image/svg+xmlISSN Versión impresa 2218-6425ISSN Versión Electrónica 1995-1043ORIGINAL ARTICLE / ARTÍCULO ORIGINALECOLOGICAL ASPECTS OF THE INVADING TREMATODE CENTROCESTUS FORMOSANUS (NISHIGORI, 1924) (TREMATODA: HETEROPHYIDAE) IN THE NILE TILAPIA OREOCHROMIS NILOTICUS(LINNAEUS, 1758) (PERCIFORMES, CICHLIDAE), IN THE WETLAND LOS PANTANOS DE VILLA, LIMA, PERUASPECTOS ECOLÓGICOS DEL TREMÁTODO INVASOR CENTROCESTUS FORMOSANUS(NISHIGORI, 1924) (TREMATODA: HETEROPHYIDAE) EN LA TILAPIA DEL NILO OREOCHROMIS NILOTICUS(LINNAEUS, 1758) (PERCIFORMES: CICHLIDAE), EN EL HUMEDAL LOS PANTANOS DE VILLA, LIMA, PERÚ1Laboratorio de Ecología y Biodiversidad Animal (LEBA). Facultad de Ciencias Naturales y Matemática (FCNM). Grupo de Investigación en Sostenibilidad Ambiental (GISA). Escuela Universitaria de Posgrado (EUPG). Universidad Nacional Federico Villarreal (UNFV). El Agustino, Lima, Perú. 2*Laboratorio de Parasitología. Facultad de Ciencias Biológicas (FCB). Universidad Ricardo Palma (URP). Santiago de Surco, Lima, Perú. 3Laboratorio de Ingeniería Ambiental. Carrera de Ingeniería Ambiental. Coastal Ecosystems of Peru Research Group (COEPERU). Universidad Científica del Sur, Villa el Salvador, Lima, Perú. 4Laboratório de Sanidade de Organismos Aquáticos AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina UFSC, Florianópolis, SC, Brasil. *Corresponding author: joseiannaconeoliver@gmail.comDavid Minaya: https://orcid.org/0000-0002-9085-5357José Iannacone: https://orcid.org/0000-0003-3699-4732Lorena Alvariño: https://orcid.org/0000-0003-1544-511XCarla Cepeda:https://orcid.org/0000-0001-7723-7477Mauricio Laterça Martins:https://orcid.org/0000-0002-0862-692711,2*113David Minaya; José Iannacone; Lorena Alvariño; Carla Cepeda & Mauricio Laterça MartinsNeotropical Helminthology57doi:10.24039/rnh20211511044Neotropical Helminthology, 2021, 15(1), ene-jun:57-65.DDDABSTRACTKeywords: Centrocestus– fish parasites – Oreochromis niloticus– parasite ecology – PeruNile tilapia Oreochromis niloticus(Linnaeus, 1758) is a freshwater fish native to Africa. The present work's objective was to evaluate some ecological aspects of the invading metacercaria of Centrocestus formosanus(Nishigori, 1924) (Trematoda: Heterophyidae) in O. niloticusin the wetlands of Pantanos de Villa, Lima, Peru. Twenty specimens of O. niloticuscollected in the Genesis, and Marvilla lagoons in Pantanos de Villa's wetlands were inspected parasitologically during February and October of 2012. The fish had an average weight and length of 221.3 g ± 111.4 and 19.6 cm ± 4.24 cm, respectively. The invasive ectoparasite metacercariae were cataloged and evaluated using standard parasitological protocols. During the entire sampling, a total of 130 C. formosanustrematodes was collected, with an average abundance of sixty percent of the Nile tilapias parasitized by C. formosanus.The relative condition factor (k), an nindicator of host fish health, was not influenced by the presence of C. formosanus. Centrocestus DD
