pyrrhogularis
had
been included in previous research, however, the growing
number of new infection records highlights signifcant
gaps in our comprehension of lizard parasitism.
It was also recorded for
A. pyrrhogularis,
a specimen of the
genus
Brevimulticaecum
Mozgovoi, 1951, constituting
the frst record for lizards. Nematodes of the genus
Brevimulticaecum
spp. are more commonly associated, in
their adult forms, with freshwater fsh and crocodilians.
However, records of larval forms have been made in
amphibians and a species of snake (Moravec
et al.,
1994; Anderson, 2000). Studies suggest that the larval
forms in amphibians may play a role in the life cycle,
aiming for fnal infection in crocodilians (González &
Hamann, 2013). Te infection in
A. pyrrhogularis
may
have occurred through the ingestion of a larval form,
as this lizard species has a broad diet, including both
adult and larval arthropods, and the diet may be directly
related to the parasitic fauna (Silva
et al.
, 2019). It has
been documented that parasites of this genus can cause
intestinal lesions in defnitive hosts (Cardoso
et al.
,
2013). With the record of
Brevimulticaecum
sp. in the
sampled locality, a more detailed examination of the
biodiversity that may be involved in the life cycle of this
parasite becomes important.
Te records of Trematoda (
Mesocoelium monas
and
Paradistomum parvissimum
) were made only in the
Ubajara National Park (UNP). Among the three protected
areas, UNP has the highest average annual precipitation
and the lowest average temperature (1,436.32 mm and
22–26 °C). Environmental conditions may be related
to the prevalence of certain groups of parasites (Dybing
et al
., 2013). Given this and knowing that trematodes
have a heteroxenous life cycle, the presence of parasites
with this life cycle in more humid environments may
be related to the higher survival of their infective larval
forms or eggs (Stromberg, 1997; Dybing
et al
., 2013;
Bolek
et al.,
2019). Additionally, their intermediate
hosts, commonly arthropods or small mollusks, are also
present in more humid environments (Dronen
et al.
,
2012). Supporting this idea, the literature shows that the
presence of reptile-parasitic trematodes is associated with
more humid environments, such as the coast, wet forests,
collection points near water bodies, or aquatic animals
(see checklist collection points in Lacerda
et al
., 2023).
Te presence of these parasites only in preserved areas
(collection sites within protected areas) may be a sign
of how human activities afect biodiversity. As observed
by Brasileiro & Carvalho (2023), agriculture afects the
richness and abundance of parasites with heteroxenous
life cycles, including trematodes.
Another parasite found in Ubajara National Park (UNP)
was a specimen of the genus
Typhlonema
Kreis, 1938.
Tis is a genus whose males seem to be unknown except
for
Typhlonema salomonis
Kreis, 1938 (Lucker, 1943).
Tey are typically parasites of lizards, and identifcation
is performed through females, with one of the main
characteristics being the highly muscular vulva in a
prebulbar position and the anus at the end of the body,
along with eggs having thick shells (Vicente
et al
., 1993;
Anderson, 2000). In previous studies, they have been
73
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
recorded parasitizing the intestine of lizards in Brazil, but
this is the frst record for
Norops fuscoauratus
(Ávila &
Silva, 2010).
Tis study contributes to the understanding of parasitism
in lizards in the Neotropical region, presenting 21 new
infection records and suggesting that the presence of
trematodes may be related to environmental humidity.
Tus, the importance of faunal surveys for parasite
diversity and investigating land use efects on parasite
communities should be emphasized. However, it is
important to note the limitations of the study, such as
underrepresentation of some species due to the method
of collection. For example, Gymnophthalmidae would
be better represented if pitfall traps were included in
our feld collections. Nevertheless, these limitations did
not strongly afect our objectives for this work, which
are to describe the metazoan endoparasites of lizards in
protected areas and their surroundings.
ACKNOWLEDGMENTS
We thank to the Laboratório de biologia celular e
helmintologia “Profa. Dra. Reinalda Marisa” at the
Institute of Biological Sciences, Federal University of Pará
(UFPA) for their support in identifying some species. We
also thank the feld collection teams from the Universidade
Estadual Vale do Acaraú-UVA and the Universidade
Estadual do Cariri-URCA, as well as the team involved
in slide preparation for parasite identifcation at the
Núcleo Regional de Ofologia -NUROF/UFC. Funding
Tis study was partially funded by Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior-CAPES
(Finance code 001, process n° 88887.501922/2020-00).
