PARASITISM ASSOCIATED WITH LENGTH AND GONADAL MATURITY STAGE OF THE
FRESHWATER FISH METYNNIS LIPPINCOTTIANUS (CHARACIDAE)
PARASITISMO ASOCIADO A LA LONGITUD Y AL ESTADO DE MADUREZ GONADAL DEL
PEZ DE AGUA DULCE METYNNIS LIPPINCOTTIANUS (CHARACIDAE)
Neotrop. Helminthol., 6(2), 2012
2012 Asociación Peruana de Helmintología e Invertebrados Afines (APHIA)
ISSN: 2218-6425 impreso / ISSN: 1995-1043 on line
ORIGINAL ARTICLE / ARTÍCULO ORIGINAL
Fábio Hideki Yamada*, Luís Henrique de Aquino Moreira, Tiago Lopes Ceschini, Maria de los Angeles Perez Lizama,
Ricardo Massato Takemoto & Gilberto Cezar Pavanelli
Laboratório de Ictioparasitologia/Nupelia, Universidade Estadual de Maringá, Bloco G-90, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil.
*e-mail: fhyamada@hotmail.com
247
Abstract
Parasitism was observed in 72.7% of 44 specimens of Metynnis lippincottianus (Cope, 1870) (Characidae)
caught in the Upper Paraná River floodplain, Brazil. One species of digenean, Dadayus pacupeva Lacerda,
Takemoto & Pavanelli, 2003, and four species of nematodes, Spinoxyuris oxydoras Peter, 1994,
Contracaecum sp. Railliet & Henry, 1912 (larval stage), Procamallanus (Spirocamallanus) inopinatus
Travassos, Artigas & Pereira, 1928 and Raphidascaris (Sprentascaris) mahnerti Petter & Cassone, 1984
were identified. The prevalence of D. pacupeva was correlated with the host's standard length. Correlations
between the host's standard length and the abundance of S. oxydoras, P. (S.) inopinatus and D. pacupeva
were observed. In addition, fish length was correlated with the diversity of parasites. D. pacupeva and S.
oxydoras had their abundances influenced by the host's gonadal maturity stage. According to gonadal
maturity stage, the host may or may not have an increased susceptibility to parasites, suggesting a
cumulative process causing higher parasite abundance in larger fish and in the mature stage (more time of
exposure) than the immature stage (young fish).
Keywords: Brazil - Characidae - digeneans - endoparasites - Metynnis lippincottianus - nematodes.
Resumen
Basado en el examen de 44 especímenes de Metynnis lippincottianus (Cope, 1870) (Characidae)
muestreados en la llanura de inundación del Alto rio Paraná, Brasil, el parasitismo fue observado en 72,7%
de los peces. Una especie de digeneo, Dadayus pacupeva Lacerda, Takemoto & Pavanelli, 2003, y cuatro
especies de nemátodos, Peter, 1994, Contracaecum sp. Railliet & Henry, 1912 (forma larval),
Procamallanus (Spirocamallanus) inopinatus Travassos, Artigas & Pereira, 1928 y Raphidascaris
(Sprentascaris) mahnerti Petter & Cassone, 1984 fueron identificados. La prevalencia de D. pacupeva se
correlacionó con la longitud estándard del huésped. Se observaron correlaciones entre las longitudes
estándard del huésped y la abundancia de S. oxydoras, P. (S.) inopinatus y D. pacupeva. Además la longitud
del pez estubo correlacionada con la diversidad de los parásitos. D. pacupeva y S. oxydoras tuvieron sus
abundancias influenciadas por el estado de madurez gonadal. De acuerdo con el estado de madurez
gonadal, el húesped puede o nó tener un aumento de la susceptibilidad a los parásitos, lo que sugiere un
proceso acumulativo causando elevada abundancia de parásitos en los peces mayores y en el estado
maduro (mayor tiempo de exposición) que en el estado inmaturo (peces jóvenes).
Palabras clave: Brasil - Characidae - digeneos - endoparásitos - Metynnis lippincottianus - nemátodos.
Suggested citation: Yamada, FH, Moreira, LHA, Ceschini, TL, Lizama, MAP, Takemoto, RM & Pavanelli, GC.
2012. Parasitism associated with length and gonadal maturity stage of the freshwater fish Metynnis lippincottianus
(Characidae). Neotropical Helminthology, vol. 6, 2, pp. 247-253.