image/svg+xml58RESUMENPalabras clave: Centrocestus– ecología de parásitos – Oreochromis niloticus– parásitos de peces – PerúLa tilapia del Nilo Oreochromis niloticus(Linnaeus, 1758) es un pez de agua dulce endémico originario de África. El objetivo del presente trabajo fue evaluar algunos aspectos ecológicos del tremátodo invasor Centrocestus formosanus(Nishigori, 1924) (Trematoda: Heterophyidae) en O. niloticusen los humedales de Pantanos de Villa, Lima, Perú. Durante febrero y octubre de 2012 se inspeccionaron parasitológicamente 20 ejemplares de O. niloticusrecolectados en las lagunas Génesis y Marvilla en los humedales de Pantanos de Villa, Lima, Perú. Los peces tuvieron un peso y longitud promedio de 221.3 g ± 111.4 y 19.6 cm ± 4.24 cm, respectivamente. Las metacercarias de ectoparásitos invasores fueron catalogadas y evaluadas utilizando protocolos parasitológicos estándares. Durante todo el muestreo, se recolectaron un total de 130 trematodos de C. formosanus, con una prevalencia promedio del 60% de las tilapias del Nilo parasitadas por C. formosanus. El factor de condición relativo (k), un indicador de la nsalud de los peces huéspedes, no fue influenciado por la presencia de C. formosanus. Centrocestus formosanusse ha registrado en aves y mamíferos, incluidos los humanos, que producen heterofiosis, una enfermedad emergente mundial en humanos transmitida por el consumo de pescado crudo. Centrocestus formosanusen Perú representa un potencial impacto zoonótico en la salud pública. En adición, se registró en branquias en un solo huésped, la presencia del ectoparásito dinozoario Amyloodinium ocellatumBrown & Hovasse, 1946, que puede causar alteraciones patológicas en peces marinos y ambientes salinos.The gray tilapia Oreochromis niloticus(Linnaeus, 1758) (Perciformes: Cichlidae) is an endemic freshwater fish native to Africa and the Near East; it is a species widely distributed worldwide for cultivation due to its relative ease of adaptation and easy management in production in aquatic crops (FAO, 2016; Abd El-Naby et al., 2019). In Peru, starting in the 70s, this species' introduction and cultivation began for research and commercial cultivation purposes (Ramos & Gálvez, 2000; Baltazar, 2007). The introduction of this species began from Brazil in 1978 until it became an invasive species, displacing species such as native fish from the lower area of ​​the Rio Grande, on the coast of Ica, Peru (Ortega et al., 2007). It is currently considered a naturalized species in INTRODUCTIONAmazonas and Arequipa environments, to name a few (Ortega et al., 2007; Cossíos, 2010).In Peru, the nile tilapia, O. niloticus, have been registered few jobs in relation to their parasitofauna and other pathogens. (Amin et al., 2010; Gonzales-Fernández, 2012; Chiclla-Salazar & Tantas-García, 2015; Luque et al., 2016; Ortega et al., 2017).Among the known adverse effects of introducing exotic or alien species is introducing diseases through pathogens and parasites (Davis, 2009). One of the species mentioned as introduced alien parasites is the trematode Centrocestus formosanus(Nishigori, 1924) (Trematoda: Heterophyidae), which has among its exotic paratenic hosts O. niloticusand among its strange intermediate hosts Melanoides tuberculata(OF Neotropical Helminthology, 2021, 15(1), ene-junKeywords: Centrocestus– fish parasites – Oreochromis niloticus– parasite ecology – Peruformosanushas been recorded in birds and mammals, including humans producing heterophils, a worldwide emerging disease in humans transmitted by raw fish consumption. Centrocestus formosanusin Peru has a potential zoonotic impact on public health. In addition, the presence of the dynozoan ectoparasite Amyloodinium ocellatumBrown & Hovasse, 1946, can cause pathological alterations in marine fish and saline environments found in gills in a single host. Minaya et al.