Te Fundo Brasileiro para Biodiversidade-Funbio, in
collaboration with the Instituto Humanize, funded most
of the feld activities. Additionally, thanks to the project
“Conservação da biodiversidade em nível de paisagem:
mudanças climáticas e distúrbios antropogênicos”
(CNPQ/ICMBIO/FAPs n° 18/2017 - processo n°
421350/2017-2) for providing funding for initial
feldwork.
Author contributions: CRediT (Contributor Roles
Taxonomy)
EFFC
= Elvis Franklin Fernandes de Carvalho
ACB
= Ana Carolina Brasileiro
RWA
= Robson Waldemar Ávila
Conceptualization
: EFFC, ACB, RWA
Data curation
: EFFC, ACB, RWA
Formal Analysis
: EFFC, RWA
Funding acquisition
: EFFC, ACB, RWA
Investigation
: EFFC, RWA
Methodology
: EFFC, ACB, RWA
Project administration
: EFFC, ACB, RWA
Resources
: EFFC, ACB, RWA
Software
: EFFC
Supervision
: RWA
Validation
: EFFC, ACB, RWA
Visualization
: EFFC, ACB, RWA
Writing – original draft
: EFFC
Writing – review & editing
: EFFC, ACB, RWA
BIBLIOGRAPHIC REFERENCES
Almeida, W., Freire, E., & Lopes, S. (2008). A new species of pentastomida infecting
Tropidurus hispidus
(Squamata:
Tropiduridae) from Caatinga in Northeastern Brazil.
Brazilian Journal of Biology
,
68
, 199–203.
Amato, J.F.R., & Amato, S.B. (2010). Técnicas gerais para coleta e preparação de helmintos endoparasitos de aves’, in
S. von Matter et al. (eds)
Ornitologia e conservação: ciência aplicada, técnicas de pesquisa e levantamento
. 1
st
ed.
Technical Books, pp. 369–393.
Anderson, R.C. (2000).
Nematode parasites of vertebrates: their development and transmission
. CABI Publishing.
Anderson, R.C., Chabaud, A.G., & Willmott, S. (eds) (2009).
Keys to the nematode parasites of vertebrates: archival
volume
,
Keys to the nematode parasites of vertebrates: archival volume
. UK.
Andrade, C.M. (2000).
Meios e soluções comumente empregados em laboratórios
. Editora Universidade Rural.
Antonelli, A. (2022). Te rise and fall of Neotropical biodiversity.
Botanical Journal of the Linnean Society
,
199,
8–24.
74
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Araujo, F. S., Menezes, M. O. T., Barbosa, L. S., Oliveira, V. M. R., Nogueira Rafaella, S., Menezes, B. S., Souza, B.,
Carvalho, E., Silveira, A., Flores, L., & Zanette, L. R. S. (2017).
Efetividade da zona de amortecimento de unidades
de conservação federais do estado do Ceará: Parque Nacional de Ubajara e Estação Ecológica de Aiuaba
, in M.O.C.
Waldir Mantovani, Ricardo Ferreira Monteiro, Luiz dos Anjos (ed.).
Pesquisas em unidades de conservação no
dominio da Caatinga: subsidios à gestão
. Fortaleza: Edições UFC, pp. 125–139.
Araujo-Filho, J. A., Teixeira, A. A. M., Teles, D. A., Rocha, S. M., Almeida, W. O., Mesquita, D. O., & Lacerda, A. C. F.
(2020). Using lizards to evaluate the infuence of average abundance on the variance of endoparasites in semiarid
areas: dispersion and assemblage structure.
Journal of helminthology
,
94
, e121.
Araújo, T.L., de & Gandra, Y.R. (1941). Sobre uma nova espécie do gênero
Capillaria
e observações helmintológicas.
Revista da Faculdade de Medicina Veterinária, Universidade de São Paulo
,
2
, 29.
Ávila, R. W., Anjos, L. A., Ribeiro, S. C., Morais, D. H., da Silva, R. J., & Almeida, W. O. (2012). Nematodes of lizards
(Reptilia: Squamata) from Caatinga biome, northeastern Brazil.
Comparative Parasitology
,
79
, 56–63.
Ávila, R. W., & Silva, R. J. (2010). Checklist of helminths from lizards and amphisbaenians (Reptilia, Squamata) of
South America.
Journal of Venomous Animals and Toxins including Tropical Diseases
,
16
, 543-572.
Bernarde, P.S. (2012).
Anfíbios e répteis: introdução ao estudo da herpetofauna brasileira
. 1
st
edn. Anolis Books.