INTRODUCTION
Yamada et al.
Parasitism of Metynnis lippincottianus
A parasitological study was conducted with
Metynnis lippincottianus (Cope, 1870)
(Characidae) from the Upper Para River
floodplain, collected from March 2006 to
December 2007. M. lippincottianus is a freshwater
fish native to South American basins that lives in
waters with temperatures between 20 and 28ºC
(Froese & Pauly, 2009). This species has
commercial (ornamental fish) and ecological
importance, because it belongs to the second
trophic level in the local food web (herbivorous);
its diet consists of plant pieces and sporadically of
arthropods and detritus (Dias et al., 2005). The
host's standard length and maturity stage can
determine high or low levels of parasitism.
Changes in the diet of fish between young and
adults allied to accumulative processes result in
different levels of parasitism for different fish
lengths. The exposure to parasites and the host
health are also influenced by gonadal maturity
stage (GMS) (Bush et al., 2001). This paper aims
to provide information about the accumulative
process of parasites influenced by the host's
standard length and GMS in M. lippincottianus.
Forty-four specimens of M. lippincottianus were
collected, between March 2006 and December
2007, in the Upper Paraná River floodplain
(22°43'S and 53°10'W), Brazil. Fishes were
captured using gill nets. The standard length and
GMS of each fish were registered, and the internal
organs and visceral cavity were analysed under a
stereomicroscope. The collected parasites were
treated according to Eiras et al. (2006) and
identified according to Travassos et al. (1969);
Yamaguti (1971); Moravec (1998) and Lacerda et
al. (2003). Prevalence and abundance were
determined for all identified parasite species. GMS
was determined following the scale proposed by
Vazzoler (1996).
Data analyses were made using the following
statistical tests: Spearman's rank correlation (rs)
and the Pearson linear correlation (r) were used to
verify correlations between the host's standard
length and the abundance and prevalence of
parasites, respectively. Fish were separated into
length classes, with angular transformation (arc
sine x) of prevalence data prior to using
Pearson's linear correlation (r). Diversity of the
parasite community was evaluated using the
Brillouin index, and Spearman's rank correlation
was used to correlate the diversity of parasites and
the host's length. The Kruskal–Wallis test was used
to verify the variation of parasite abundance
according to the host's GMS (Zar, 1996). Statistical
analysis was applied to parasite species with over
10% of prevalence and the results were considered
significant when p 0.05. The ecological terms
were suggested by Bush et al. (1997).
Of the 44 examined hosts, 32 (72.7%) were
infected by at least one species of helminth
248
MATERIAL AND METHODS
Table 1. Number of specimens (N), prevalence (P), mean abundance (MA), mean intensity (MI) and amplitude of
infection (A) of the parasitic helminthes of Metynnis lippincottianus collected in the Upper Paraná River floodplain,
Paraná, Brazil.
Parasite N P(%) MA MI A
Digenea
Dadayus pacupeva
3568 61.4 81.09 132.1 1-575
Nematoda
Spinoxyuris oxydoras
2879 63.6 65.43 102.8 1-479
Procamallanus
(Spirocamallanus) inopinatus 44 43.2 1.00 2.3 1-9
Raphidascaris (Sprentascaris) mahnerti 1 2.3 0.02 1.0 -
Contracaecum sp.
(larval)
8 11.4 0.18 1.6 1-4
RESULTS
Neotrop. Helminthol., 6(2), 2012
249
endoparasite. One digenean, Dadayus pacupeva
(Lacerda, Takemoto & Pavanelli, 2003) and four
nematode species, Spinoxyuris oxydoras (Petter,
1994), Contracaecum sp. (larval stage; Railliet &
Henry, 1912), Procamallanus (Spirocamallanus)
inopinatus (Travassos, Artigas & Pereira, 1928)
and Raphidascaris (Sprentascaris) mahnerti
(Petter & Cassone, 1984) were identified. The
number of collected specimens, prevalence, mean
abundance, mean intensity and amplitude of
infection for each parasite species are presented in
Table 1.
The host's standard length varied from 1.4 to 13.4
cm. Significant positive correlation between the
host's standard length and the prevalence of D.
pacupeva and S. oxydoras (r = 0.83; p = 0.04 and r
= 0.81; p = 0.05, respectively) was observed (Fig.
1).