image/svg+xml59Müller, 1774) (Ximenes et al., 2017). It is found in the form of metacercaria in the gills of freshwater fish. It is of aquaculture sanitary importance due to the damage it can cause to the gill filaments, which can end up being destroyed, thus reducing the surface area of ​​the respiratory epithelial tissue (Sumuduni et al., 2018; Leibowitz et al., 2019; Pace et al., 2020). This trematode has caused the death of high populations of fish in hatcheries, causing severe economic losses and the death of wild fish and becoming a threat to those in danger of extinction (Mitchell et al., 2005).Other risk factors that make C. formosanusa vital species is its zoonotic capacity because it can cause heterophiosis, an emerging global disease in humans transmitted by the consumption of raw fish, which in some cases can cause significant heart disease, brain and spinal cord, being often fatal in these organs (Lima dos Santos & Howgate, 2011). Despite infecting humans, it is only considered an accidental host of C. formosanussince birds and wild mammals associated with freshwater bodies are those that play the role of definitive hosts (Pinto & Melo, 2012; Leibowitz et al., 2019).One of the ideal settings for the establishment and development of the biological cycle of C. formosanus is the Pantanos de Villa wildlife refuge in Lima, Peru, since part of the fauna of this wetland harbors M. tuberculata(Torres-Zevallos et al., 2020) and O. niloticus, both documented hosts of the immature forms (redia, cercaria and metacercaria), and species of wild piscivorous birds, both migratory and resident (Iannacone et al., 2010) available as definitive hosts for C. formosanus.Due to the above, this work aims to evaluate the ecological aspects of the invasive trematode C. formosanusin the Nile tilapia O. niloticus, in the wetlands of Pantanos de Villa, Lima, Peru.Collection of material and processing of samplesTwenty specimens of O. niloticuswere necropsied MATERIALS AND METHODSbetween February and October 2012 at the Los Pantanos de Villa Wildlife Refuge, Lima, Peru (12 ° 12′49 ″ S; 76 ° 59′20 ″ W) to study its community of metazoan parasites (Eiras et al., 2006). Ten specimens were obtained from Génesis lagoon in February-2012 and ten from Marvilla lagoon in October-2012. The fish were collected using gillnets with 25 mm internode meshes. The nets were placed randomly and crosswise in each lagoon for ten hours, and were checked every 60 min and then relocated to the site (UNMSM -MINAM, 2014). The average physical-chemical characteristics of both lagoons of the wetlands of Villa, Lima, Peru evaluated in situwere: temperature of 25 ± 5.2 ° C, pH of 8.42 ± 0.03, -Electrical conductivity (EC) of 5.67 ± 0.61 mS·cm1, surface dissolved oxygen (DO) of 3.19 ± 1.58 -1mg·L, background dissolved oxygen (DO) of 1.88 -1± 1.66 mg·L, using a multiparametric HANNA@ (HI98130, Solitec, Lima, Peru) and likewise, the transparency of the water was 37.91 ± 17.37 cm, which was evaluated using the Secchi disk.Fish were anesthetised in a benzocaine solution (50 –1mg·L) and a two mL blood sample was taken from the caudal vein using a syringe containing a drop of 10% EDTA solution (Jerônimo et al., 2011).Two hematological parameters were evaluated: hematocrit (Ht) and total red cell count (RBC). Ht (%) determinations were made by the 6-1microhematocrit method and the RBC (x 10·uL) was carried out in a Neubauer chamber (Blaxhall & Daisley, 1973). We measured total weight (0.1 g sensitivity) and full length (TL) (0.1 cm sensitivity). All fish underwent a systematic external and internal examination of tissues, including skin, fins, gills, eyes (lens and vitreous humor), body cavity, mesentery, and visceral organs (stomach, intestine, liver, swim bladder, heart, and gonads). The recovered parasites were fixed and preserved using commonly applied methods (Özer et al., 2016).Sample analysisThe ecological approach of the metazoan parasite community was made at the component and intracommunity levels (Esch et al., 1990). For the case of parasitic species with prevalences higher than 10% (Esch et al., 1990), the dispersion indices (DI) were used to determine the type of spatial distribution of the parasitic populations, the Poulin discrepancy (PDI), and the K of the negative binomial equation with its respective Chi-square Neotropical Helminthology, 2021, 15(1), ene-junInvading Trematode Centrocestus formosanus