Bolek, M.G., Detwiler, J.T., & Stigge, H.A. (2019). Selected Wildlife Trematodes.
Advances in Experimental Medicine
and Biology
,
1154
, 321–355.
Bozick, B.A., & Real, L.A. (2015). Integrating Parasites and Pathogens into the Study of Geographic Range Limits.
Te
Quarterly Review of Biology
,
90
, 361–380.
Brasileiro, A. C., Benício, R. A., Gonçalves
-
Sousa, J. G., & Ávila, R. W. (2023). Infuence of vegetation regeneration and
agricultural land use on lizard composition, taxonomic and functional diversity between diferent vegetation types
in Caatinga domain, Brazil.
Austral Ecology
,
48
, 1274-1291.
Brasileiro, A.C., & Carvalho, E.F.F. De (2023). How agricultural land use afects the abundance and prevalence of
monoxenous and heteroxenous helminths in the generalist lizard
Tropidurus hispidus
.
Journal of Helminthology
,
97
, e50.
Bursey, C. R., Rocha, C. F. D., Menezes, V. A., Ariani, C. V., & Vrcibradic, D. (2010). New species of
Oochoristica
(Cestoda; Linstowiidae) and other endoparasites of
Trachylepis atlantica
(Sauria: Scincidae) from Fernando de
Noronha Island, Brazil.
Zootaxa
,
2715
, 45-54.
Bush, A. O., Laferty, K. D., Lotz, J. M., & Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis
et al
. revisited.
Journal of parasitology
,
83
, 575-583.
Cardoso, A. M. C., de Souza, A. J. S., Menezes, R. C., Pereira, W. L. A., & Tortelly, R. (2013). Gastric lesions in free-
ranging black caimans (
Melanosuchus niger
) associated with Brevimulticaecum species.
Veterinary Pathology
,
50
,
582–584.
Cardoso, T. D. S., Simões, R. O., Luque, J. L. F., Maldonado, A., & Gentile, R. (2016). Te infuence of habitat
fragmentation on helminth communities in rodent populations from a Brazilian Mountain Atlantic Forest.
Journal of Helminthology
,
90
, 460–468.
Carlson, C. J., Burgio, K. R., Dougherty, E. R., Phillips, A. J., Bueno, V. M., Clements, C. F., Castaldo, G., Dallas, T.
A., Cizauskas, C. A., Cumming, G. S., Doña, J., Harris, N. C., Jovani, R., Mironov, S., Muellerklein, O. C.,
Proctor, H.C., & Getz, W. M. (2017). Parasite biodiversity faces extinction and redistribution in a changing
climate.
Science Advances
,
3
, e1602422.
Castro, A.A.J., & Costa, J.M. (2007). Flora e Melissofauna associada de um Cerrado rupestre da região setentrional do
Piauí. in
Cerrado Piauiense: Uma Visão Multidisciplinar.
Teresina: Editora da Universidade Federal do Piauí, pp.
271–298.
Christian, H.M. (2023). Te Main Drivers of Biodiversity Loss: A Brief Overview’.
Journal of Ecology & Natural Resources
,
7
, 000346.
75
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Cooper, W.E. (1995). Foraging mode, prey chemical discrimination, and phylogeny in lizards.
Animal Behaviour
,
50
,
973–985.
Dobson, A., Laferty, K. D., Kuris, A. M., Hechinger, R. F., & Jetz, W. (2008). Homage to Linnaeus: How many
parasites? How many hosts?.
Proceedings of the National Academy of Sciences
,
105
, 11482–11489.
Dronen, N.O., Calhoun, D.M., & Simcik, S.R. (2012). Mesocoelium Odhner, 1901 (Digenea: Mesocoelidae) revisited;
A revision of the family and re-evaluation of species composition in the genus.
Zootaxa
,
1901
, 1–96.
Dybing, N.A., Fleming, P.A., & Adams, P.J. (2013). Environmental conditions predict helminth prevalence in red foxes
in Western Australia.
International Journal for Parasitology: Parasites and Wildlife
,
2
, 165–172
Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic transformation
of the biomes, 1700 to 2000.
Global ecology and biogeography
,
19
, 589-606.
Fernades, B.M.M., & Kohn, A. (2014)
South american trematodes parasites of amphibians and reptiles
. Kohn, A., &
Fernandes, B.M.M. (Eds.) Rio de Janeiro: Ofcina de Livros.
González, C.E., & Hamann, M.I. (2013). First record of Brevimulticaecum larvae (Nematoda, Heterocheilidae) in
amphibians from northern Argentina.