There was a significant positive correlation
between standard length and abundance of the
following parasite species: S. oxydoras, P. (S.)
inopinatus and D. pacupeva from the Upper Paraná
River floodplain (Fig. 2).
The average infracommunity diversity of the
parasites of M. lippincottianus in the Upper Paraná
River floodplain was 0.3371 (Brillouin index). A
positive correlation was found between the
diversity of parasites and the host's standard length
(rs = 0.68; p < 0.001).
Five GMS were reported: immature, rest,
maturing, ripe and semi-spent, according to
Vazzoler (1996). There was significant influence
of the GMS on parasite abundance only in D.
pacupeva (H = 24.67; p < 0.001) and S. oxydoras
(H = 24.50; p < 0.001).
Dadayus pacupeva
0 2 4 6 8 10 12 14
Length Classes (cm)
0
20
40
60
80
100 r = 0.83
p = 0.04
%
Spinoxyuris oxydoras
0 2 4 6 8 10 12 14
Length Classes (cm)
0
20
40
60
80
100 r = 0.81
p = 0.05
%
Procamallanus (Spirocamallanus) inopinatus
0 2 4 6 8 10 12 14
Length Classes (cm)
0
20
40
60
80
100 r = 0.64
p = 0.17
%
Contracaecum sp.
0 2 4 6 8 10 12 14
Length Classes (cm)
0
20
40
60
80
100 r = 0.38
p = 0.45
%
Figure 1. Correlation between the standard length of Metynnis lippincotianus and the prevalence of Dadayus pacupeva;
Spinoxyuris oxydoras; Procamallanus (Spirocamallanus) inopinatus; and Contracaecum sp. in the Upper Paraná River
floodplain, Paraná, Brazil (r = Pearson's linear correlation, p = significance level).
Yamada et al.
Parasitism of Metynnis lippincottianus
Spinoxyuris oxydoras
0 2 4 6 8 10 12 14
Standard Length (cm)
0
100
200
300
400
rs = 0.72
p < 0.001
Dadayus pacupeva
0 2 4 6 8 10 12 14
Standard Length (cm)
0
100
200
300
400 rs = 0.82
p < 0.001
Procamallanus (Spirocamallanus) inopinatus
0 2 4 6 8 10 12 14
Standard Length (cm)
0
2
4
6
8
10
Abundance
rs = 0.36
p = 0.02
Contracaecum sp.
0 2 4 6 8 10 12 14
Standard Length (cm)
0
1
rs = 0.16
p = 0.32
Abundance
Abundance Abundance
Figure 2. Correlation between standard length of Metynnis lippincottianus and abundance of Dadayus pacupeva; Spinoxyuris
oxydoras; Procamallanus (Spirocamallanus) inopinatus and Contracaecum sp. in the Upper Paraná River floodplain, Paraná,
Brazil (rs = Spearman's rank correlation, p = significance level).
DISCUSSION
During ontogeny, changes occur in the behaviour
and biology of fish (Takemoto et al., 1996).
Probably the diet of M. lippincottianus, which is
mainly composed of vegetation, allowed its
infection (ingestion of parasite structures) and the
fish became the definitive host of D. pacupeva, S.
oxydoras, P. (S.) inopinatus and R. (S.) mahnerti.
However, Contracaecum sp. used the fish to reach
higher trophic levels (piscivorous fishes and
birds), making M. lippincottianus act as an
intermediate host. The nematodes identified are
reported in several fishes due to their low
specificity (Moravec, 1998). Some changes in the
diet or habitat can make the adults more vulnerable
(Dogiel, 1961; Hanek & Fernando, 1978) to the
parasite D. pacupeva.
Positive correlations between the standard length
of the host and prevalence were reported
previously in the floodplain with proteocephalid
cestodes in Paulicea luetkeni (Humboldt, 1821)
(=Zungaro zungaro) (Takemoto & Pavanelli,
1994), Proteocephalus microscopicus (Woodland,
1935), Proteocephalus macrophallus (Diesing,
1850) and Sciadocephalus megalodiscus Diesing,
1850 in Cichla monoculus Kullander & Ferreira,
2006 (=Cichla kelberi) (Machado et al., 2000),
Goezeella paranaensis Pavanelli & Rego, 1989,
Spatulifer maringaensis Pavanelli & Rego, 1989
and Mariauxiella piscatorum Chambrier &
Vaucher, 1999 in Hemisorubim platyrhynchos
(Valenciennes, 1840) (Guidelli et al., 2003) and the
nematode Rondonia rondoni Travassos, 1920 in
Pterodoras granulosus (Valenciennes, 1821)
(Dias et al., 2004).