image/svg+xml602value (X) to determine the degree of aggregation (Bego & Von-Zuben, 2010). The calculations were performed using the statistical package Quantitative Parasitology 3.0 (Rózsa et al., 2000; Reiczigel et al., 2019).Relative condition factor (K)nThe theoretically expected weight for a given length was calculated using the estimated weight (W) -total length (LT) ratio curve. Then, the relative condition factor was obtained by the relationship between the observed weight (W) and the expected weight (We) as shown below: K = nW/We. In this way, K's mean values for fish ninfected by a particular parasite alone were calculated (Özer et al., 2016).A student's t-test was performed to compare k deals between parasitized nand non-parasitized and between the two lagoons evaluated, after analysis of the Levene test for the homogeneity of the variances Shapiro-Wilk test for normality (Zar, 2014).Pearson's correlation coefficient (r) was used to pindicate the relationship between the host's total length and the abundance of parasites. The Spearman rank correlation coefficient (r) was scalculated to determine a possible correlation between the host's full size and the parasite's RESULTSprevalence, with the anterior arcsine transformation of the prevalence data (Zar, 2014; Bautista-Hernández et al., 2013). The ecological terminology used follows Bush et al. (1997). The level of statistical significance was evaluated at p ≤ 0.05. The SPSS version 25.0 statistical package was used for all descriptive and inferential statistics calculations.Ethic aspects: The authors indicate that all the ethical requirements of the country and international were met.The fish had an average length of 19.6 cm ± 4.24 (13 cm - 30.6 cm) and a weight of 221.3 g ± 111.4 (99 g - 486.5 g). Two parasites were found: C. formosanus(Trematoda) and Amyloodinium ocellatum(Alveolata). It was observed that 60% of the total population of O. niloticuswere parasitized by the metacercariae of C. formosanusin the branchial area. Likewise, this parasite records an aggregate type distribution according to the dispersion indices according to the variance/mean DescriptorsTotalGénesislagoonMarvilla lagoonParasitized fish1248Prevalence (P) %604080Medium abundance (MA)6.5± 1.744.5 ±2.818.5 ±1.99Medium intensity (MI) 10.83± 2.2411.25 ±4.4410.63 ±2.23type of strategyCoreSecondaryCoreVariance / mean ratio (DI)9.2717.494.66Poulin's discrepancy Index (PDI)0.580.720.35Negative binomial exponent kNA0.15NATotal length(TL)(cm)19.9 ±4.2422.9 ±5.1818.6 ±5.18Weight (W)(g)247.8 ±111.39264 ±133.56226.7 ±133.56Kn1.12 ±11.23 ±11 ±1Student's t between knbetweenlagoonst = 2.12, p=0.06Knfor parasitized and non-parasitizedKnparasitized0.86 ± 0.36Knnot parasitized1.07 ± 0.26Student's t between parasitized knand non-parasitized knt = 1.48, p=0.15Table 1. Ecological descriptors of Centrocestus formosanusparasites of the Nile tilapia Oreochromis niloticuscollected in Pantanos de Villa, Lima, Peru. K = Relative condition factor. NA = cannot calculate maximum likelihood estimate of k.nNeotropical Helminthology, 2021, 15(1), ene-junMinaya et al.
image/svg+xml61relationship (DI = 9.27) and Poulin's discrepancy Index (PDI = 0.58). Compared to the two lagoons, it is observed that in the Marvilla lagoon, the P and AM are higher than in Genesis lagoon, except for the MI, where the opposite occurs. In the type of distribution of C. formosanus, for the two environments, they are classified as aggregate or contagious (Table 1).According to the Relative Condition Factor (K), nthe fish parasitized by C. formosanusdid not show the loss or low levels of weight about the total population of fish (infected and not infected); on the contrary, the factor was above 1 (K = 1.12 ± 1) nindicating a satisfactory health condition concerning weight (Table 1).No significant differences were observed in kn between lagoons and between parasitized and non-parasitized (Table 1).The degree of association between the morphological parameters of O. niloticus(TL and W) was sought about the ecological descriptors of C. formosanus(prevalence, mean abundance and mean intensity of infection), were an only significant association of TL with relation to the mean abundance (Table 2).Table 2. Correlation between the total length (TL) and weight (W) of Oreochromis niloticusand the prevalence, abundance, and mean intensity of infection of Centrocestus formosanusin the Pantanos de Villa wildlife refuge, Lima, Peru.rpTLvsP%*0.111.00TLvsMA**0.960.04TLvsMI**0.810.19W vsP%*0.600.23W vsMA**0.820.09W vsMI**0.150.81TL = Total length, P% = Prevalence, MA = mean abundance, MI = mean intensity, W = Weight. r = Correlation coefficient, * Spearman, ** Pearson p = significance.About A. ocellatum, this dinoflagellate was found only in one individual parasitizing a single host of Nile tilapia in the gills (5% prevalence) from the Genesis Lagoon. This parasite was found in the trophont stage of development, and an MA and MI of 0.05 and 1, respectively, were observed. Due to the low prevalence, this species was considered rare.Table 3 shows the physical-chemical parameters (temperature, pH, dissolved oxygen, and water transparency) of the two lagoons (Génesis and Marvilla) that make up the Pantanos de Villa wildlife refuge Lima, Peru.Table 3. The Génesis and Marvilla lagoons' physical-chemical parameters make up the Pantanos de Villa wildlife refuge, Lima, Peru.Physico-chemical parametersGénesis lagoonMarvilla lagoonTemperature (°C)2921.6pH8.48.4Electric Conductivity(µS·cm-1)6.15.2DO(mg·L-1) (surface)4.312.1DO(mg·L-1) (bottom)3.050.7BOD(mg·L-1) (surface)1.269.6Transparency (Secchi) (cm)50.4025.4Two hematological parameters in Nile tilapia, hematocrit (Ht) and total red cell count (RBC) presented mean values of 30.04 ± 5.41 % and 3.83 6-1± 0.47 (x 10·uL), respectively.Neotropical Helminthology, 2021, 15(1), ene-junInvading Trematode Centrocestus formosanus