Brazilian Journal of Biology
,
73
, 451–452.
Guedes, T. B., Entiauspe-Neto, O. M., & Costa, H. C. (2023). Lista de répteis do Brasil: atualização de 2022.
Herpetologia
Brasileira
,
12
, 56-161.
Guegan, J. F., Renaud, F., & Tomas, F. (Eds.). (2005).
Parasitism and ecosystems
. Oxford University Press.
Instituto Nacional de Meteorologia (INMET)(2024).
Normais Climatológicas.
https://clima.inmet.gov.br/
GrafcosClimatologicos/DF/83377
Kolodiuk, M.F., Ribeiro, L.B., & Freire, E.M.X. (2009). Te efects of seasonality on the foraging behavior of
tropidurus hispidus and
Tropidurus semitaeniatus
(Squamata: Tropiduridae) living in sympatry in the Caatinga of
Northeastern Brazil.
Zoologia
,
26
, 581–585.
Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R. K., Helm, A., Kuussaari, M., Lindborg, R., Öckinger, E.,
Pärtel, M., Pino, J., Pöyry, J. Raatikainen, K. M., Sang, A., Stefanescu, C., Teder, T., Zobel, M., & Stefan
Dewenter, I. (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at diferent
trophic levels.
Ecology Letters
,
13
, 597–605.
Lacerda, G. M. C., Santana, J. D. A., de Araujo Filho, J. A., & Ribeiro, S. C. (2023). Checklist of parasites associated
with “reptiles” in Northeast Brazil.
Journal of Helminthology
,
97
, e3.
Leung, T.L.F., & Koprivnikar, J. (2019). Your infections are what you eat: How host ecology shapes the helminth
parasite communities of lizards.
Journal of Animal Ecology
,
88
, 416–426.
Li, S., Yu, D., Huang, T., & Hao, R. (2022). Identifying priority conservation areas based on comprehensive
consideration of biodiversity and ecosystem services in the Tree-River Headwaters Region, China.
Journal of
Cleaner Production
,
359
, 132082.
Llorente-Culebras, S., Molina-Venegas, R., Barbosa, A. M., Carvalho, S. B., Rodriguez, M. A., & Santos, A. M. (2021).
Iberian Protected Areas Capture Regional Functional, Phylogenetic and Taxonomic Diversity of Most Tetrapod
Groups.
Frontiers in Ecology and Evolution
,
9
, 1–15.
Lucker, J.T. (1943). A redescription of
Typhlonema salomonis
Kreis (Nematoda).
Journal of the Washington Academy of
Sciences
,
33
, 28–31.
Macedo, L. C., Willkens, Y., Silva, L. M. O., Gardner, S. L., Melo, F. T. D. V., & Santos, J. N. D. (2023). “Revisiting
the past”: a redescription of Physaloptera retusa (Nemata, Physalopteridae) from material deposited in museums
and new material from Amazon lizards.
Revista Brasileira de Parasitologia Veterinária
,
32
, e017422.
Mesquita, D.O., & Colli, G.R. (2003a). Geographical variation in the ecology of populations of some Brazilian species
of
Cnemidophorus
(Squamata, Teiidae).
Copeia
,
2003
, 285–298.
76
Fernandes de Carvalho
et al.
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Mesquita, D.O. & Colli, G.R. (2003b). Te ecology of
Cnemidophorus ocellifer
(Squamata, Teiidae) in a neotropical
Savanna.
Journal of Herpetology
,
37
, 498–509.
Moravec, F., & Kaiser, H. (1994).
Brevimulticaecum
sp. larvae (Nematoda: Anisakidae) from the frog
Hyla minuta
Peters
in Trinidad.
Journal of parasitology
,
80
, 154-156.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for
conservation priorities.
Nature
,
403
, 853–858.
Otávio, L. P. V., Silva, J. S., Santos, J. H. S., Simões, E. P., Silva, G. D., & Campelo, P. N. G. (2018). Parasitos
gastrointestinais de
Iguana iguana
Linnaeus, 1758 (Squamata: Iguanidae) da zona urbana de Teresina, Piauí,
Brasil.
Biota Amazonia Open Journal System
,
8
, 19–23.
Pereira, F.B., Luque, J.L. & Tavares, L.E.R. (2017). Redescription of the nematode parasites of lizards:
Strongyluris oscari
.
Acta Parasitologica
,
62
, 805–814.