250
251
Neotrop. Helminthol., 6(2), 2012
A significant positive correlation between the
standard length of the host and abundance is
expected in parasites that show low damage to the
host; thus the fish can increase in size and weight,
regardless of parasitism, being capable of
harbouring a larger amount of parasites (Poulin,
1998). The relationship between body length of the
host and parasitic abundance can be a result of the
process of temporal accumulation (Isaac et al.,
2000), increase (Zelmer & Arai, 1998) or change
(Machado et al., 2000) of ingested food and the
dimensions of the sites of infection (internal
organs) as a function of growth (Luque et al.,
1996). Diet changes in adult fishes can include a
large number of items used in the life cycle of
parasites, such as intermediate hosts or even
aquatic plants containing parasite structures
(larvae, eggs), resulting in higher abundance in
larger fishes.
Despite being a tropical fish, usually with many
parasites (Lizama et al., 2005), the endoparasite
diversity was low when compared to that in
temperate regions (Hanzelová et al., 2001). A
positive correlation was found between the
diversity of parasites and the host's standard
length. Probably the larger size of the fish indicates
more food variation during its ontogeny, and,
allied to larger sites of infection, results in higher
parasite diversity (Dogiel, 1961). Positive
correlations have been found in other hosts of the
Upper Paraná River floodplain (e.g. Yamada et al.,
2007).
The Gonadal maturity stage can determine higher
or lower exposure of the fish to parasitism
(migration to places presenting parasites) or even
its susceptibility to parasites (due to the lack of
food or stress). The immature stage presented the
lowest abundances of D. pacupeva and S.
oxydoras, possibly because of the low exposure to
parasites or some variation in the feeding of
younger fishes (such as food items that are not part
of their diet, but will be when they become adults)
(Poulin, 1998). This could explain the fact that fish
with more advanced GMS have high abundances
of D. pacupeva and S. oxydoras, even though the
abundance of specimens at the rest stage are a little
higher in maturation. The semi-spent stage, in
which the fish were more debilitated (lack of food,
high stress and hormonal changes) (Vazzoler,
1996), showed the highest parasitic abundance.
Probably the length of time of exposure to
parasites (accumulative process) and the food
shortages of the semi-spent stage of adult fishes
resulted in high abundance.
High values of abundance of D. pacupeva and low
abundance of S. oxydoras in the mature stage may
not reflect reality, because at this stage only one
specimen of S. oxydoras was collected. The study
of the gonadosomatic index is used as a tool to
increase the knowledge of the reproductive
biology of a fish population. Gil de Pertierra &
Ostrowski de Nuñez (1990) showed that the
reproductive phase of the fish Rhamdia sapo
(Valenciennes, 1836) coincided with the
maximum egg production of the cestode
Proteocephalus jandia Woodland, 1934, whereas
the output of gonadotropin by the fish was in
synchrony with the peak of the ovoposition of the
parasite. This may explain the greater abundance
of D. pacupeva and S. oxydoras at the end of the
reproductive period. The absence of mature
specimens and/or in reproduction makes it difficult
to confirm these results.
The gonadal maturity stage data partially
corroborate the data on the standard length of the
host, showing higher abundances of D. pacupeva
and S. oxydoras in hosts with greater standard
length. Other studies have demonstrated that
increased reproductive effort may result in higher
prevalence and intensity of parasitism (e.g.
Gustafsson et al., 1994; Oppliger et al., 1996;
Sorci et al., 1996). Because both reproduction
(Reznick, 1985) and immune responses (Klasing
et al., 1991) are costly, reproduction may increase
susceptibility to parasites by reducing energy
available for immunological defense. Thus, adult
fishes (greater abundance of D. pacupeva and S.
oxydoras) that become reproductive reaching the
semi-spent stage showed the highest abundances
of these parasite species, while the immature
(small fishes) showed low abundances.
The authors thank Nupelia (Center for Research in
Limnology, Ichthyology and Aquaculture),
Maringá State University, for logistic and financial
support and the CNPq (Conselho Nacional de
ACKNOWLEDGEMENTS
252
Yamada et al.