image/svg+xml62The parasite community in the Nile tilapia was limited to one metazoan parasite species, the metacercariae of the trematode C. formosanusas the dominant species. Similar studies have also addressed the registration of ecological descriptors, as in Aguilar–Aguilar et al. (2009), where they found prevalence values ​​of 100% and a mean abundance of 182.2, in Cyprinella lutrensis(Baird & Girard, 1853). On the contrary, Pinto et al.(2014) mentions low values ​​of P = 31.9% (19/61), AM = 1.03 and IM = 3.42 in O. niloticus.Fish age, behavior, and resistance to parasitism are factors that can influence the prevalence and intensity of trematode infection in Nile tilapia (Pinto et al., 2014). On the other hand, different authors from other countries (Kalantan et al., 1999; Ramadan et al., 2002; Chi et al., 2008) also recorded low intensities of infection by C. formosanusin O. niloticus. Pinto et al. (2014) suggest that the Nile tilapia has a relative resistance to the parasitosis of C. formosanus. They even offer that resistance to parasites is one reason why tilapia is chosen as a fish for culture; however, this study shows the high susceptibility to this trematode. These differences can be influenced by environmental aspects (temperature, humidity, luminosity) that each locality presents (Lo & Lee, 1996).The type of distribution was classified as aggregated in the three indices, which is expected in populations of parasites with prevalence above 10% because aggregation is the predominant pattern in all-natural systems of parasites- host (Bego & Von-Zuben, 2010). In the case of the negative K index, it has not been possible to estimate the degree and type of aggregation for the total populations and the population of Laguna Marvilla; probably the reason could be (among others) that there is very little data or that are not aggregated at all (Reiczigel et al., 2019).The association of the morphological parameters of O. niloticusand the parasitological indices did not show any degree of association except in the TL and the mean abundance of C. formosanus,which showed a significant positive association. Poulin (2011) suggests that larger body size hosts can DISCUSSIONdeliver a greater supply of nutrients to parasites and, consequently, be the most susceptible to increased parasite infection.Negative effects caused by pathogenic parasites can be expected on their hosts; however, it is difficult to define or quantify whether these effects directly caused any alteration in the health of the fish, this measure has been applied to individuals and, although in limited quantities, to varieties of parasites co-infecting their hosts (Özer et al., 2016). Health status based on the relative condition factor of O. niloticuswas not affected by the individual presence of C. formosanus. Ht and RBC were within the expected range for Nile tilapia (Hah-Von-Hessberg et al., 2011; Jerônimoet al.,2011).Previously, Centrocestussp. in the Green Terror Andinoacara rivulatus (Günther, 1860), and in the Swordtail Xiphophorus hellerii(Heckel, 1848), both reported in the department of La Libertad, Perú (Luque et al., 2016). These are the only records that exist of the genus Centrocestus,so that this study would be the first report of the species C. formosanusfor the Pantanos de Villa life refuge for Lima's department and Peru.It should also be considered that this trematode can not only cause pathologies in fish or their definitive hosts, birds and aquatic mammals (Pinto & Melo, 2012; Leibowitz et al., 2019), but is also responsible for zoonotic diseases, being able to produce in the human heterophiosis, which is emergent and transmitted to man due to the consumption of raw fish. This disease can be fatal in cases where it significantly affects the heart, spinal cord or brain (Lima dos Santos & Howgate, 2011).In aquaculture, A. ocellatumhas also been considered an important pathogen of marine and freshwater fish because it causes (amyloodyniosis) can be devastating and deadly in crowded and closed systems (Francis-Floyd & Floyd, 2011), as is the free-living refuge Pantanos de Villa. It is also known that the host range for this ectoparasitic dinoflagellate is quite wide, even reaching a group of teleost and elasmobranch fish (Alvarez-Pellitero, 2008). This generalist ability of the parasite can endanger the other fish species that accompany O. niloticusin Pantanos de Villa, such Neotropical Helminthology, 2021, 15(1), ene-junMinaya et al.