Portela, A.A.B., dos Santos, T.G., & dos Anjos, L.A. (2020). Changes in land use afect anuran helminths in the South
Brazilian grasslands.
Journal of Helminthology
, 94, e206.
Poulin, R. (2014). Parasite biodiversity revisited: Frontiers and constraints.
International Journal for Parasitology
,
44
,
581–589.
Poulin, R. (2019) . Best practice guidelines for studies of parasite community ecology’.
Journal of Helminthology
,
93
,
8–11.
Poulin, R., & Morand, S. (2000). Te diversity of parasites.
Quarterly Review of Biology
, 75(3), 277–293.
Poulin, R. & Mouillot, D. (2003). Host introductions and the geography of parasite taxonomic diversity.
Journal of
Biogeography
,
30
, 837–845.
Rego, A.A. (1983). Pentastomídeos de Répteis do Brasil.
Memórias do Instituto Oswaldo Cruz
,
78
, 399–411.
Rêgo, A.A., & Ibáñez H.N. (1965). Duas novas espécies de Oochoristica, parasitas de lagartixas do Peru: (Cestoda,
Anoplocephalidae).
Memórias do Instituto Oswaldo Cruz
,
63
, 67–73.
Rocha, C. F. D., Vrcibradic, D., Vicente, J. J., & Cunha-Barros, M. (2003). Helminths infecting
Mabuya dorsivittata
(Lacertilia, Scincidae) from a high-altitude habitat in Itatiaia National Park, Rio de Janeiro State, southeastern
Brazil.
Brazilian journal of biology, 63
, 129–132.
Santos Mesquita, J. M., de Oliveira, S. S., Perez, R., & Ávila, R. W. (2020). Helminths associated with
Norops fuscoauratus
(Squamata, Dactyloidae) in highland marshes of the Brazilian semi-arid.
Journal of helminthology
,
94
, e153.
Silva, L. A., Manoel, P. S., Uieda, V. S., Avila, R. W., & Da Silva, R. J. (2019). Spatio-temporal variation in diet
and its association with parasitic helminths in
Ameivula pyrrhogularis
(Squamata: Teiidae) from northeast Brazil.
Herpetological Conservation and Biology
,
14
, 325–336.
Sousa, C., Silva De Oliveira, S., Morais, D. H., Da Silva Pinheiro, R. H., & Ávila, R. W. (2022). A new species of
Skrjabinodon
(Oxyuroidea: Pharyngodonidae) infecting
Vanzosaura multiscutata
(Squamata: Gymnophthalmidae)
from Northeastern Brazil.
Journal of Natural History
,
56
, 35–48.
Stromberg, B.E. (1997). Environmental factors infuencing transmission.
Veterinary Parasitology
,
72
, 247–264.
Teixeira, A. A. M., Silva, R. J., Brito, S. V., Teles, D. A., Araujo-Filho, J. A., Franzini, L. D., Santana, D. O., Almeida,
W. O., & Mesquita, D. O. (2018). Helminths infecting
Dryadosaura nordestina
(Squamata: Gymnophthalmidae)
from Atlantic Forest, northeastern Brazil.
Helminthologia (Poland)
, 55, 286–291.
Teixeira, A. A. M., Riul, P., Brito, S. V., Araujo-Filho, J. A., Teles, D. A., de Oliveira Almeida, W., & Mesquita, D. O.
(2020). Ecological release in lizard endoparasites from the Atlantic Forest, northeast of the Neotropical Region.
Parasitology
,
147
, 491–500.
Vicente, J. J., Rodrigues, H. D. O., Gomes, D. C., & Pinto, R. M. (1993). Nematóides do Brasil. Parte III: nematóides
de répteis.
Revista Brasileira de Zoologia
,
10
, 19-168.
77
Metazoan Endoparasite Diversity in Lizards in Northeastern Brazil
Neotropical Helminthology, Vol. 18, N
º
1, jan - jun 2024
Vieira, F. M., Gonçalves, P. A., Lima, S. D. S., Sousa, B. M. D., & Muniz-Pereira, L. C. (2020). A new species of
Cruzia
(Ascaridida; Kathlanidae) parasitizing salvator merianae (squamata, teiidae) from the Atlantic forest in Brazil.
Revista Brasileira de Parasitologia Veterinaria
,
29
, 1–10.
Zachos, F. E., & Habel, J. C. (Eds.). (2011).
Biodiversity hotspots: distribution and protection of conservation priority areas
.
Springer Science & Business Media.
Received March 26, 2024.
Accepted May 21, 2024.