Parasitism of Metynnis lippincottianus
Desenvolvimento Científico e Tecnológico) for its
support and research fellowship.
BIBLIOGRAPHIC REFERENCES
Bush, AO, Lafferty, KD, Lotz, JM & Shostak, AW.
1997.
Bush, AO, Fernandez, JC, Esch, GW & Seed, JR.
2001.
Dias, ACMI, Branco, CWC & Lopes, VG. 2005.
Dias, PG, Furuya, WM, Pavanelli, GC, Machado,
MH & Takemoto, RM. 2004.
Dogiel, VA. 1961.
Eiras, JC, Takemoto, RM & Pavanelli, GC. 2006.
Froese, R & Pauly, D. 2009.
Gil de Pertierra, AA. & Ostrowski de Nuñez, M.
1990.
Guidelli, GM, Isaac, A, Takemoto, RM &
Pavanelli, GC. 2003.
Parasitology meets ecology on its
own terms: Margolis et al., revisited.
Journal of Parasitology, vol. 83, pp.
575–583.
Parasitism: The diversity and ecology
of animal parasites. Cambrigde Univesity
Press, Cambridge.
Estudo da dieta natural de espécies de
peixes no Reservatório de Riberão das
Lajes, RJ. Acta Scientiarum Biological
Sciences, vol. 27, pp. 355–364.
Efeito da
carga parasitária de Rondonia rondomi
Travassos, 1920, (Nematoda, Atrictidae)
sobre o fator de condição do armado,
Pterodoras granulosus Valenciennes, 1833
(Pisces, Doradidae). Acta Scientiarum
Biological Sciences, vol. 26, pp. 151–156.
Ecology of the parasites of
freshwater fishes. In Dogiel, VA,
Petrushevski, GK & Polyanski, Y. (eds.).
Parasitology of Fishes. Olivier & Boyd,
London.
Métodos de estudo e técnicas Laboratoriais
em Parasitologia de Peixes. EDUEM,
Maringá, Brazil. FishBase. World Wide
We b e l e c t r o n i c p u b l i c a t i o n .
http://www.fishbase.org/ (accessed
20.10.2011).
Seasonal dynamics and maturation of
the cestode Proteocephalus jandia
(Woodland, 1933) in the catfish (Rhamdia
sapo). Acta Scientiarum Biological
Sciences, vol. 35, pp. 305–313.
Endoparasite
infracommunities of Hemisorubim
platyrhynchos (Valenciennes, 1840)
(Pisces: Pimelodidae) of the Baía river,
Upper Paraná river floodplain, Brasil:
Specific composition and ecological
aspects. Brazilian Journal of Biology, vol.
63, pp. 261–268.
Infectious diseases, reproductive effort and
the cost of reproduction in birds.
Philosophical Transactions of the Royal
Society B, vol. 346, pp. 323–331.
The role of
season, habitat, host age, and sex on gill
parasites of Ambloplites rupetris (Raf).
Canadian Journal of Zoology, vol. 56, pp.
1251–1253.
Diversity of endoparasitic helminths
of fish from the lake Morské oko, Eastern
Slovakia. Helminthologia, vol. 38, pp.
139–143.
Prosthenhystera obesa
(Digenea), parasite of Salminus maxillosus
(Characidae) of the floodplain of the upper
Paraná river, Paraná Brazil: Influence of
the size and sex of host. Acta Scientiarum
Biological Sciences, vol. 22, pp. 523–526.
Implications of an immune response on
growth and nutrient requirements of chicks.
In Haresing, W & Cole, DJA (eds.). Recent
advances in animal nutrition. Butterworth
Heinemann, Stoneham, U.K.
A new species of Dadayius Fukui,
1929 (Digenea: Cladorchiidae), parasite of
the intestinal tract of Metynnis maculatus
(Kner, 1858) (Characidae) from the Upper
Para River floodplain, Brazil. Acta
Scientiarum Biological Sciences, vol. 25,
pp. 283–285.
Influence of host sex and age on
infracommunities of metazoan parasites of
Prochilodus lineatus (Valenciennes, 1836)
(Prochilodontidae) of the Upper Paraná
River floodplain, Brazil. Parasite, vol. 12,
pp. 299–304.
Gustafsson, L, Nordling, D, Andersson, MS,
Sheldon, BC & Qvarnstrom, A. 1994.
Hanek, G & Fernando, CH. 1978.