image/svg+xml63as the White Liza Mugil curemaValenciennes, 1836, which is also present in the same environment.The extremely low prevalence of A. oncellatumcould be because the parasite is still beginning to adapt to this environment and subsequently colonize fish populations. Therefore, it is essential to keep monitoring and reviewing possible intermediate hosts shortly. To ensure the health of the fish and its ecosystem of the swamps, since the loss of water resources such as fish could lead to imbalances in this environment's trophic chain and the organism's dependent on them.Amin, O, Heckmann, RA, Peña, C & Castro, T. 2010.On the larval stages of Polymorphus spindlatus(Acanthocephala: Polymorphidae) from a new fish host, Oreochromis niloticus, in Peru.Neotropical Helminthology, vol. 4, pp. 81-85.Abd El-Naby, FS, Naiel, MAE, Al-Sagheer, AA & Negm, SS. 2019. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture, vol. 501, pp. 82-89.Aguilar-Aguilar, R, Martínez-Aquino, A, Pérez-Rodríguez, R & Pérez-Ponce-de-León, G. 2009. Digenea, Heterophyidae, Centrocestus formosanus(Nishigori, 1924) metacercariae: distribution extension for Mexico, new state record, and geographic distribution map.Check List, vol. 5, pp. 357-359.Alvarez-Pellitero, P. 2008. Diseases caused by flagellates. In: Eiras, JC, Segner, H, Wahli, T & Kapoor, BG. (eds). Fish Diseases, Volume 1. Science Publishers: Enfield, NH, pp. 421-515.Baltazar, PM. 2007. La Tilapia en el Perú: acuicultura, mercado, y perspectivas. Revista peruana de biología, número especial 13, pp. 267-273.Bautista-Hernández, CE, Monks, S & Pulido, G. 2013. Los parásitos y el estudio de su biodiversidad: un enfoque sobre los BIBLIOGRAPHIC REFERENCESestimadores de la riqueza de especies. Estudios científicos en el estado de Hidalgo y zonas aledañas, vol. 2, pp. 3-17.Bego, NM & Von-Zuben, CJ. 2010. Métodos quantitativos em parasitología.FUNEP, Jaboticabal.Blaxhall, P & Daisley, R. 1973. Routine haematological methods for use with fish blood. Journal of Fish Biology, vol. 5, pp. 771-781.Bush, AO, Lafferty, KD, Lotz, JL & Shostak, AW. 1997. Parasitology meets ecology on its terms: Margolis et al. revisited. The Journal of Parasitology, vol. 83, pp. 575-583.Chi, TTK, Dalsgaard, A, Turnbull, JF, Tuan, PA & Murrell, KD. 2008. Prevalence of zoonotic trematodes in fish from a Vietnamese fish-farming community. Journal of Parasitology, vol. 94, pp. 423-428.Chiclla-Salazar, A & Tantas-García, D. 2015. Infección por larvas de Contracaecum sp. (nematoda: anisakidae) en la tilapia Oreochromis niloticus de Peru.The Biologist (Lima), vol. 13, pp. 419-427.Cossíos, ED. 2010. Vertebrados naturalizados en el Perú: historia y estado del conocimiento. Revista Peruana de Biología, vol. 17, pp. 179-189.Davis, M.A. 2009. Invasion biology, Oxford University Press, New York.Eiras, JC, Takemoto, RM & Pavanelli, GC. 2006. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes.Eduen.Esch, WG, Shostak, AW, Marcogliese, DJ & Goater, TM. 1990. Patterns and process in helminth parasite communities: an overview.pp. 1-19. In: Esch, G, Bush, AC & Aho, J. (Eds.). Parasite communities: Patterns and processes. Springer, Dordrecht.FAO. 2016. The state of world fisheries and aquaculture, contributing to food security and nutrition for all.FAO.Francis-Floyd, R & Floyd, MR. 2011. Amyloodinium ocellatum, an important parasite of cultured marine fish.Southern Regional Aquaculture Center.Gonzales-Fernández, J. 2012. Parasitofauna of tilapia cause mortalities in fingerlings in two fishfarms, Lima, Peru.Neotropical Helminthology, vol. 6, pp. 219 - 229.Hahn-Von-Hessberg, CM, Grajales-Quintero & Neotropical Helminthology, 2021, 15(1), ene-junInvading Trematode Centrocestus formosanus
image/svg+xmlGutiérrez-Jaramillo, AV. 2011. Parámetros hematológicos de Tilapia nilótica (Oreochromis niloticus, Linnaeus 1757) con peso entre 250 g y 350 g, en el Centro Experimental Piscícola de la Universidad de Caldas. Veterinária e Zootecnia, vol. 5, pp. 47-61.Iannacone, J, Atasi, M, Bocanegra, T, Camacho, M, Montes, A, Santos, S, Zuñiga, H & Alayo, M. 2010. Diversidad de aves en el humedal Pantanos de Villa, Lima, Perú: periodo 2004-2007. Biota Neotropica, vol. 10, pp. 295-304.Jerônimo, GT, Laffitte, LV, Speck, GM & Martins, ML. 2011. Seasonal influence on the hematological parameters in cultured Nile tilapia from southern Brazil.Brazilian Journal of Biology, vol. 71, pp. 719-725.Kalantan, AMN, Al-Harbi, AH & Arfin M. 1999. On the metacercaria of Centrocestus formosanus (Trematoda:Heterophyidate) Nishigori, 1924 (Digenea: Heterophyidae) from Oreochromis niloticusin Saudi Arabia and its development in various definitive hosts. Journal of Parasitology and Applied Animal Biology, vol. 8, pp. 83-94.Leibowitz, MP, Santos, NR, Tavares, GC, Assis, GB, Dorella, FA., Figueiredo, HC & Leal, CA. 2019. Severe outbreak of Centrocestus formosanus(Trematoda: Heterophyidae) in farm-raised ornamental platies Xiphophorus maculatus. Diseases of Aquatic Organisms, vol. 134, pp. 107-111.Lima dos Santos, CA, & Howgate, P. 2011. Fishborne zoonotic parasites and aquaculture: a review. Aquaculture, vol. 318, pp. 253-261.Lo, C-T & Lee, K-M. 1996. Pattern of emergence and the effects of temperature and light on the emergence and survival of Heterophyid cercariae (Centrocestus formosanusand Haplorchis pumilio). The Journal of Parasitology, vol. 82, pp. 347-350.Luque, JL, Cruces, C, Chero, J, Paschoal, F, Alves, PV, Da Silva, AC, Sanchez, L & Iannacone, J. 2016. Checklist of metazoan parasites of fishes from Peru.Neotropical Helminthology, vol. 10, pp. 301-375.Mitchell, AJ, Overstreet, RM, Goodwin, AE & Brandt, TM. 2005. Spread of an exotic fish-gill Trematode: A far-reaching and complex problem.Faculty Publications from the 64Harold W. Manter Laboratory of Parasitology. Paper 441. http://digitalcommons.unl.edu/parasitologyfacpubs/441Ortega, H, Guerra, H & Ramírez, R. 2007. The introduction of nonnative fishes into freshwater systems of Peru.In: Bert, TM. (ed). Ecological and genetic implications of aquaculture activities. Springer. Dordrecht, Netherlands.Ortega, Y, Barreiro, F, Castro SG, Huancaré PK, Manchego, SA, Belo, MAA, Figueiredo, MAP, Manrique, WG & Sandoval, N. 2017. Beta-haemolytic streptococci in farmed Nile tilapia, Oreochromis niloticus, from Sullana-Piura, Peru. Rev.MVZ Córdoba, vol. 22, pp. 5653-5665.