Hanzelová, V, Špakulová, M & Turčeková, Ľ.
2001.
Isaac, A, Guidelli, GM, Takemoto, RM &
Pavanelli, GC. 2000.
Klasing, KC, Johnstone, BJ & Benson, BN. 1991.
Lacerda, ACF, Takemoto, RM & Pavanelli, GC.
2003.
Lizama, MAP, Takemoto, RM & Pavanelli, GC.
2005.
Luque, JL, Amato, JFR & Takemoto, RM. 1996.
253
Comparative analysis of the communities of
metazoan parasites of Orthopristis ruber
and Haemulon steindachneri (Osteichthyes:
Haemulidae) from the souhteastern
Brazilian littoral. II. Diversity, interspecific
associations, and distribution. Brazilian
Journal of Biology, vol. 56, pp. 292–302.
Ecological aspects of
endohelminths parasitizing Cichla
monoculus Spix, 1831 (Perciformes:
Cichlidae) in the Paraná River near Porto
Rico, State of Paraná, Brazil. Comparative
Parasitology, vol. 67, pp. 210–217.
Nematodes of freshwater fishes
of the neotropical region. Academia, Praha,
Czech Republic. Clutch
size and malaria resistance. Nature, vol.
381, p. 565. Evolutionary ecology of
parasites: from individuals to communities.
Chapman & Hall, London, UK.
The cost of reproduction: An
evaluation of the empirical evidence. Oikos,
vol. 44, pp. 257–267. Cost of
reproduction and cost of parasitism in the
common lizard, Lacerta vivipara. Oikos,
vol. 76, pp. 121–130.
Comparative analysis of the metazoan
parasite communities of leatherjackets,
Oligoplites palometa, O. saurus, and O.
saliens (Osteichthyes: Carangidae) from
Sepetiba Bay, Rio de Janeiro. Brazil.
Brazilian Journal of Biology, vol. 56, pp.
639–650. Ecological
aspects of proteocephalidean cestodes
parasi t es o f P aulicea luetk e ni
( S t e i n d a c h n e r ) ( O s t e i c h t h y e s :
Pimelodidae) from the Paraná, Brazil.
Revista Unimar, vol. 16, pp. 17–26.
Machado, PM, Almeida, SC, Pavanelli, GC &
Takemoto, RM. 2000.
Moravec, F. 1998.
Oppliger, A, Christe, P & Richner, H. 1996.
Poulin, R. 1998.
Reznick, D. 1985.
Sorci, G, Clobert, J & Michalakis, Y. 1996.
Takemoto, RM, Amato, JFR & Luque, JL. 1996.
Takemoto, RM & Pavanelli, GC. 1994.
Travassos, L, Freitas, JFT & Kohn, A. 1969.
Vazzoler, AEAM. 1996.
Yamada, FH, Takemoto, RM & Pavanelli, GC.
2007.
Yamaguti, S. 1971.
Zar, JH. 1996.
Zelmer, DA & Arai, HP. 1998.
Tremadeos do Brasil. Merias do
Instituto Oswaldo Cruz, vol. 67, pp. 1–886.
Biologia da reprodução
de peixes teleósteos: teoria e prática.
EDUEM, Maringá, Brazil.
Ecological aspects of ectoparasites
from the gills of Satanoperca pappaterra
(Heckel, 1840) (Cichlidae) from the Upper
Para river floodplain, Brazil. Acta
Scientiarum Biological Sciences, vol. 29,
pp. 331–336. Synopsis of digenetic
trematodes of vertebrates. Keigaku
Publishing Co., Tokyo, Japan.
Biostatistical Analysis. Prentice-
Hall International Editions, New Jersey,
USA. The contributions of
host age and size to the aggregated
distribution of parasites in yellow perch,
Perca flavescens, from Garner Lake,
Alberta, Canada. Journal of Parasitology,
vol. 84, pp. 24–28.
Neotrop. Helminthol., 6(2), 2012
Author for correspondence / Autor para
correspondencia
Fábio Hideki Yamada
Laboratório de Ictioparasitologia/Nupelia,
Universidade Estadual de Maringá, Bloco G-90,
Av. Colombo, 5790, 87020-900, Maringá, Paraná,
Brasil.
E-mail /correo electrónico:
fhyamada@hotmail.com
Received, September 26, 2012.
Accepted, December 7, 2012.