Özer, A, Çankaya, E & Kırca, DY. 2016. Health assessment of grey mullet Mugil cephalus based on interrelationship between parasite co-infections and relative condition factor. Journal of Zoology, 300: 186-196.Pace, A, Dipineto, L, Aceto, S, Censullo, MC, Valoroso, MC, Varriale, L, Rinaldi, L, Menna, LF, Fioretti, A & Borrelli L. 2020. Diagnosis of Centrocestus formosanusinfection in zebrafish (Danio rerio) in Italy: A window to a new globalization-derived invasive microorganism. Animals, vol. 10, pp. 456.Poulin, R. 2011. Evolutionary ecology of parasites. nd2 edn. Princeton university press, UK.Pinto, HA & Melo, A. 2012. Metacercariae of Centrocestus formosanus(Trematoda:Heterophyidae) in Australoheros facetus(Pisces:Cichlidae) in Brazil. Revista Brasileira de Parasitologia Veterinaria, vol. 21, pp. 334-337.Pinto, HA, Mati, VL & Melo, AL. 2014. Metacercarial infection of wild Nile tilapia(Oreochromis niloticus) from Brazil. The Scientific World Journal, pp. 1-7.Ramadan, RAM., Saleh, OA & El-Gamal, RM. 2002. Prevalence and distribution of metacercariae of Centrocestussp. (Trematode: Heterophyidae) on gills and other organs of Oreochromis niloticusfingerlings, Suez Canal. Veterinary Medicine Journal, vol. 92, pp. 657–667.Ramos, R. & Gálvez, M. 2000. Impacto ambiental de la introducción de Tilapias en la cuenca del Río Piura. Universalia: Revista Neotropical Helminthology, 2021, 15(1), ene-junMinaya et al.
image/svg+xml65(UNMSM-MINAM (Universidad Nacional Mayor de San Marcos - Ministerio del Ambiente). 2014. Museo de Historia Natural. Métodos de colecta, identificación y análisis de comunidades biológicas: plancton, perifiton, bentos (macroinvertebrados) y necton (peces) en aguas continentales delPerú. Departamento de Limnología, Departamento de Ictiología - Lima.Ximenes, RF, Gonçalves, ICB, Miyahira, IC, Pinto, HA, Melo, AL & Santos, SB. 2017. Centrocestus formosanus(Trematoda: Heterophyidae) in Melanoides tuberculata(Gastropoda: Thiaridae) from Vila do Abraão, Ilha Grande, Rio de Janeiro, Brazil. Brazilian Journal of Biology, vol. 77, pp. 318-322.Zar, JH. 2014. thBiostatistical Analysis. 5 ed. Pearson New International, London.Científica de la Universidad Nacional de Piura, vol. 5, pp. 80-97.Reiczigel, J, Marozzi, M, Fabian, I & Rozsa, L. 2019. Biostatistics for parasitologists – a primer to Quantitative Parasitology. Trends in Parasitology, vol. 35, pp. 277-281.Rózsa, L, Reiczigel, J & Majoros. G. 2000. Quantifying parasites in samples of hosts.Journal of Parasitology, vol. 86, pp. 228-232.Sumuduni, BG, Munasinghe, DH, & Arulkanthan, A. 2018. Chronological analysis of the damages caused by the metacercariae of Centrocestus formosanusin the gills of Cyprinus carpioand lesions caused by the adult flukes in Ardeola ralloides: An experimental study. International Journal of Veterinary Science and Medicine, vol. 6, pp. 165-171.Torres-Zevallos, U, Llontop, C, Alvariño, L & Iannacone, J. 2020. Drástica disminución de la comunidad de gasterópodos en el Refugio de Vida Silvestre Los Pantanos de Villa, Lima, Perú. Biotempo, vol. 17, pp. 245-258.Received February 2, 2021.Accepted March 29, 2021.Neotropical Helminthology, 2021, 15(1), ene-junInvading Trematode Centrocestus formosanus